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Abstract— This paper considers a control parametrization
under Model Predictive Control framework for constrained lin-
ear discrete time systems with bounded additive disturbances.
Like the control parametrization in recent literature, the
proposed parametrization uses affine disturbance feedback but
includes an additional term. As a result, the parametrization has
the same representative ability but has a different closed-loop
convergence property. More exactly, the state of the closed-loop
system converges to the minimal invariant set with probability
one. Deterministic convergence to the same set is also possible if
a less intuitive cost function is utilized. Numerical experiments
are provided that validate the results.

I. INTRODUCTION

This paper considers the system:

xt+1 = Axt + But + wt, (1)

(xt, ut) ∈ Y, wt ∈ W, ∀ t ≥ 0 (2)

where xt ∈ Rn, ut ∈ Rm and wt ∈ W ⊂ Rn are the

state, control and disturbance acting on the system at time

t, respectively. The set Y represents the joint constraint on

x and u of the system. The study of such a system under

the Model Predictive Control (MPC) framework has been

an active area of research in the past few years [1], [2],

[3], [4], [5]. One important issue is the choice of control

parametrization within the control horizon. Several choices

have been proposed in the literature [2], [3], [5], [6], [7], [8],

[9] and a popular choice is ut = Kxt + ct [2] where K is

a fixed feedback gain and ct is the new variable. However,

such a choice is known to be conservative and its use will

result in a relatively small domain of attraction.

In an effort to reduce conservatism, control parametriza-

tion based on affine function of disturbances have been

proposed [6], [8], [9], [10]. Löfberg [6] proposes the control

parametrization of

uL
i =

i
∑

j=1,j≤i

M
j
i wi−j + vi, i = 0, · · · , N − 1 (3)

where M
j
i and vi are the optimization variables and N is

the length of the horizon used in MPC. Goulart et.al. [8]
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show that parametrization (3) is equivalent to that of time-

varying affine state feedback in terms of set of states that are

reachable within the horizon. They also showed that, under

mild assumptions, the origin of the closed-loop system is

input-to-state stable (ISS) under the MPC control law derived

using time-varying affine state feedback law. Recently, Wang

et.al [9], [11] propose an extended disturbance feedback

parametrization

uW
i = Kfxi + ci +

N−1
∑

j=1

C
j
i wi−j , i = 0, · · · , N − 1 (4)

where Kf is a fixed feedback gain such that Φ := A+BKf

is strictly stable. They show that parametrization (4) under

the MPC framework has the same domain of attraction as that

using (3) but has a stronger stability result in that the state

of closed-loop system converges to the minimal disturbance

invariance set, F∞ [12], of the system xt+1 = Φxt + wt.

Unlike (3), it is possible that i < j for wi−j in (4). When

this happens, wi−j refers to past realized disturbances. This

also means that the resulting MPC control law derived from

(4) is a dynamic compensator, requiring the values of xt

and wt−1, · · · , wt−N+1 for its evaluation at time t. On

the other hand, the parametrization proposed in this paper

results in a state feedback MPC control law, requiring only

the knowledge of xt for its evaluation. Correspondingly, a

weaker convergence result is obtained : the closed-loop sys-

tem state converges to F∞ with probability one. Additionally,

deterministic convergence to the same set is also possible if

a less intuitive cost is used.

The rest of this paper is organized as follows. This section

ends with notations used, assumptions needed and a brief

review of standard results. Section II gives the proposed con-

trol parametrization and the finite horizon (FH) optimization

problem including the choice of the cost function. The result

of probabilistic convergence of the closed-loop system state

is given in section III. Section IV shows a formulation that

strengthens the result under weaker assumptions. Numerical

examples and discussions are the contents of section V. The

last section concludes the paper.

The following notations are used. Zk denotes the integer

set {0, 1, · · · , k} and Z
+
k denotes {1, · · · , k}; given matrices

A ∈ Rn×m and B ∈ Rp×q: A⊗B is the Kronecker product

of A and B; vec(A) =
[

AT
1 · · · AT

m

]T
∈ Rnm is the

stacked vector of columns of A and ‖A‖ :=
√

λmax(AT A)
is the induced norm of matrix A. A ≻ (º)0 means that

square matrix A is positive definite (semi-definite). For any
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A ≻ 0, ‖x‖2
A = xT Ax. 1r is a r-vector with all elements

being 1 and In is the n × n identity matrix. For any set

X, Y ⊂ Rn, X + Y := {x + y : x ∈ X, y ∈ Y } is the

Minkowski sum of X and Y .

The system (1)-(2) is assumed to satisfy the following

assumptions:

(A1) system (A,B) is stabilizable;

(A2) the set

Y := {(x, u)| Yxx + Yuu ≤ 1q} ⊂ Rn+m (5)

is compact and contains the origin;

(A3) the disturbance wt, t ≥ 0 are independent and

identically distributed (i.i.d.) with zero mean and

W ⊂ Rn is convex and compact;

(A4) a constant feedback gain Kf ∈ Rm×n is given such

that Φ := A+BKf has a spectral radius ρ(Φ) < 1.

One other technical assumption is also needed and is dis-

cussed in section II. Assumption (A1) is standard. The

characterization of Y in (A2) is made out of the need for

a concrete computational representation. Assumption (A3)

is mild and can be satisfied by many disturbance models.

Additionally, the zero mean and i.i.d. condition can be

relaxed and this will be discussed in details in section

IV. Assumption (A4) is easily satisfied under (A1) and is

made for convenience. Under (A1)-(A4) and the results in

[12], [13] show that, for sufficiently small W , a constraint-

admissible maximal disturbance invariant set,

Xf := {x| Gx ≤ 1g}, (6)

exists in the sense that Φx + w ∈ Xf , (x,Kfx) ∈ Y for

all x ∈ Xf and for all w ∈ W . It is also known [12] that

the state of the system xt+1 = Φxt + wt converges to the

minimal disturbance invariant set, F∞, given by

F∞ = W + ΦW + Φ2W + · · · (7)

and that F∞ is compact.

II. CONTROL PARAMETRIZATION

MPC formulation solves an N -stage finite horizon (FH)

optimization problem. Let xi and ui, i ∈ ZN−1 denote the

predicted state and predicted control at the ith stage, respec-

tively, within the horizon. The proposed control parametriza-

tion within the FH optimization problem takes the form

ui = Kfxi + di +
i

∑

j=1,j≤i

D
j
i wi−j i ∈ ZN−1 (8)

where di ∈ Rm, D
j
i ∈ Rm×n, j = Z

+
i , i ∈ ZN−1 are the

variables of the FH problem and Kf is the feedback gain

in (A4). Since i − j ≥ 0, wi−j is the (i − j)th predicted

disturbance at each stage i. In this regard, (8) is similar

to (3) in that only predicted disturbances are used in the

parametrization. However, in terms of the family of functions

that can be represented, ui is equivalent to uL
i and uW

i , the

respective parameterizations of Löfberg [6] (or Goulart et.

al. [8]) and Wang et. al. [9]. To see this, set C
j
i = 0 for all

j > i in (4) and it follows that ui is a special case of uW
i .

To show the converse, let
{

di = ci +
∑N−1

j=i+1 C
j
i wi−j , i ∈ ZN−1

D
j
i = C

j
i j ≤ i, i ∈ ZN−1

(9)

for any ci, C
j
i that defines uW

i . This establishes the equiv-

alence of ui and uW
i .

Remark 1: The equivalence of uL
i and uW

i , in terms of

family of functions that can be represented, has already been

established in [9]. With the above result, the representabilities

of ui, uL
i and uW

i are all equivalent.

Let the design variables within the control horizon N in

(8) be collected in

D := (D1
1, D

2
2, D

1
2, · · · , DN−1

N−1, · · · , D1
N−1),

d := (d0, d1, · · · , dN−1)

then the FH optimization problem of (8), referred hereafter

as PN (xt), is

min
d,D

J(d,D) (10)

s.t. x0 = xt (11)

xi+1 = Axi + Bui + wi, i ∈ ZN−1 (12)

ui = Kfxi + di +
i

∑

j=1

D
j
i wi−j , i ∈ ZN−1 (13)

(xi, ui) ∈ Y, ∀wi ∈ W, i ∈ ZN−1 (14)

xN ∈ Xf , ∀wi ∈ W, i ∈ ZN−1 (15)

The above is a standard FH optimization problem for MPC

with horizon N with Xf being the maximal disturbance

invariant set of (6). The cost function J(d,D) takes the form

J(d,D) :=

N−1
∑

i=0



‖di‖
2
Ψ +

i
∑

j=1

‖vec(Dj
i )‖

2
Λ



 (16)

for any choice of Ψ and Λ that satisfy

(A5) Ψ ≻ 0 and Λ º Σw⊗Ψ where Σw is the covariance

matrix of wt.

The technical conditions of (A5) are needed to ensure the

convergence property of the closed-loop system and its role

will become clear in the proof of Theorem 2. However, some

comments on the ease of verification of (A5) is appropriate.

Remark 2: Since Λ−Σw ⊗Ψ has to be positive definite,

(A5) can be easily satisfied even when the covariance matrix

Σw is unknown. For example, let Λ = α2In ⊗ Ψ where

α = maxw∈W ‖w‖2. Then it follows that Λ º Σw ⊗ Ψ
because α2In º wwT for all w ∈ W which implies that

α2In ⊗ Ψ º E[wwT ] ⊗ Ψ.

Remark 3: Although Remark 2 implies that (A5) will be

satisfied as long as eigenvalues of Λ are large enough, an

over-large Λ will degrade the performance of the resulting

MPC controller. This will be verified in the numerical

examples and discussed further in section V.
Remark 4: Give matrices Q º 0, R ≻ 0 and P ≻ 0

satisfying algebraic Riccati equation, it is shown [9], [14],
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[15] that

E

[

N−1
∑

i=0

(‖xi‖
2
Q + ‖ui‖

2
R) + ‖xN‖2

P

]

=

x
T
0 Px0 + Ntrace(ΣwP ) + J(d,D).

if Ψ = R + BT PB, Λ = Σw ⊗ Ψ and Kf = −(R +
BT PB)−1BT PA. Hence, cost function (16) can be related

to expected value of standard LQ cost.

From (12) and (13), it is obvious that xi and ui are affine

functions of wi, i ∈ ZN−1. Correspondingly, constraints (14)

and (15) under assumptions (A2) and expression of Xf in

(6) are affine in wi ∈ W, i ∈ ZN−1. Since wi, i ∈ ZN−1

are predicted disturbances within the horizon and have not

been realized at time t, PN (xt) is a quadratic programming

problem with linear uncertainties in its constraints. Its numer-

ical solution is obtained from the deterministic equivalence

of PN (xt). This process is done using the dual variables

of the constraints and is a standard procedure in robust

optimization [10]. The exact procedure has been discussed

in [8], [9] for the case where W is a polytope and will

not be elaborated here. It is also possible to formulate the

deterministic equivalence when W is a conic or second-order

cone representable set [16], [17].

Let the feasible set of optimization problem PN (xt) be

ΠN (xt) := {(d,D)| PN (xt) is feasbile } (17)

and the set of admissible initial states be

XN := {x| ΠN (x) 6= ∅}. (18)

Remark 5: Consider the FH optimization problem under

different control parameterizations, it follows from Remark

1 that the same admissible set XN is achieved for the case

where (3) or (4) replaces (13).

The rest of the MPC formulation is standard: PN (xt) is

solved at each time t to obtain the optimizer (d∗
t ,D

∗
t ) :=

(d∗(xt),D
∗(xt)) and the corresponding u∗

0|t := u∗
0(xt) is

applied to system (1) resulting in the MPC control law,

ut = u∗
0|t = Kfxt + d∗0|t (19)

III. FEASIBILITY AND STABILITY

The feasibility of PN (xt) at different time instants and

stability of the closed-loop system under the feedback law

(19) are addressed in this section.

Theorem 1: If PN (xt) admits an optimal solution, so does

PN (xt+1) under the feedback law (19) for all possible wt ∈
W .

Proof: The proof is standard, but the details are given

for their relevance to Theorem 2. For clarity, additional

subscripts ”|t” and ”|t+1” are used to denote the variables at

the different times. Let (d∗
t ,D

∗
t ) denote the optimal solution

of PN (xt). At time t + 1 when wt is realized, choose

(d̂t+1, D̂t+1) by letting

d̂i|t+1 =

{

d∗
i+1|t + (Di+1

i+1|t)
∗wt i ∈ ZN−2

0 i = N − 1
(20)

D̂
j

i|t+1 =

{

(Dj

i+1|t)
∗ j ∈ Z

+
i , i ∈ Z

+
N−2

0 j ∈ Z
+
N−1, i = N − 1

(21)

and it is feasible to PN (xt+1) for all possible wt ∈ W

due to the disturbance invariance of Xf for system (1)

under control law ut = Kfxt. It is clear that ΠN (x) is

compact for all x ∈ XN . Since W is bounded and J is

a norm function, maxwt
J(d̂t+1, D̂t+1) < ∞ and the set

{(d,D) ∈ ΠN (xt+1)|J(d,D) ≤ maxwt
J(d̂t+1, D̂t+1)} is

compact. Hence, the optimum of PN (xt+1) exists, following

the Weierstrass’ theorem.

The main result of probabilistic convergence of the closed-

loop system is stated in the next theorem.

Theorem 2: Suppose x0 ∈ XN and (A1)-(A5) are sat-

isfied. System (1) under MPC control law (19) has the

following properties: (i) (xt, ut) ∈ Y for all t ≥ 0, (ii)

xt → F∞(Kf ) with probability one as t → ∞.
Proof: (i) The stated result follows directly from The-

orem 1. (ii) Let J∗
t := J(d∗

t ,D
∗
t ) and Ĵt+1(wt) :=

J(d̂t+1(wt), D̂t+1) where (d̂t+1(wt), D̂t+1) are given by
(20)-(21). Then it follows that

J
∗
t − Ĵt+1(wt)

=

N−1
∑

i=0

(‖d∗
i|t‖

2
Ψ − ‖d̂i|t+1‖

2
Ψ) +

N−1
∑

i=1

‖vec(Di
i|t)

∗‖2
Λ

= ‖d∗
0|t‖

2
Ψ +

N−1
∑

i=1

(‖d∗
i|t‖

2
Ψ − ‖d̂i−1|t+1‖

2
Ψ)

+

N−1
∑

i=1

‖vec(Di
i|t)

∗‖2
Λ

= ‖d∗
0|t‖

2
Ψ +

N−1
∑

i=1

(‖d∗
i|t‖

2
Ψ − ‖d∗

i|t + (Di
i|t)

∗
wt‖

2
Ψ)

+

N−1
∑

i=1

‖vec(Di
i|t)

∗‖2
Λ

= ‖d∗
0|t‖

2
Ψ + g(wt) (22)

where

g(wt) :=

N−1
∑

i=1

(‖vec(Di
i|t)

∗‖2
Λ − 2(d∗

i|t)
T Ψ(Di

i|t)
∗
wt

−‖(Di
i|t)

∗
wt‖

2
Ψ). (23)

Taking the expectation of (22) over wt, it follows that

J∗
t − ‖d∗0|t‖

2
Ψ = Ewt

[

Ĵt+1(wt)
]

+ Ewt
[g(wt)]

≥ Ewt

[

Ĵt+1(wt)
]

(24)

≥ Ewt

[

J∗
t+1(wt)

]

= Et

[

J∗
t+1(wt)

]

. (25)

where Et is the expectation taken over wi, i ≥ t. Inequality

(24) follows from the fact that Ewt
[g(wt)] ≥ 0. This is true

because by taking the expectation of (23), one gets

Ewt
[g(wt)] =

N−1
∑

i=1

(‖vec(Di
i|t)

∗‖2
Λ − ‖vec(Di

i|t)
∗‖2

Σw⊗Ψ
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−2(d∗i|t)
T Ψ(Di

i|t)
∗E[wt])

where the last term is zero due to (A3) and the rest is non-

negative due to (A5).

Inequality (25) follows from the fact that Ĵt+1(wt) ≥
J∗

t+1(wt) for every wt ∈ W which implies that

Ewt
[Ĵt+1(wt)] ≥ Ewt

[J∗
t+1(wt)]. The last equality of (25)

follows from the fact that J∗
t+1(wt) depends on wt only and

not on any wi, i > t.

Repeating the inequality of (25) for increasing t, one gets,

J∗
t+1(xt+1)−‖d∗0|t+1(xt+1)‖

2
Ψ ≥ Ewt+1

[

J∗
t+2(xt+1, wt+1)

]

where the dependence of the various quantities on xt+1 are
added for clarity. Since xt+1 depends on xt and wt, the
above can be equivalently written as

J
∗
t+1(wt) − ‖d∗

0|t+1(wt)‖
2
Ψ ≥ Ewt+1

[J∗
t+2(wt, wt+1)] . (26)

The above inequality holds true for all possible wt, hence

Ewt
[J∗

t+1(wt)] − Ewt
[‖d∗0|t+1(wt)‖

2
Ψ]

≥ Ewt
[Ewt+1

[

J∗
t+2(wt, wt+1)

]

]

= Et[J
∗
t+2(wt, wt+1)] (27)

or

Et[J
∗
t+1(wt)] − Et[‖d

∗
0|t+1(wt)‖

2
Ψ] ≥ Et[J

∗
t+2(wt, wt+1)]

(28)

The equality in (27) follows from assumption (A3), particu-

larly,

Ewt
[Ewt+1

[

J∗
t+2(wt, wt+1)

]

]

= Ewt

[
∫

J∗
t+2(wt, wt+1)fwt+1

(wt+1)dwt+1

]

=

∫ ∫

J∗
t+2(wt, wt+1)fwt+1

(wt+1)dwt+1fwt
(wt)dwt

=

∫ ∫

J∗
t+2(wt, wt+1)fwt,wt+1

(wt, wt+1)dwt+1dwt

= Ewt,wt+1
[J∗

t+2(wt, wt+1)] = Et[J
∗
t+2(wt, wt+1)]

where fwt
(·), fwt+1

(·) and fwt,wt+1
(·, ·) are density func-

tions of wt, wt+1 and their joint density function, respec-

tively, and fwt,wt+1
(·, ·) = fwt

(·)fwt+1
(·) from assumption

(A3). Summing (25) and (28) leads to

J∗
t ≥ ‖d∗0|t‖

2
Ψ + Et[‖d

∗
0|t+1(wt)‖

2
Ψ] + Et[J

∗
t+2(wt, wt+1)]

Repeating the above procedure infinite times leads to

∞ > J∗
t ≥

∞
∑

i=t

Et

[

‖d∗0|i‖
2
Ψ

]

By applying Markov bound (given non-negative random

variable R and any ǫ ≥ 0, E[R] ≥ ǫPr{R ≥ ǫ}), we have

∞ > ǫ

∞
∑

i=t

Pr(‖d∗0|i‖
2
Ψ ≥ ǫ) (29)

for any arbitrary small ǫ > 0. From the First Borel-Cantelli

Lemma [18], this implies that limi→∞ Pr(‖d∗0|i‖
2
Ψ ≥ ǫ) =

0. Hence d∗0|i approaches zero with probability one as t

increases. Consequently, the MPC control law (19) converges

to Kfxt with probability one. When this happens, the closed-

loop system converges to xt+1 = Φxt + wt and, hence, xt

converges to F∞(Kf ) with probability one.

IV. DETERMINISTIC CONVERGENCE

While the assumption of W being a convex compact set is

reasonable, the assumption of wt being zero mean and i.i.d.

is harder to verify in practice. This section is concerned with

the relaxation of assumption (A3) while achieving a stronger

convergence result than that of Theorem 2. Consider

(A3a) wt ∈ W and W is convex and compact.

and define the cost function

V (d,D) :=
N−1
∑

i=0

[

‖di‖
2
Ψ +

i
∑

j=1

(γ1‖vec(Dj
i )‖

2 + γ2‖vec(Dj
i )‖)

]

(30)

for some constants γ1 and γ2 satisfying

(A5a) γ1 ≥ α2‖Ψ‖, γ2 ≥ 2αβ‖Ψ‖.

where β := max(x,d,D)∈TN ,i∈ZN−1
‖di‖, TN is the set of

(x,d,D) defined by (11)-(15) and α := maxw∈W ‖w‖. The

existence of α and β are guaranteed by compactness of the

W and TN sets.

Theorem 3: Suppose x0 ∈ XN and (A1-A2), (A3a), (A4)

and (A5a) are satisfied and J(d,D) is replaced by V (d,D)
in PN (x), then system (1) under the MPC control law (19)

satisfies (i) (xt, ut) ∈ Y for all t ≥ 0, (ii) xt → F∞(Kf ) as

t → ∞.

Proof: (i) The replacement of cost function J(d,D) by

V (d,D) does not affect the feasibility of problem PN (x).
This means that part (i) of Theorem 2 remains valid. (ii) Let

V ∗
t and V̂t+1 be defined in the same manner as J∗

t and Ĵt+1

in the statement of proofs of Theorem 2. Following the same

reasoning as in (22), it can be shown that

V ∗
t − V̂t+1(wt) = ‖d∗0|t‖

2
Ψ + p(wt) (31)

where

p(wt) =

N−1
∑

i=1

(γ1‖vec(Di
i|t)

∗‖2 + γ2‖vec(Di
i|t)

∗‖

−2(d∗
i|t)

T Ψ(Di
i|t)

∗
wt − ‖(Di

i|t)
∗
wt‖

2
Ψ). (32)

Hence

p(wt) ≥

N−1
∑

i=1

(γ1‖vec(Di
i|t)

∗‖2 + γ2‖vec(Di
i|t)

∗‖

− 2‖d∗
i|t‖‖Ψ‖‖wt‖‖(D

i
i|t)

∗‖ − ‖Ψ‖‖wt‖
2‖(Di

i|t)
∗‖2)

≥

N−1
∑

i=1

(γ1‖vec(Di
i|t)

∗‖2 + γ2‖vec(Di
i|t)

∗‖

− 2αβ‖Ψ‖‖vec(Di
i|t)

∗‖ − α
2‖Ψ‖‖vec(Di

i|t)
∗‖2)

=

N−1
∑

i=1

((γ1 − α
2‖Ψ‖)‖vec(Di

i|t)
∗‖2

+ (γ2 − 2αβ‖Ψ‖)‖vec(Di
i|t)

∗‖)

≥ 0

where the fact ‖(Di
i|t)

∗‖ ≤ ‖vec(Di
i|t)

∗‖, i.e. 2-norm of

a matrix is less than its Frobenius norm, is used. Hence,
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p(wt) ≥ 0 under (A5a). As a consequence, equation (31)

implies

V ∗
t − ‖d∗0|t‖

2
Ψ ≥ V ∗

t+1 ≥ 0 (33)

Hence, {V ∗
t } is a monotonic non-increasing sequence and

is bounded from below by zero. This means that V∞ :=
limt→∞ V ∗

t ≥ 0 exists. Repeating (33) for t from 0 to ∞
and summing them up, it follows that

∞ > V ∗
0 − V∞ ≥

∞
∑

t=0

‖d∗0|t‖
2
Ψ (34)

Since Ψ is positive definite, this implies that limt→∞ d∗0|t =
0 and limt→∞ ut = Kfxt. Therefore, the stated result

follows.

Remark 6: Several choices of the cost function of (30) are

possible. For example, the results of Theorem 3 remain true if

‖vec(Dj
i )‖ is replaced by ‖Dj

i ‖. This may be more appealing

as less conservative bounds on γ1 and γ2 can be found to

ensure the non-negativity of p(wt). However, its use will

result in a semi-definite programming problem for PN (x)
and is less desirable computationally. The use of ‖vec(Dj

i )‖
results in a second-order cone programming for PN (x) and

is computationally more amiable.

Remark 7: The computation of β can be simplified to β =
max(x,d,D)∈TN

‖d0‖, see Appendix for details. Note that any

upper bound of β can be used to guarantee the results of

Theorem 3. One such upper bound is β̄ := ‖σ‖ where σi :=
max(x,d,D)∈TN

|d0(i)| and d0(i) is the ith element of d0.

V. NUMERICAL EXAMPLES AND DISCUSSIONS

The performance of the proposed MPC control law is

illustrated on an example having n = 2 and m = 1. The

system parameters and constraints are:

A =

[

1.1 1
0 1.3

]

, B =

[

1
1

]

, Kf = [−0.7434 −1.0922],

Y = {(x, u)| |u| ≤ 1, ‖x‖∞ ≤ 8},

W = {w| w(1) = ŵ−0.2w̌, w(2) = w̌,−0.2 ≤ ŵ, w̌ ≤ 0.2}

where ŵ and w̌ are random variables uniformly distributed

over [−0.2, 0.2]. Terminal set Xf is the corresponding max-

imal constraint-admissible disturbance invariant set of (1)

under ut = Kfxt. The weight matrices in the cost function

(16) are chosen to be

Ψ = 1, Λ = Σw ⊗ Ψ =

[

0.0139 −0.0027
−0.0027 0.0133

]

The proposed algorithm is simulated with N = 8 and x0 =
[−4 2]T over 15 realizations of disturbance sequences and

resulting trajectories are shown in Fig. 1 to 4 by solid lines.

F̂∞ in Fig. 1 is a tight outer bound of F∞ obtained using

procedures given in [19].

It is clear from Fig. 1 and 3 that both the state and control

constraints are satisfied by all trajectories, in accordance to

property (i) of Theorem 2. Figure 4 shows the convergence

of dt = d∗0|t to zero as t increases. Hence, the closed-

loop state converges to F̂∞(Kf ) as shown in Fig. 2 where

dis(xt, F̂∞) = minx∈F̂∞

‖x − xt‖.
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Next experiment attempts to shown the influence of the

weight matrices on the performance of the MPC controller.

Without of loss of generality, only Λ is regulated instead

of both Ψ and Λ. In order to make the difference obvious,

Λ is multiplied by 10000 and the system is simulated with

same initial conditions and disturbance realizations as in the

previous experiment. The results are shown in Fig. 1 to 4 by

dash lines.

It can be observed that although the constraints are satis-

fied and the state converges to F̂∞ set as well, the conver-

gence is much slower this time as shown in Fig. 2 and 4. The

reason is that by using a large Λ the time-varying disturbance

feedback gains D
j
i becomes the dominating factors of the

cost function and they are forced to vanish as fast as possible.

As a consequence, the control law (8) is forced to be a fixed

disturbance feedback control law as the one in [2]. Hence,

the advantage of time-varying disturbance feedback is lost,

leading to a degraded performance of the MPC controller.

The results also verify the statement in Remark 3.

VI. CONCLUSIONS

A control parametrization is proposed for MPC of con-

strained linear systems with disturbances. This parametriza-

tion has the same feasible domain as that achieved by

parametrization using affine time-varying state feedback law.

Under the resultant controller, the closed-loop system state

converges to the minimal robust invariant set F∞ with

probability one and this is achieved by minimizing a norm-

like cost function. If a less intuitive cost is minimized,

deterministic convergence to the same set is also achievable.
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APPENDIX

β := max(x,d,D)∈TN ,i∈ZN−1
‖di‖ = max(x,d,D)∈TN

‖d0‖
is due to the fact that for any (x,d,D) ∈ TN and integer
i ∈ Z

+
N−1, a set of (x̄, d̄, D̄) ∈ TN can be found such

that d̄0 = di. Specifically, given (x,d,D) ∈ TN and let
the correspondingly defined state and control sequence be
{x0, . . . , xN} and {u0, . . . , uN−1}. According to (15) xN ∈
Xf for all possible disturbances. Then for any i ∈ Z

+
N−1,

(x̄, d̄, D̄) can be defined by

x̄ = Φi
x +

i−1
∑

j=0

Φi−1−j
Bdj , d̄j =

{

dj+i j ∈ ZN−1−i

0 N − i ≤ j ≤ N − 1
,

D̄
k
j =

{

Dk
j+i j ∈ Z

+

N−1−i

0 N − i ≤ j ≤ N − 1
k ∈ Z

+
j .

where x̄ is the nominal state of xi defined by (x,d,D) and

(d̄, D̄) define the control sequence {ui, . . . , uN−1,

KfxN , . . . ,KfxN−1+i}. According to (A4) under controller

ut = Kfxt all the constraints are satisfied and xt ∈
Xf for t ≥ N since xN ∈ Xf . Therefore, (x̄, d̄, D̄)
satisfies (11)-(15), namely (x̄, d̄, D̄) ∈ TN . As a result,

max(x,d,D)∈TN
‖d0‖ ≥ max(x,d,D)∈TN

‖di‖, for any i ∈
ZN−1 and β = max(x,d,D)∈TN

‖d0‖.
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