
Finite-Time and Practical Stability of a Class of
Stochastic Dynamical Systems

Anthony N. Michel
Dept. of Electrical Engineering

University of Notre Dame
Notre Dame, IN
amichel@nd.edu

Ling Hou
Dept. of Electrical and Computer Engineering

St. Cloud State University
St. Cloud, MN

LHOU@stcloudstate.edu

Abstract— In practice, one is not only interested in qualitative
characterizations provided by Lyapunov and Lagrange stability,
but also in quantitative information concerning system behavior,
including estimates of trajectory bounds over finite and infinite
time intervals. This type of information has been ascertained in
a systematic manner using the notions of finite-time stability and
practical stability. In the present paper we generalize some of
the existing finite-time stability and practical stability results
for deterministic dynamical systems determined by ordinary
differential equations to dynamical systems determined by an
important class of stochastic differential equations. We consider
two types of stability concepts: finite-time and practical stability
in the mean and in the mean square. We demonstrate the
applicability of our results by means of several examples.

1. INTRODUCTION

The various concepts of Lyapunov and Lagrange stability
are concerned with the qualitative behavior of the motions of
a dynamical system and usually do not involve quantitative
information (e.g., specific estimates of trajectory bounds).
Thus, Lyapunov stability results ascertain whether or not
an equilibrium is stable, asymptotically stable, unstable, and
so forth, and Lagrange stability results ascertain whether or
not the motions of a dynamical system are bounded in a
certain sense (e.g., [1], [2]). In contrast to these concepts,
various notions of stability have been proposed involving
specific quantitative information. In this context, a dynamical
system is viewed as being stable if whenever a given motion
of a dynamical system starts in a prespecified set, then
the motion will remain in another prespecified set of the
state space, either over a specified finite time interval (finite-
time stability) or for all time (practical stability) (e.g., [3]–
[5]). The motivation for considering these types of stability
concepts is the ability to deduce specific trajectory behavior
(e.g., trajectory bounds) for the motions of a dynamical
system from the boundaries of the prespecified sets.

As in the case of Lyapunov and Lagrange stability re-
sults, the results reported in [3]–[5] concerning finite-time
and practical stability are formulated in terms of auxiliary
functions (Lyapunov-like functions). As such, these results
are characterized by similar attributes and liabilities as the
usual Lyapunov and Lagrange stability results: they are very
general and powerful; however, there are no general rules
on how to determine appropriate Lyapunov-like functions.
It needs to be pointed out that in general, the Lyapunov

functions of the classical Lyapunov and Lagrange stability
results differ significantly from the Lyapunov-like functions
of the finite-time and practical stability results.

Although most of the existing results for finite-time and
practical stability are concerned with continuous dynamical
systems determined by ordinary differential equations (e.g.,
[3]–[5]), results for discontinuous dynamical systems and
switched systems have also been established ([6]–[8]). In
addition, practical moment stability of a class of stochas-
tic delay differential equations was addressed in [9] and
almost sure practical stability of systems described by Ito
differential equation was considered in [10]. The results
in [9] and [10] make use of comparison results involving
differential inequalities. In the present paper we establish
sufficient conditions for practical and finite-time stability in
the mean and in the mean square for a class of stochastic
dynamical systems determined by linear, time-varying Ito
differential equations. Our results, which differ significantly
from the results given in [9] and [10], do not make use of
the comparison theory, and are in the spirit of the results
established in [3]–[5]. We demonstrate the applicability of
our results by means of a couple of examples.

2. NOTATION

Let ∈ denote the set membership, Rn a real n-space, |·|
the Euclidean norm defined on Rn and R+ = [0,∞). If A
and B are sets, then A ⊂ B, A ∪ B and A × B denote,
respectively, that A is a subset of B, the union of A and B
and the Cartesian product of A and B. Let B(a) = {x ∈
Rn : |x| < a}, B(a) = {x ∈ Rn : x ≤ a} and [B(a) −
B(b)] = {x ∈ Rn : x ∈ B(a) and x /∈ B(b)}. Let ∂B(a)
denote the boundary of B(a). Let f ∈ C[R+,R] signify that
f is a continuous function of R+ into R and f ∈ C1[R+,R]
that f is a continuously differentiable function of R+ into
R. If V ⊂ Rn and W ⊂ Rm, then f ∈ C[V,W ] and f ∈
C1[V, W ] are defined similarly in the obvious way. For an
arbitrary matrix D, we define |D| = [λM (DTD)]1/2 where
λM denotes the largest eigenvalue of DTD.

Let (Ω, A, P ) denote a probability space with probability
measure P defined on the σ-algebra A of ω-sets (ω ∈ Ω)
in the sample space Ω. Any A-measurable function on Ω is
called a random variable. A sequence of random variables
indexed by t ∈ T = R+, {Xt(ω) ∈ Rn, t ∈ T} is called a
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continuous (time) parameter stochastic process. Henceforth,
the ω dependence is suppressed and we usually assume
that X0(ω) = x is known. We often write Xt in places
of {Xt, t ∈ T} for such processes. For A ∈ A, P (A)
denotes the probability of event A and P (A|B) denotes the
conditional probability of A under the condition that B ∈ A.
We let E denote the expectation operator and for a Markov
process {Xt, t ∈ T}, we let Ex,sXt denote the expected
value of Xt at t ∈ T if it is known that Xs = x. If s = 0,
the notation ExXt is used and if x and s are understood
from context, the notation EXt is employed.

3. STOCHASTIC DYNAMICAL SYSTEMS

We consider dynamical systems determined by linear,
homogeneous equations of the form

dXt = A(t)Xtdt +
m∑

i=1

Bi(t)XtdW i
t , (1)

Xt0 = c, t0 ≤ t < τ < ∞,

where A ∈ C[R+,Rn×n], Bi ∈ C[R+,Rn×m], Wt is an
Rm-valued Wiener process and c is a random variable
independent of Wt −Wt0 for t ≥ t0.

It has been shown that (1) has on [t0, τ ] a unique Rn-
valued solution Xt, continuous with probability one, which
satisfies the initial condition Xt0 = c, i.e., if Xt and Yt are
continuous solutions of (1) with the same initial value c, then

P

(
sup

t0≤t≤τ
|Xt − Yt| > 0

)
= 0.

For a proof of the above assertions, refer, e.g., to [11], [12].
We denote the unique global solution of (1) by Xt = Xt(c)
on [t0,∞).

4. STABILITY CONCEPTS

We will consider several different notions of stability for
system (1).

Definition 1 System (1) is stable in the mean with respect
to {B(α), B(β), t0, T, | · |}, α < β, if EXt0 = c ∈ B(α)
implies that EXt ∈ B(β) for all t ∈ [t0, t0 +T ). If T < ∞,
system (1) is said to be finite-time stable in the mean and
if T = ∞, system (1) is said to be practically stable in the
mean with respect to {B(α), B(β), t0, |·|}. ¥

Definition 2 System (1) is uniformly stable in the mean with
respect to {B(α), B(β), T, |·|}, α < β, if for all ti ∈ [t0, t0+
T ), EXti ∈ B(α) implies that EXt ∈ B(β) for all t ∈
[ti, t0 + T ). If T < ∞, system (1) is said to be uniformly
finite-time stable in the mean and if T = ∞, system (1)
is said to be uniformly practically stable in the mean with
respect to {B(α), B(β), |·|}. ¥

Definition 3 System (1) is unstable in the mean with respect
to {B(α), B(β), t0, T, | · |}, α < β, if there exist an Xt0 and
a t1 > t0 such that Xt0 = c ∈ B(α) and EXt1(c) ∈ ∂B(β).

If T < ∞, system (1) is said to be finite-time unstable in
the mean and if T = ∞, system (1) is said to be practically
unstable in the mean with respect to {B(α), B(β), t0, |·|}. ¥

Definition 4 System (1) is stable in the mean square with
respect to {α, β, t0, T, |·|}, α < β, if E|Xt0 |2 < α implies
that E|Xt|2 < β for all t ∈ [t0, t0 + T ). If T < ∞, system
(1) is said to be finite-time stable in the mean square and
if T = ∞, system (1) is said to be practically stable in the
mean square with respect to {α, β, t0, |·|}. ¥

Definition 5 System (1) is uniformly stable in the mean
square with respect to {α, β, t0, T, | · |}, α < β, if for all
ti ∈ [t0, t0 + T ), E|Xti |2 < α implies that E|Xt|2 < β for
all t ∈ [ti, t0 +T ). If T < ∞, system (1) is said to be finite-
time stable in the mean square and if T = ∞, system (1)
is said to be uniformly practically stable in the mean square
with respect to {α, β, |·|}. ¥

Definition 6 System (1) is unstable in the mean square with
respect to {α, β, t0, T, |·|}, α < β, if there exist an Xt0 = c
and a t1 ∈ (t0, t0+T ) such that E|Xt0 |2 < α and E|Xt1 |2 =
β. If T < ∞, system (1) is said to be finite-time unstable
in the mean square and if T = ∞, system (1) is said to
be practically unstable in the mean square with respect to
{α, β, t0, |·|}. ¥

When in (1), Bi(t) ≡ 0 for all i = 1, · · · ,m and
t ≥ t0 ≥ 0, we have the corresponding deterministic system
determined by ordinary differential equations of the form

ẋ = A(t)x, x(t0) = x0, t ≥ t0, (2)

where x(t, x0, t0) is the unique solution of (2) that exists for
all t ≥ t0. For such systems, the stability definitions given
above reduce in the obvious way to the following concepts
considered in the literature [3]–[5].

Definition 7 System (2) is stable with respect to
{B(α), B(β), t0, T, | · |}, α < β, if x(t0) = x0 ∈ B(α)
implies that x(t, x0, t0) ∈ B(β) for all t ∈ [t0, t0 + T ). If
T < ∞, system (2) is said to be finite-time stable and if
T = ∞, system (2) is said to be practically stable with
respect to {B(α), B(β), t0, |·|}. ¥

The notions of uniformly stable with respect to
{B(α), B(β), T, | · |}, α < β, and unstable with respect to
{B(α), B(β), t0, T, | · |} are defined similarly for the cases
of finite-time stability (T < ∞) and practical stability
(T = ∞).

5. STABILITY RESULTS

It can be shown (see, e.g., [11]) that the first moment
mt = EXt for system (1) is the unique solution of the
ordinary differential equation

ṁt = A(t)mt, mt0 = c0, (3)
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And the second moment P (t) = EXtX
T
t is the unique

non-negative definite symmetric solution of the ordinary
differential equation

Ṗ (t) = A(t)P (t) + P (t)A(t)T +
m∑

i=1

Bi(t)P (t)Bi(t)T ,

(4)

P (t0) = Ec0c
T
0 .

The mean square E|Xt|2 is the trace of P (t), i.e.,

E|Xt|2 = tr P (t) =
n∑

j=1

Pjj(t).

Therefore, the mean stability in the sense of Definitions
1, 2 and 3 for system (1) can be ascertained by applying
corresponding finite-time stability results and practically
stability results (see Definition 7) for system (2). We will
subsequently address such results. Furthermore, the mean
square stability in the sense of Definitions 4, 5 and 6 can
be determined similarly. To this end, we note that since

Pij(t) = EXi
tX

j
t = EXj

t Xi
t = Pji(t), (5)

the matrix P (t) is symmetric and (4) represents a system of
l = n(n + 1)/2 linear equations. If we group the l elements
Pij(t), i ≥ j, in such a way as to form a vector q, then (4)
can be rewritten in the form

q̇ = Q(t)q, q(t0) = Ec0, (6)

Where Q ∈ C[R+,Rl×l] can be determined in the obvious
way. Accordingly, the mean square stability in the sense of
Definitions 4, 5 and 6 for system (1) can be ascertained
by applying corresponding finite-time stability results and
practical stability results for system (2) (see Definition 2),
which we address next.

In the following results, we make use of a Lyapunov-
like functions v ∈ C1[R+ × Rn,R]. The notation v̇(2)(x, t)
denotes the derivative of v with respect to t evaluated along
the solutions of (2), and is given by

v̇(2)(t, x) = ∇v(x, t)T A(t)x +
∂v

∂t
(t, x), (7)

where

∇v(t, x)T =
[

∂v

∂x1
(t, x), · · · ,

∂v

∂xn
(t, x)

]
.

Theorem 1 Assume that there exist a function v ∈ C1[R+×
Rn,R] and an integrable function ϕ : R+ → R such that

(i) v̇(2)(t, x) ≤ ϕ(t) for all t ∈ J = [t0, t0 + T ) and
x ∈ B(β) and

(ii)
∫ t

t0

ϕ(s)ds < inf
x∈∂B(β)

v(t, x)− sup
x∈B(α)

v(t0, x).

Then system (2) is stable with respect to
{B(α), B(β), t0, T, | · |}, α < β. If T < ∞, system
(2) is finite-time stable. If T = ∞, system (2) is practically
stable.

Proof. The proof of this result is given in [3]–[5]. We repeat
it here for purposes of completeness.

The proof is by contradiction. Assume that x(t0) ∈ B(α)
and that there exists a t1 ∈ (t0, t0, +T ), the first time such
that x(t1, x(t0), t0) ∈ ∂B(β). Now

v(t1, x(t1, x(t0), t0))

= v(t0, x(t0)) +
∫ t1

t0

v̇(2)(t, x(t, x(t0), t0))dt

≤ sup
x∈B(α)

v(t0, x) +
∫ t1

t0

ϕ(s)ds

< sup
x∈B(α)

v(t0, x) + inf
x∈∂B(β)

v(t1, x)− sup
x∈B(α)

v(t0, x)

= inf
x∈∂B(α)

v(t1, x)

The above inequality implies that x(t1, x(t0), t0) /∈ ∂B(β),
a contradiction to the original assumption. Therefore, there
does not exist a t1 ∈ J as asserted. ¥

Theorem 2 Assume that there exist a function v ∈ C1[R+×
Rn,R] and an integrable function ϕ : R+ → R such that

(i) v̇(2)(t, x) ≤ ϕ(t) for all t ∈ J = [t0, t0 + T ) and
x ∈ B(β)−B(α) and

(ii)
∫ t2

t1

ϕ(s)ds < inf
x∈∂B(β)

v(t2, x) − sup
x∈B(α)

v(t1, x) for

all t2 > t1, t1, t2 ∈ J .

Then system (2) is uniformly stable with respect to
{B(α), B(β), T, |·|}. ¥

The proof of Theorem 2 is similar to the proof of Theorem
1. For details, refer to [3]–[5].

Theorem 3 Assume that there exist a function v ∈ C1[R+×
Rn,R], an integrable function ϕ : R+ → R and a constant
t1, t0 < t1 < t0 + T , such that

(i) v̇(2)(t, x) ≥ ϕ(t) for all x ∈ B(β) and t ∈ J =
[t0, t0 + T );

(ii)
∫ t1

t0

ϕ(t)dt > sup
x∈∂B(β)

v(t1, x)− v(t0, x0); and

(iii) v(t1, x) ≤ sup
x∈∂B(β)

v(t1, x), x ∈ B(β), t1 > t0.

Then system (2) is unstable with respect to
{B(α), B(β), t0, T, |·|}. ¥

The proof of Theorem 3 is similar to the proof of Theorem
1. For details, refer to [3]–[5].

Summarizing, to ascertain the various finite-time stability
in the mean and practical stability in the mean, properties
of the stochastic dynamical system (1) (in the sense of
Definitions 1–3), we apply Theorems 1–3 in the analysis of
the deterministic dynamical system (3) (involving the mean
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for system (1)). To ascertain the various mean square finite-
time stability and mean-square practical stability properties
of the stochastic dynamical system (1) (in the sense of
Definitions 4–6), we apply Theorems 1–3 in the analysis of
the deterministic dynamical system (6) (involving the mean
square).

6. EXAMPLES

We now address the mean and mean square finite-time
and practical stability of the stochastic linear homogeneous
system (1). To this end, we let x(t) = mt. Then the
deterministic systems (2) and (3) have identical form. We
will use the x-notation (rather than the m-notation).

Example 1 We choose

v(x) = xT x.

Along the solutions of (2) (resp., of (3)), we have

v̇(2)(x) = xT [A(t) + A(t)T ]x.

Let Λ(t) denote the laregst eigenvalue of A(t)+A(t)T . Then

v̇(2)(x) ≤ Λ(t)|x|2,
for all x ∈ Rn, t ∈ J = [t0, t0 + T ).

(a) Assume that Λ(t) ≤ 0 for all t ∈ J . Then

v̇(2)(x) ≤ Λ(t)|x|2 ≤ Λ(t)α2,

for all x ∈ B(β)−B(α), t ∈ J.
Let

ϕ(t) = Λ(t)α2, t ∈ J.

To satisfy the hypotheses of Theorem 2, we require that
∫ t2

t1

Λ(t)α2dt ≤ β2 − α2, t1, t2 ∈ J, α < β. (8)

Inequality (8) is satisfied for any α < β and T = ∞.
Therefore, when Λ(t) ≤ 0 for all t ∈ [t0,∞), system (1)
is uniformly practically stable in the mean with respect to
{B(α), B(β), t0, |·|} for β > α.

(b) Assume that Λ(t) ≥ 0 for all t ∈ J . Then

v̇(2)(x) ≤ Λ(t)|x|2 ≤ Λ(t)β2,

for all x ∈ B(β), t ∈ J.
Let

ϕ(t) = Λ(t)β2, t ∈ J.

To satisfy the hypotheses of Theorem 1, we require that
∫ t

t0

Λ(s)β2ds ≤ β2 − α2, t ∈ J, α < β. (9)

Therefore, when Λ(t) ≥ 0 for all t ∈ [t0, t0 + T )
and if inequality (9) is satisfied for T = ∞, then sys-
tem (1) is practically stable in the mean with respect to
{B(α), B(β), t0, | · |} for β > α.

(c) If in part (b) we assume that Λ(t) = Λ > 0 for all t ∈ J ,
then it follows from (9) that system (1) is finite-time stable
in the mean with respect to {B(α), B(β), t0, T, |·|} if

ΛT ≤ 1− (α/β)2. ¥

Example 2 We can improve part (a) of Example 1 by
utilizing the Lyapunov-like function

v(x) = ln(xT x).

Along the solutions of (2) (resp., (3)), we have

∇v(x) =
2

xT x
x

and

v̇(2)(x) = ∇v(x)T A(t)x

=
2

xT x

[
xT [A(t) + A(t)T ]

2
x

]

≤ xT Λ(t)x
xT x

, x 6= 0

i.e.,
v̇(2)(x) ≤ Λ(t), x 6= 0, t ∈ R+

where Λ(t) denotes again the largest eigenvalue of the matrix
A(t) + A(t)T .

Now let

v̇(2)(x) ≤ Λ(t) = ϕ(t), t ∈ R+.

The hypotheses of Theorem 2 are satisfied if for all t1, t2 ∈
J = [t0, t0 + T ), t2 > t1,

∫ t2

t1

ϕ(s)ds =
∫ t2

t1

Λ(s)ds

< inf
|x|=β

ln |x|2 − sup
|x|=α

ln |x|2

= ln β2 − ln α2

= 2 ln(β/α),

i.e.,
∫ t2

t1

Λ(s)ds ≤ 2 ln(β/α), β > α, t1, t2 ∈ J. (10)

Therefore, by Theorem 3, system (1) is uniformly practically
stable in the mean with respect to {B(α), B(β), t0, | · |} if
inequality (10) can equivalently be written as

e
1
2

∫ t2
t1

Λ(s)ds < β/α, β > α, t1, t2 ∈ J. ¥

Example 3 The mean square finite-time stability and prac-
tical stability of the stochastic dynamical system (1) can be
accomplished similarly as in Examples 1 and 2, applying
Theorems 1–3 to the deterministic system (6). ¥
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7. CONCLUDING REMARKS

We established sufficient conditions for finite-time and
practical stability in the mean and in the mean square for
an important class of linear stochastic differential equations.
In arriving at our results, we bring to bear existing finite-time
and practical stability results for deterministic dynamical
systems. We demonstrate the applicability of our results by
means of two specific examples.
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