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Abstract— In this paper we study the problem of optimal
portfolio construction when the trading horizon consists of two
consecutive decision intervals and rebalancing is permitted. It
is assumed that the log-prices of the underlying assets are non-
stationary, and specifically follow a discrete-time cointegrated
vector autoregressive model. We extend the classical Markowitz
mean-variance optimization approach to a multi-period setting,
in which the new objective is to maximize the total expected
return, subject to a constraint on the total allowable risk. In
contrast to traditional approaches, we adopt a definition for
risk which takes into account the non-zero correlations between
the inter-stage returns. This portfolio optimization problem
amounts to not only determining the relative proportions of
the assets to hold during each stage, but also requires one
to determine the degree of portfolio leverage to assume. Due
to a fixed constraint on the standard deviation of the total
return, the leverage decision is equivalent to deciding how to
optimally partition the allowed variance, and thus variance
can be viewed as a shared resource between the stages. We
derive the optimal portfolio weights and variance scheduling
scheme for a trading strategy based on a dynamic programming
approach, which is utilized in order to make the problem
computationally tractable. The performance of this method is
compared to other trading strategies using both Monte Carlo
simulations and real data, and promising results are obtained.

I. INTRODUCTION

It is often stated that many groups of real-world macro-

economic variables are cointegrated, meaning they are well

modeled by a vector autoregressive process containing at

least one common stochastic trend [1]. In these systems,

the time series corresponding to the prices of individual

assets are nonstationary, while the series of first differences

are stationary. In addition, it possible to construct a linear

combination of the signals, i.e. a portfolio, that is stationary,

thereby removing the common source of nonstationarity.

Given the popularity of this model both in the literature and

among practitioners, we address the question of optimal

portfolio construction given a universe of cointegrated assets.

The problem of portfolio construction in cointegrated

vector autoregressive systems has been previously studied.

Early work focused on the use of statistical arbitrage

techniques, such as mean-reverting and momentum

strategies, for trading a stationary linear combination of

cointegrated assets [2]–[4]. More recently, it has been shown

in [5] that these techniques are not optimal in the classical

Markowitz mean-variance sense, and that it is possible to

achieve a higher average return for the same level of risk by

constructing a portfolio that has a component not only in

the direction of bounded variance, but also in the direction

of expected change.

The optimal asset allocation rule in [5] is derived for the case

where there is a single decision interval corresponding to a

finite trading horizon with no ability to rebalance; here we

extend this analysis to consider the case where rebalancing

of the asset holdings is permitted. Attention is restricted

to a two-stage scenario, and the Markowitz framework

is extended to this setting. Ideally, we seek the portfolio

for each stage that maximizes the expected total portfolio

return, subject to a fixed constraint on the portfolio risk.

We define risk as the variance of the sum of the per-stage

returns, rather the sum of the per-stage variances, so that

we may account for the non-zero inter-stage correlations of

the returns induced by our cointegration model. However,

we show that it is not possible to compute such portfolios

exactly, and therefore we consider an approximation based

on a dynamic programming (DP) approach.

The organization of this paper is as follows. In Section II,

we present the cointegrated VAR model and two-period

mean-variance optimization framework. The derivation of

the optimal asset allocation rule for each stage using the

dynamic programming approach is given in Section III.

Simulation results using synthetic data that contrasts our

solution to existing methods are analyzed in Section IV,

followed by a discussion of a trading simulation based on

real, historical data in Section V.

II. PROBLEM FORMULATION

Let xk be a 2-dimensional random vector representing the

log-prices of a set of two assets, that follow a first-order

vector autoregressive, VAR(1), process:

xk−1 = Π1xk + Φdk + ǫk. (1)

Here the 2× 2 Π1 matrix encodes the temporal dependence

among the component processes of xk; dk is a vector of
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deterministic inputs, often containing a constant or linear

function; Φ is the matrix relating the elements of d to

x; and ǫk is a 2-dimensional Gaussian random vector

with zero mean and variance Ψ that drives the overall

process. Note that the states are numbered in decreasing

order, so that xk denotes the log-prices of the assets at

the kth stage from the end, as depicted in Figure 1 for the

two-stage case. Throughout this paper, we restrict attention

to the first-order VAR case, but extensions to higher-order

VAR systems follow naturally by augmenting the state space.

The model given in Eq. 1 is said to exhibit the cointegration

property when the matrix defined as Π = Π1 − I is not

of full rank. This occurs when the characteristic equation

contains a root at unity, possibly endowing each of the

underlying time series of xk with a random walk component.

The matrix Π1 has one eigenvalue λ1 = 1 and the other

with the property that |λ2| < 1. Since Π is of rank r < 2
and Π 6= 0, it must be true that r = 1, and therefore Π can

be expressed as the outer product of two 2 × 1 vectors, as:

Π = αβT . (2)

The data generated from this random process has finite

variance along the direction given by β, and diverging

variance in the orthogonal direction, denoted as β
⊥

. The

one-dimensional column space of β is commonly referred

to as the cointegrating space, while the column space of

α is referred to as the space of disequilibrium adjustment

forces. It can be shown that for any b in the span of {β},

b
T
x is a wide-sense stationary random process [6].

We extend the classical Markowitz mean-variance portfolio

optimization approach [7] to a two-period setting, in which

the objective is to maximize the total expected return of the

portfolio summed across both periods, subject to a single

constraint on the variance of the total return at the end,

rather than a set of constraints on the per-stage returns.

Formally, the optimization problem, P0, is given by:

w
∗

1
,w∗

2
= arg max

w1,w2

E
[

w
T
1
r1 + w

T
2
r2

]

s.t. var
[

w
T
1
r1 + w

T
2
r2

]

= σ2

0
,

}

P0

where the per-period vector of individual asset returns, rk,

is defined as the change in the log prices, as:

rk = ∆xk = xk−1 − xk.

The expectation and variance operators are taken with

respect to the information available at the starting time,

denoted as t2. The inner product represented by w
T
k rk

denotes the return of the portfolio for stage k. The stages,

like the states, are numbered in reverse order, so that wk

denotes the relative asset holdings in the kth stage from

the end. The portfolio weight vector represents the relative

percentage of wealth to allocate to each asset, where a

positive weight indicates a long position and negative

weight denotes a short position. We allow the portfolio

at any stage to be leveraged, i.e. the market value of the

2
w 1

w

2
x

1
x

0
x

Initial
State

Terminal
State

Stage 2 Stage 1

2
 

1
 

2
t

Rebalance
Point

1
t 0

t

Fig. 1. State sequence for two-stage portfolio optimization problem,
with rebalancing. The states (log-prices), times, and stages are numbered
in decreasing order, so that the subscript indicates the distance from the
terminal point.

portfolio may exceed the available wealth, and therefore a

budget constraint of the form 1
T
wk = 1 is not required.

The degree of leverage is limited by the allowable risk

parameter, σ0.

By introducing a Lagrange multiplier, λ, problem P0

can be rewritten as:

w
∗

1
,w∗

2
, λ∗ = arg max

w1,w2,λ

E
[

w
T
1
r1

]

+ E
[

w
T
2
r2

]

−λ

{

var
[

w
T
1
r1

]

+ var
[

w
T
2
r2

]

+2cov
[

w
T
1
r1,w

T
2
r2

]

− σ2

0

}

.











P
′

0

At first glance, it appears that an exact solution to P
′

0
should

be easy to compute. However, the portfolio over the last

stage, w1, is itself a random variable, as it depends on the

observed value of the state at time t1, i.e. w1 = f (x1). As

the nature of this dependence is unknown, it is not possible

to immediately compute the terms in P
′

0
that depend on

w1, whether in closed form or by numerical methods.

Furthermore, the problem does not map directly into a

dynamic programming context [8], as the mean-variance

cost function given in P
′

0
is not additive over time due to

the non-zero correlation of the per-stage portfolio returns.

Additionally, the problem cannot be expressed as the

expected utility of the total return due to the presence of the

variance operator, which introduces a squared expectation

term into the objective function. To address these limitations,

we consider a relaxation of problem P
′

0
based on the concept

of backwards induction from the DP algorithm. First, the

optimal portfolio for the last stage is determined to within a

scale factor. Once this direction is established, it is possible

to solve for both the direction of the second stage from the

end and the optimal variance scheduling scheme, resulting

in a suboptimal, but computable solution.

III. PORTFOLIO CONSTRUCTION

Here we solve the two-stage portfolio selection problem by

applying the dynamic programming backward recursion. We
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first consider the tail subproblem consisting of only the last

stage, denoted as stage 1 in Figure 1. Looking forward from

this time, there is a single decision interval with a holding

period of one time step, and therefore we can apply the

solution presented in [5] for N = 1, yielding:

w
∗

1
= a1Ψ

−1
Πx1 = a1W1x1, (3)

where a1 is a scale factor or degree of leverage to be

determined via enforcement of the total variance constraint.

Note that the portfolio direction is a linear function of the

state, x1, and thus by applying the backwards recursion

we have determined a particular form for the function

w1 = f (x1).

We now seek the optimal portfolio for the second to

last stage, given our expression for the portfolio for the last

stage. For notational simplicity, let:

z =

(

w
T
2

(x1 − x2)
x

T
1
W

T
1

(x0 − x1)

)

, a =

(

1
a1

)

.

The portfolio for the second stage is computed as:

w
∗

2
= arg max

w2

a
T µ

z
− λ

{

a
T
Σza − σ2

0

}

,
}

P1

where µ
z

and Σz are the mean vector and covariance matrix

of z, respectively, exact expressions for which are derived in

Appendix A. The solution to problem P1 is given by:

w
∗

2
=

(

1

2λ
Ψ

−1
Π − a1

(

Π
T
W1 + W

T
1
Π

)

Π1

)

x2. (4)

This expression for w2 has many interesting properties.

First, we observe that Eq. 4 is also a linear function of the

current state, and therefore can be rewritten as w2 = W2x2.

Next, we note that the first term is proportional to Ψ
−1

Πx2,

which has identical structure to Eq. 3. This component

corresponds to a scaled version of the optimal solution for

a single stage problem beginning at time t2, and thus can

be thought of as the “myopic” component. In this light,

the second term can be viewed as a correction factor that

modifies the myopic solution to account for the uncertainty

of the new log-price information, x1, which becomes

available at the rebalance time, t1. This modification

depends both on the direction and scaling of w1, as is

evidenced by the explicit presence of both a1 and W1

factors in Eq. 4. As shown in Appendix A, this correction

factor results from the non-zero covariance between the

components of the random vector z. In Section IV, we show

that this direction modification has the effect of increasing

the negative correlation between the returns for stages 1 and

2, enabling an increase in the amount of leverage realized

for each period, while maintaining a constant level of total

risk.

All that remains is to determine the precise variance

scheduling scheme, or per-stage leverage amounts that must

be exercised in order to meet the total variance constraint.

We seek values for the scale factors a1 and λ that maximize
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Fig. 2. Geometric view of cointegrated vector autoregressive system in xk

space. The three points represent a single path of the random process defined
by Eq. 5, beginning from x2. The data generated according to this model
has infinite variance along the β⊥ direction, and finite variance in the β

direction. The α vector indicates the direction disequilibrium readjustment
forces.

the objective function given in problem P1. As derived in

Appendix A, we find that:

a∗

1
=

(

1

2λ

)

E[z1] − x
T
2
Π

T
Ψ

−1
W1,2x2

var [z1] − xT
2
WT

1,2Ψ
−1W1,2x2

1

2λ
=

σ0
√

xT
2
Ax2 + A2

1

(

var [z1] − xT
2
WT

1,2Ψ
−1W1,2x2

)

where A and W1,2 are defined in Equations 6 and 7. While

we have chosen to focus here on the two-stage case for

simplicity and clarity, extending to the N stage case follows

naturally by augmenting the z and a vectors, and continuing

to apply the DP backwards recursion.

IV. SIMULATION RESULTS

In order to better understand the portfolio directions and vari-

ance scheduling scheme derived in Section III, we consider a

representative example using data generated from a synthetic

model. We compare the portfolios computed using the DP

approach to a set of three existing techniques, given by:

• The ‘beta’ portfolio: Here the assets are allocated in the

direction given by the β vector from the cointegrated

VAR model, defined according to Eq. 2, irrespective of

the observed state variables. Rebalancing is prohibited,

and the portfolio is scaled in order to meet the variance

constraint. This scheme is commonly used by practi-

tioners, and is the basis for a wide variety of statistical

arbitrage techniques. For additional details, see [2].

• The ‘Markowitz, without rebalancing’ portfolio: The

asset allocation rule is formed by considering a single

decision interval of length N = 2, and applying the

result from [5] for the optimal mean-variance portfolio

in a cointegrated VAR system.

• A ‘semi-myopic’ portfolio: The result from [5] is in-

dependently applied over two consecutive intervals, in
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order to determine the portfolio directions for each

stage. Next, these vectors are appropriately scaled so

that the total variance constraint is maintained. The

name highlights the fact that the directions are chosen

myopically, while the scale factors are not. Additional

details are provided in Appendix B.

We first contrast the behavior of each trading strategy by

examining the second-order statistics of the per-stage and

total returns, computed via Monte Carlo simulations. This

is followed by a comparison of the four asset allocation

schemes using a single, representative sample path.

Consider the following synthetic VAR(1) model, with

no deterministic inputs:

xk−1 =

(

1.18 −0.14
0.51 0.62

)

xk + ǫk, (5)

where ǫk ∼ N (0,Ψ) and Ψ = 0.001I. In this system,

α =
(

−0.28 −0.77
)T

and β =
(

−0.66 0.5
)T

, as

depicted in Figure 2. The initial log-price pair for all of the

simulations was chosen to be x2 =
(

3.9 5.5
)T

, and we

are interested in determining the optimal portfolio weights

in all four trading scenarios for the case where the total

level of the allowed risk is given by σ0 = 0.05, or 5%.

The system in Eq. 5 is simulated M=104 times, and

the resulting per-stage and total return statistics are given in

Table I. The table also displays the correlation coefficient

of the inter-stage returns, and it is here that we begin to

gain some intuition for the DP solution. As compared to the

other approaches, the weights derived via the DP approach

achieve a higher negative correlation between the per-period

returns, which enables the per-stage variances to be greater

in magnitude in contrast to alternative algorithms. In fact,

the per-stage variances are each greater than σ2

0
, while the

negative correlation among per-stage returns enables the

total variance constraint to still be met, resulting in a higher

expected return.

Figure 2 illustrates one sample path generated from

Eq. 5. The resulting portfolio directions are illustrated in

Figure 3, while the exact leverage amounts are presented in

Table II. The table also displays the total return achieved

by each strategy for this particular sample path. We find

that the degree of leverage utilized in the DP approach is

greater than all other strategies, which is the main source of

the increased realized return.

V. EXPERIMENTAL RESULTS

Here we compare the performance of the dynamic

programming trading strategy of Section III with the three

strategies described in Section IV, using historical price

data. The selected dataset from [4] consists of the British

Oil (symbol BP.L) stock from the STOXX 50 index, and

a replicating portfolio, or tracking index, constructed from

the remaining 49 assets, so that the two series exhibit the

cointegration property, with no structural breaks or regime
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0 10 20 30 40 50 60 70 80 90 100
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

1.5σ

1.5σ−

Test Day

Fig. 4. Stationary trading indicator signal, z = βT
x, used to determine

when to enter into test portfolios. Portfolios are bought when |z| > 1.5σz

and are sold two periods later.

shifts [3].

Given the BP.L and tracking index datasets, two consecutive

100-day data segments, denoted as xtrain and xtest, were

identified in which the parameters of the VAR model

remained relatively constant. The closing log prices from

November 8, 1999 to March 24, 2000 were used to train

the cointegrated VAR model, while the log prices from

March 27, 2000 to August 11, 2000 were used to test

the trading strategy. A VAR(1) cointegration model with

a constant drift term was fit to the training data using the

ML estimators described in [6]. A significant decrease in

correlation coefficient of the residuals was not achieved by

considering higher-order VAR models.
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Trading Strategy
Stage 2 Stage 1 Total

Mean Var Mean Var Correlation Mean Var

Beta 0.045 0.0015 0.036 0.0016 -0.19 0.081 0.0025
Markowitz, without rebalancing 0.14 0.0015 0.11 0.0021 -0.31 0.25 0.0025

Semi-Myopic 0.18 0.002 0.06 0.0009 -0.24 0.24 0.0025
DP 0.18 0.0045 0.12 0.0039 -0.70 0.30 0.0025

TABLE I

SECOND ORDER STATISTICS OF RETURNS FROM MONTE CARLO SIMULATIONS.

Trading Strategy
Stage 2 Leverage Stage 1 Leverage

Total Return
Asset 1 Asset 2 Asset 1 Asset 2

Beta 0.99 -0.74 0.99 -0.74 0.10
Markowitz, without rebalancing -0.04 -1.22 -0.04 -1.22 0.29

Semi-Myopic -0.50 -1.41 -0.16 -0.46 0.30
DP 0.91 -1.90 -0.33 -0.93 0.34

TABLE II

ACTUAL PORTFOLIO LEVERAGE (% OF INITIAL WEALTH) VALUES FOR SINGLE SAMPLE PATH, WITH σ0 = 0.05.

Trading Strategy
Stage 2 Stage 1 Total

Mean Var Mean Var Mean Var

Beta 0.0207 0.0009 0.0190 0.0006 0.0397 0.0018
Markowitz, without rebalancing 0.0252 0.0014 0.0208 0.0011 0.0460 0.0030

Semi-Myopic 0.0278 0.0020 0.0346 0.0027 0.0624 0.0056
DP 0.0275 0.0016 0.0357 0.0028 0.0631 0.0054

TABLE III

SECOND ORDER STATISTICS OF RETURNS FROM REAL DATA EXAMPLE.

The trading strategy implemented using this dataset

works as follows. For each data point in the test set, we

compute a test statistic, z = βT
x, as shown in Figure 4.

When |z| > 1.5σz , a decision is made to “enter the market”,

here resulting in 8 entry points. The portfolio weights for

the next two days (stages) are computed according to each

strategy using σ0 = 0.05. The per-stage and total return

statistics are displayed in Table III. We note that the total

variances reported in Table III are not equal to σ2

0
, which

is due not only to the small sample size but also the fact

that we are averaging over initial values of x2. We observe

that all of the approaches achieved an average return in the

second stage from the end between two and three percent.

However, in the last stage from the end, the DP and semi-

myopic strategies beat the two non-rebalancing strategies by

over one percent, due to the fact that they take advantage of

the new log-price information that becomes available at the

rebalance point. As a result of this truly dynamic trading

methodology, these strategies achieve a higher total return

for each initial condition, while maintaining a constant level

of total risk. As we saw in the Monte Carlo simulations of

Section IV, it is the DP strategy that is able to achieve the

highest expected return, due to the increase in the negative

correlation of the inter-stage returns.

APPENDIX A

In this Appendix we derive expressions for µ
z
, Σz, w2, a1,

and λ. We begin with µ
z
, and recall that all expectations are

computed with respect to the information available at the

beginning of the second to last stage, time t2. Let

z =

(

z2

z1

)

=

(

w
T
2

(x1 − x2)
x

T
1
W

T
1

(x0 − x1)

)

,

and we have:

E[z2] = E
[

w
T
2

(x1 − x2)
]

= w
T
2
E [Πx2 + ǫ2]

= w
T
2
Πx2,

E[z1] = E
[

x
T
1
W

T
1

(x0 − x1)
]

= E
[

x
T
1
W

T
1
Πx1 + x

T
1
W

T
1
ǫ1

]

= E
[

x
T
1
W

T
1
Πx1

]

= x
T
2
Π

T
1
W

T
1
ΠΠ1x2 + trace

[

W
T
1
ΠΨ

]

,

where W1 = Ψ
−1

Π. We now compute each of the terms

in Σz. The variance of z2 is easily computed as:

var [z2] = var
[

w
T
2

(x1 − x2)
]

= w
T
2
Ψw2.

In order to compute the variance of z1, we invoke the law

of total variance, as:

var [z1] = var [E [z1|x1]] + E [var [z1|x1]]

= var
[

x
T
1
W

T
1
Πx1

]

+ E
[

x
T
1
W

T
1
ΨW1x1

]

.

We now define the symmetric matrix A as:

A , W
T
1
Π = Π

T
Ψ

−1
Π = W

T
1
ΨW1, (6)
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Accordingly, we can express the variance of z1 as:

var [z1] = var
[

x
T
1
Ax1

]

+ E
[

x
T
1
Ax1

]

= 4xT
2
Π

T
1
AΨAΠ1x2 + 2trace [AΨAΨ]

+x
T
2
Π

T
1
AΠ1x2 + 2trace [AΨ]

Lastly, the covariance is computed as:

cov [z1, z2] = E [z2z1] − E [z2]E [z1]

= E
[

w
T
2

(Πx2 + ǫ2) z1

]

− E [z2]E [z1]

= w
T
2
E [ǫ2z1]

= w
T
2
E

[

ǫ2x
T
1
W

T
1

(Πx1 + ǫ1)
]

= w
T
2
E

[

ǫ2x
T
1
W

T
1
Πx1

]

= w
T
2
E

[

ǫ2 (Π1x2 + ǫ2)
T

W
T
1
Π (Π1x2 + ǫ2)

]

= w
T
2
Ψ

(

Π
T
W1 + W

T
1
Π

)

Π1x2

= w
T
2
W1,2x2. (7)

Now that we have all of the terms in µ
z

and Σz, we

can compute w
∗

2
by differentiating the objective function in

Problem P1 with respect to w2, as:

0 = Πx2 − λ2Ψw2 − 2λa1W1,2x2

w
∗

2
=

1

2λ
Ψ

−1 (Πx2 − 2λa1W1,2x2)

=

(

1

2λ
Ψ

−1
Π − a1

(

Π
T
W1 + W

T
1
Π

)

Π1

)

x2.

The scale factor applied to the last stage can be found by

differentiating the objective function in Problem P1 with

respect to a1, as:

0 = E[z1] − 2λa1var [z1] − 2λcov [z1, z2]

= E[z1] − 2λa1var [z1] − 2λw
T
2
W1,2x2

= E[z1] − 2λa1var [z1] − x
T
2
Π

T
Ψ

−1
W1,2x2

+2λa1x
T
2
Π

T
1

(

Π
T
W1 + W

T
1
Π

)

W1,2x2

a∗

1
=

(

1

2λ

)

E[z1] − x
T
2
Π

T
Ψ

−1
W1,2x2

var [z1] − xT
2
WT

1,2Ψ
−1W1,2x2

=
1

2λ
A1

Finally, the value of the quantity 1

2λ
is found to be:

σ2

0
= w

T
2
Ψw2 + a2

1
var [z1] + 2a1w

T
2
W1,2x2

=

(

1

2λ

)2
[

x
T
2

(Π − A1W1,2)
T

Ψ
−1 (Π − A1W1,2)x2

+A2

1
var [z1] + 2A1x

T
2

(Π − A1W1,2)
T

Ψ
−1

W1,2x2

]

1

2λ
=

σ0
√

xT
2
Ax2 + A2

1

(

var [z1] − xT
2
WT

1,2Ψ
−1W1,2x2

)

,

where A is defined according to Eq. 6.

APPENDIX B

Here we present the problem formulation and solution for the

semi-myopic approach. The two stage problem is solved as

two consecutive one stage problems, in which the direction

of the portfolio for each stage is selected to be equal to

the optimal action for a single stage problem, with no

consideration given to past or future stages. Once these

directions are computed, the degree of leverage is determined

so that the total expected return is maximized while ensuring

that the variance constraint is met. Applying the approach in

[5] independently for each period, we have:

w
∗

2
= a2Ψ

−1
Πx2,

w
∗

1
= a1Ψ

−1
Πx1,

where the ak’s are scale factors that determine the degree

of leverage of the portfolio at stage k. These factors are

determined by solving problem P2, as:

a∗

1
, a∗

2
= arg max

a1,a2

a
′T µ

z
′ − λ

{

a
′T

Σz
′a

′ = σ2

0

}

,
}

P2

where:

z
′ =

(

x
T
2
Π

T
Ψ

−1 (x1 − x2)
x

T
1
Π

T
Ψ

−1 (x0 − x1)

)

,

a
′ =

(

a2

a1

)

,

and µ
z
′ and Σz

′ refer to the mean vector and covariance

matrix of z
′, respectively. The optimal scale factors are:

(

a∗

2

a∗

1

)

=
1

2λ
Σ

−1

z
′ µ

z
′

1

2λ
=

σ0
√

µT
z
′Σ

−1

z
′ µ

z
′

.
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