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Abstract— We consider a financial decision problem involving
dynamic investment decisions on a single risky instrument
over multiple and discrete time periods. Investment returns
are assumed stochastic and possibly dependent over time, and
proportional transaction costs are considered in the model.
In this setting, the investor’s goal is to determine investment
policies that maximize the net profit while maintaining the
associated risk under control. We propose approximations of
the ensuing stochastic multistage optimization problem that are
based on affine recourse strategies and that lead to efficiently
solvable second order cone or semidefinite programs.

I. INTRODUCTION

In this paper we study a multi-period financial decision

problem involving trading in a single financial instrument

over a finite decision horizon. The goal is to determine

an investment policy that maximizes the net profit over

the investment horizon, taking into account the associated

risk and cost of transaction. Returns of the investment over

successive periods are modeled as possibly time-correlated

random variables, with known expectations and covariances,

[1]. The problem is here tackled using a multi-period invest-

ment strategy with recourse, aimed at adjusting the current

position based on the information about previous positions

and associated returns. Due to randomness of the return

process, the approach with recourse leads to a multi-stage

decision problem with stochastic objective and constraints.

The mainstream approach for dealing with multi-period

problems with recourse is currently provided by stochastic

programming, see e.g. [2], [3], [4] and the many refer-

ences therein. In the specific context of financial allocation,

stochastic programming methods have been proposed by

many authors, see for instance [5], [6], [7] and the survey in

[8]. Note however that stochastic programming formulations

invariably result in computationally intractable problems (see

for instance [9]), that need be approximated via exponentially

growing scenario trees, see [10].

In this paper, we follow a radically different route, which

avoids stochastic approximations and scenario trees. Specif-

ically, we focus on affine recourse strategies in which the

current position is determined as an affine function of finitely

many previous returns. This approach leads to computa-

tionally tractable optimization problems (second order cone
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and semidefinite programming problems) whose solutions

provide suboptimal policies, since affinely parameterized

recourse functions constitute only a subclass of the set of

possible recourse relations. Affine recourse has been used

for two-stage portfolio allocation problems in [11], where the

random returns at different times are considered independent.

Here, we examine the case of dependent returns focusing on

single-asset case.

We take the effect of transaction costs into account by

introducing in the utility function a penalty term related

to the total cost of transactions. We develop two different

models for handling the risk associated to the investment. In

the first model we consider a quadratic penalty in the utility

function which involves the sum of squared conditional

volatilities for the returns in each period.1 In the second

model we directly impose a constraint on the probability

of the net profit being lower than a pre-specified threshold.

The first formulation leads to a second order cone program-

ming problem, whereas the second results in a semidefinite

programming problem. Although the latter approach for risk

modeling provides more flexibility (as detailed in Section V),

this extra freedom comes with higher computational cost of

semidefinite programming compared to second order cone

programming.

II. PROBLEM SETUP.

We consider an investment decision problem where an

investor needs to decide how much money to allocate in a

single financial instrument (asset) at each stage of a decision

horizon composed of n > 1 periods. Let pt denote the market

value or price of this asset at time t and let ut be the “bet”

made by the investor (that is, the amount of money invested

in the instrument) at time t, for t = 1, . . . , n, u0 being the

given initial position. The outcome of the bet is dictated by

the underlying price fluctuation, which is random: if ut is

invested at t, the value of this investment at time t + 1 is
pt+1

pt
ut, hence the net return of the investment in this period

is ytut, where yt denotes the random return in period t, that

is

yt
.
=
pt+1 − pt

pt
, t = 1, . . . , n.

The returns are possibly correlated in time, hence the vector

y = [y1 · · · yn]T containing the returns over the forward

periods is assumed to be such that

y
.
= y(x) = ŷ + Y x,

1We incidentally remark that such risk measures are not coherent in the
sense of [12]. However, these type of risk terms are certainly still the most
widely used and accepted in practice.
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where ŷ
.
= E(y) is the return expectation, Y ∈ R

n×n is a

lower-triangular matrix describing the correlation in time of

returns, such that var(y) = Y Y T (note that Y is diagonal

if returns are assumed uncorrelated), and x ∈ R
n is a zero-

mean and unit covariance vector capturing the unpredictable

stochastic part of the returns.

One basic goal of the investor is clearly to accumulate

positive returns over time, that is to maximize the expectation

of
∑

t ytut. However, a sensible investment the problem is

really a multi-criterion one, since the investor also needs

to take into some account the cost of transactions and the

exposure to risk. To this end, we introduce the following

three terms:

P .
=

n
∑

t=1

ytut = yT (x)u :cumulative profit (1)

R .
=

n
∑

t=1

σ2
t u

2
t = uTΣu :risk term (2)

C .
=

n
∑

t=1

c|ut − gtut−1| + c|gnun| (3)

:transaction cost term,

where σ2
t is the variance of yt, Σ

.
= diag(σ2

1 , . . . , σ
2
n),

gt
.
= (1 + ŷt), and c ≥ 0 is the unit transaction cost. Note

that P represents the cumulative return of the investments, R
accounts for risk (intended as level of deviation from expec-

tation, or volatility) in each period with a term proportional

to the variance of the investment return conditional to the

investment level being ut, and C is a term accounting for

cost of transactions. Specifically, this term represents the total

cost of transactions, conditional to the returns being fixed to

their expectation ŷ.

We next introduce a dynamic decision setup in which the

vector of investment decisions u = [u1 · · · un]T is a generic

strictly causal function u(x) of the return innovations. That

is, we are concerned with the following two stochastic

optimal control problems, where the first problem is

P1 : J∗
cl1 := max

u∈U
Ex {P − C −R}, (4)

being U is the class of causal functions such that the corre-

sponding expected objective exists, and the second problem

is

P2 : J∗
cl2 := max

u∈U
µ− Ex {C} (5)

subject to: supx∼(0,I) Prob{x : P < µ} ≤ ǫ,

where x ∼ (x̂, X) means that x has first and second centered

moments equal to x̂ and X , ǫ ∈ (0, 1) is a pre-specified

constant, and the supremum is taken over all distributions

having the specified moments.

Notice that in the case of problem P1 risk is handled

by means of the penalty term R in the utility function. In

problem P2, risk is instead accounted for directly as a worst-

case downside probability, and we seek to maximize an upper

bound µ on the net profit that is violated with a probability

at most ǫ. In a single-period setting and when the probability

distribution of returns is known, this latter approach to risk

control is known in the literature as the Value-at-Risk (V@R)

approach, see, e.g., [13], [14]. Here we do not assume that the

exact probability distribution of the returns is known. Instead,

we consider a class of all possible distributions having the

specified first and second moments, and enforce the downside

probability constraint robustly over this class. In this sense,

we name the condition in problem (5) a worst-case Value-

at-Risk constraint.

We remark further that considering a general set U of

causal recourse functions in problems (4), (5) makes them

extremely hard to solve in practice. Indeed, even the compu-

tation of the objective may not be tractable for a general set

U of causal functions. On the other extreme, a conventional

approximation providing lower bounds on the objectives is

to restrict U to the class of “open-loop” strategies, that is,

control functions that are actually independent of the returns.

This latter approach, however, might be too coarse and fails

to capture the dynamic nature of the decision problem at

hand.

In the following sections we shall consider tractable ap-

proximations to the above problems that use a restricted class

of recourse functions (namely, affine recourse functions)

and that lead to efficiently computable convex programs.

In particular, in Section III we introduce an affine class of

recourse policies and develop suitable approximations for

the expectation of the transaction cost term C. With these

premises, we next show in Section IV that problem P1

can be approximately reformulated and efficiently solved

as a second order cone program (SOCP), [15]. Section V

is devoted to the solution of problem P2, and Section VI

provides a simple numerical example. Conclusions are finally

drawn in Section VII. Some of the technical proofs are

reported in the Appendix.

III. AFFINE RECOURSE STRATEGY AND TRANSACTIONS

PENALTY

In our approach we postulate that the position ut for

t > 1 is an affine, strictly causal function of the returns’

innovations (we need strict causality since a decision ut shall

not depend on returns yt, yt+1, . . . that have not yet been

observed at time t), specifically:

ut(x) = ût + Ut,1x1 + . . .+ Ut,t−1xt−1, t = 2, . . . , n,

where ût, Ut,i are new variables. More compactly, we assume

that u is the affine, strictly causal function

u(x) = û+ Ux, (6)

where û ∈ R
n and U ∈ R

n×n is strictly lower triangular

(that is, U is lower triangular with zeros on the main

diagonal). We hence consider the following lower bound on

problem (4):

J∗
ar1

.
= max

û,U
Ex {P − C −R}, (7)

where the new decision variables are the vector û and the

matrix U . Plugging the recourse policy (6) into (1) and (2)
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and taking expectation, we obtain that

ExP = Ex y
T (x)u(x) = ŷT û+ Tr Y TU

ExR = Ex u
T (x)Σu(x) = Tr (ûûT + UUT )Σ.

The expectation of the transactions cost penalty term C,

instead, cannot be determined exactly in closed form. Hence,

we next consider computable upper and lower bounds for

Ex C, that result to be useful for approximating the solution

of (7).

A. Approximations for the transaction cost penalty term

The transaction penalty term C under the control policy

(6) takes the form

C =

n
∑

t=1

|c(UTt − gtU
T
t−1)x+ c(ût − gtût−1)|

+|cgnUTn x+ cgnûn|
= ‖Ax+ b‖1,

where UTt denotes the t-th row in U , and where we set for

t = 1, . . . , n

aTt
.
= c(UTt − gtU

T
t−1), bt

.
= c(ût − gtût−1),

aTn+1
.
= cgnU

T
n , bn+1

.
= cgnûn,

A
.
=







aT1
...

aTn+1






= A(U), b

.
=







b1
...

bn+1






= b(û).

1) A lower bound on the expected transaction penalty:

A lower bound on Ex C can be derived from Jensen’s

inequality, [15], which states that for any random variable X
and convex function f(·) it holds that f(E(X)) ≤ E(f(X)).
In particular, considering f(·) = | · |, we have |EX | ≤ E|X |,
thus

Ex C(x) = Ex ‖Ax+ b‖1 ≥
n+1
∑

t=1

|Ex (aTt x+ bt)|

=

n+1
∑

t=1

|bt| = ‖b(û)‖1
.
= Clb(û),

from which we obtain that

Ex {P − C −R} ≤ Jub(û, U),

where

Jub(û, U)
.
= Ex P − ExR− Clb(û)
= (ŷT û+ Tr Y TU)

−(Tr (ûûT + UUT )Σ) − ‖b(û)‖1.

2) An upper bound on the expected transaction penalty:

Applying again Jensen’s inequality to the random variable

|X |, with f(·) = (·)2, we obtain E|X | ≤
√

EX2, hence

Ex C = Ex ‖Ax+ b‖1 ≤
n+1
∑

t=1

√

Ex (aTt x+ bt)2

=

n+1
∑

t=1

√

aTt at + b2t

=

n+1
∑

t=1

∥

∥

∥

∥

[

at
bt

]
∥

∥

∥

∥

2

.
= Cub(û, U), (8)

from which it follows that

Ex {P −R− C} ≥ Jlb(û, U),

with

Jlb(û, U)
.
= Ex P − ExR− Cub(û, U)

= (ŷT û+ Tr Y TU) − (Tr (ûûT + UUT )Σ)

−
n+1
∑

t=1

∥

∥

∥

∥

[

at
bt

]
∥

∥

∥

∥

2

.

The following lemma shows that the bound (8) has a relative

accuracy of at least 2/π. A proof for this lemma is given in

the Appendix.

Lemma 1: Let A ∈ R
n×m, b ∈ R

n, and define

ψ := sup
x∼(0,I)

Ex ‖Ax+ b‖1, ψ :=

n
∑

i=1

∥

∥

∥

∥

(

ai
bi

)
∥

∥

∥

∥

2

,

where aTi (resp. bi) are the rows (resp. elements) of A (resp.

b). Then,
2

π
ψ ≤ ψ ≤ ψ. (9)

⊳

IV. EFFICIENTLY COMPUTABLE BOUNDS ON J∗
ar1

In this section we focus on the computation of upper

and lower bounds for problem P1 in (7), based on the

developments of the previous section. We have the following

proposition.

Proposition 1: The following inequality holds for the op-

timal value J ∗
ar1 of problem P1 under affine recourse rule:

J∗
lb1 ≤ J ∗

ar1 ≤ J∗
ub1,

where J∗
ub1 is the optimal value of the convex quadratic

programming problem:

J∗
ub1 : max

û,U,z≥0
ŷT û− Tr ûûTΣ − ∑n+1

i=1 zi

+Tr (Y TU − UUTΣ)

subject to: U strictly lower triangular, û0 = u0,

−zi ≤ bi(û) ≤ zi, i = 1, . . . , n+ 1.

and J∗
lb1 is the optimal value of the following SOCP:

J∗
lb1 : max

û,U,µ1,µ2

(ŷT û+ TrY TU) − µ1 − µ2 (10)

subject to: U strictly lower triangular, û0 = u0,

Tr (ûûT + UUT )Σ ≤ µ1,

∑n+1
t=1

∥

∥

∥

∥

[

at
bt

]∥

∥

∥

∥

2

≤ µ2.
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⊳

Remark 1: Notice that, since Clb only depends on û (and

not on the recourse parameter U ), the upper bound problem

(10) results to be separable in the variables û and U . This

means that the nominal investments û are found as the

solution of the reduced problem

max
û,z≥0

ŷT û− Tr ûûTΣ − ∑n+1
i=1 zi (11)

subject to: û0 = u0,

−zi ≤ bi(û) ≤ zi, i = 1, . . . , n+ 1,

which simply corresponds to the “open-loop” problem one

would encounter if no recourse action was applied. Once

the optimal û is computed by solving (11), the optimal

recourse parameter U for problem (10) is determined as

the strictly lower triangular matrix that maximizes h(U) =
Tr(UY T + UUTΣ). To this end, note that if we write

Y = Yd + Yslt, where Yd is the diagonal part of Y and Yslt
is its strictly lower triangular part, then h(U) = Tr(UYd +
UY Tslt + UUTΣ) = Tr(UY Tslt + UUTΣ), since U is strictly

lower triangular. Now, taking the matrix derivative of h with

respect to U we have that the maximum is achieved when

Yslt − 2ΣU = 0, that is for

U =
1

2
Σ−1Yslt.

V. PROFIT MAXIMIZATION WITH DOWNSIDE RISK

CONSTRAINT

In this section we consider the computation of upper and

lower bounds for the solution of problem P2 under affine

recourse. Specifically, we shall consider the problem:

P2 : J∗
ar2 := max

û,U
µ− Ex {C} (12)

subject to: U is strictly lower triangular, û0 = u0

supx∼(0,I) Prob{x : P < µ} ≤ ǫ (13)

|ût| ≤ umax, t = 1, . . . , n,

where umax is some given upper bound on the maximum

nominal exposure in the investment, which is introduced for

insuring boundedness of the solution set. The following key

result, whose proof is reported in the Appendix, provides

a key step for showing that the condition in (13) can be

expressed explicitly via a convex semidefinite constraint.

Lemma 2: Let x have zero mean and unit covariance and

q(x)
.
= [xT 1]Q[xT 1]T be a quadratic form, with Q = QT ∈

R
(n+1)×(n+1). Define

κ(Q) := sup
x∼(0,I)

Prob{x : q(x) < 0} .

Then,

κ(Q) = min
τ≥0

Tr (J − τQ)+ ,

where J = eeT with e = [0 . . . 0 1]T ∈ R
n+1 and for

a symmetric matrix A, A+ denotes the matrix obtained by

projecting A onto the positive semidefinite cone.2

2A+ can be computed from A by simply replacing all negative eigen-
values, if any, by zeros.

Now, note that in the affine recourse case we have

P = zTG(û, U)z

.
= zT

[

1
2 (Y TU + UTY ) 1

2 (UT ŷ + Y T û)
1
2 (ŷTU + ûTY ) ŷT û

]

z,

with zT
.
= [xT 1], whence P − µ = zT (G(û, U) − µJ)z.

Then, from Lemma 2 it follows that

supx∼(0,I) Prob{x : P < µ} ≤ ǫ

⇔ minτ≥0 Tr (J − τG(û, U) + τµJ)+ ≤ ǫ

⇔ minτ≥0 τTr
(

τ−1J −G(û, U) + µJ
)

+
≤ ǫ

[letting λ = τ−1]

⇔ minλ≥0 λ
−1

Tr ((λ + µ)J −G(û, U))+ ≤ ǫ

⇔ ∃λ > 0 : λ−1
Tr ((λ+ µ)J −G(û, U))+ ≤ ǫ

⇔ ∃λ > 0 : Tr ((λ+ µ)J −G(û, U))+ ≤ λǫ.

Further, notice that for any symmetric matrix A

TrA+ ≤ η ⇔ min
M�0,M�A

TrM ≤ η

⇔ ∃M � 0,M � A : TrM ≤ η,

therefore continuing the previous chain of equivalences, we

have that

Tr ((λ+ µ)J −G(û, U))+ ≤ λǫ

⇔ ∃M � 0,M � (λ+ µ)J −G(û, U) : TrM ≤ λǫ,

which is a convex semidefinite condition in M,λ, µ, û, U .

Finally, considering the upper and lower bounds on the

transaction penalty term developed in Section III, we can

easily prove the result in the next proposition.

Proposition 2: The following inequality holds for the op-

timal value J ∗
ar2 of problem P2 in (12) under affine recourse

rule:

J∗
lb2 ≤ J ∗

ar2 ≤ J∗
ub2,

where J∗
ub2 is the optimal value of the convex semidefinite

programming problem (SDP):

J∗
ub2 : maxû,U,M�0,µ,λ≥0,z≥0 µ− ∑n+1

i=1 zi (14)

subject to:

U strictly lower triangular, û0 = u0,
−zi ≤ bi(û) ≤ zi, i = 1, . . . , n+ 1,
|ût| ≤ umax, t = 1, . . . , n,
TrM ≤ λǫ
M � (λ+ µ)J −G(û, U),

and J∗
lb2 is the optimal value of the SDP

J∗
lb2 : maxû,U,µ,λ≥0,M�0,µ2

µ− µ2 (15)

subject to:

U strictly lower triangular, û0 = u0,
∑n+1

t=1

∥

∥

∥

∥

[

at
bt

]
∥

∥

∥

∥

2

≤ µ2,

|ût| ≤ umax, t = 1, . . . , n,
TrM ≤ λǫ
M � (λ+ µ)J −G(û, U).

⊳
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VI. EXAMPLE

We present an example comparing the results from the

solution of the problem in (10) to the open-loop solution

using daily Euro price in Dollars. Expected returns ŷ and

covariance factor Y have been estimated by fitting a 10-th

order AR model to historical data. We stress the fact that

this example has the sole purpose of testing the numerical

functionality of the proposed techniques. In particular we are

not claiming that an AR model is the fittest model to use for

describing returns of liquid assets such as exchange rates.

We solved the open-loop problem and the problem in (10)

over a forward decision horizon consisting of 10 periods. The

unit cost of transaction has been assumed to be c = 0.1%.

We simulated the three computed strategies on future unseen

data for 20 periods . The results are compared in Figure 1,

which shows the net profit (profit minus transaction cost) of

two investing strategies following the open loop policy and

the policy from (10).

0 5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

time (days)

n
e
t 

p
ro

fi
t

Fig. 1. Net profit computed using actual return vs. time for the open loop
strategy (solid curve) and the policy from problem (10) (dashed-dot curve).

VII. CONCLUSIONS

In this paper we considered a dynamic investment strategy

on a single risky asset, based on affine recourse policies.

The proposed approach takes into account transaction costs

and the possible statistical dependence of returns over dif-

ferent periods. This formulation admits relaxations that can

be solved efficiently by means of second order cone or

semidefinite optimization solvers. Some preliminary numer-

ical experiments on real financial data confirm that the

proposed technique can significantly outperform open loop

strategies, while being computationally more attractive than

a full stochastic programming formulation. Current research

is being directed towards extensions of this model to the case

of portfolios with many assets.

APPENDIX

Preliminaries. The following theorem from [16] will be used

in the proof of Lemma 1.

Theorem 1: Let B0, B1, . . . , BL ∈ R
n×n be symmetric

and B1, . . . , BL be of rank 2. Let the problem Pρ be defined

as:

Pρ : Is B0 +

L
∑

l=1

ulB
l � 0, ∀u : ‖u‖∞ ≤ ρ ? (16)

and the problem Prelax be defined as:

Prelax: Do there exist symmetric matrices

X1, . . . , XL ∈ R
n×n satisfying

Xl � ρBl, l = 1, . . . , L,
∑L

l=1Xl � B0?

Then, the following statements hold:

1) If Prelax is feasible, then Pρ is feasible.

2) If Prelax is not feasible, then P π

2
ρ is not feasible. ⊳

Theorem 1 is adapted from a more general theorem (Theorem

2.1) in [16].

Proof of Lemma 1. Let z
.
= [xT 1]T . Then, ψ can be written

as

ψ = sup E‖Ax+ b‖1 (17)

subject to: E
(

zzT
)

= Im+1.

The Lagrangian dual of the problem in (17) can be written

(using a result from Section 4.1 of [17]) as

ψD = inf
M�0

TrM (18)

subject to: zTMz ≥ ‖Ax+ b‖1, ∀x ∈ R
m.

Since strong duality holds for (17) and (18) (see Section

16.4 of [17]), it follows that ψ = ψD. In order to invoke

Theorem 1, we write ψ in the following form

ψ = inf
M�0

TrM

subject to: zTMz ≥ uT (Ax+ b), ∀x ∈ R
m,

∀u ∈ R
n : ‖u‖∞ ≤ 1

[eliminating x] = inf
M�0

TrM

subject to: M �
[

0 1
2A

Tu
1
2u

TA uT b

]

∀u ∈ R
n : ‖u‖∞ ≤ 1

= inf
M�0

TrM

subject to:
M � ∑n

t=1 utCt,
∀u ∈ R

n : ‖u‖∞ ≤ 1,
(19)

where

Ct =

[

0 aTt /2
at/2 bt

]

. (20)

Note that the constraint in (19) is in the form of the constraint

in (16). Next, consider the problem

ϕ := inf
M�0,Xt=XT

t

TrM (21)

subject to: −Xt + Ct � 0, −Xt − Ct � 0,

for t = 1, . . . , n,
∑n

i=1Xi −M = 0, M � 0.
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The dual of the problem in (21) can be written as

ϕD := sup
Λt�0,Γt�0

n
∑

t=1

Tr((Λt − Γt)Ct) (22)

subject to: Λt + Γt = Im+1,

Γt � 0, Λt � 0, t = 1, . . . , n.

Since the problem in (21) is convex and Slater conditions

are satisfied, ϕ = ϕD. Next we show that, ϕD = ψ. To this

end, diagonalizing Ct, the problem in (22) can be reduced

to n decoupled scalar problems, from which it follows that

ϕD =
∑n

t=1 ‖eig(Ct)‖1, where eig(·) denotes the vector

of the eigenvalues of its argument. For Ct as in (20), we

have ‖eig(Ct)‖1 = ‖ (at, bt)
T ‖2, since the characteristic

equation of Ct is sn−2(s2 − sbt − 1
4

∑n
t=1 a

2
t ) = 0 and

‖eig(Ct)‖1 =
(

b2t +
∑n
t=1 a

2
t

)1/2
= ‖ (at, bt)

T ‖2. Then,

by the first conclusion in Theorem 1 we have ψ = ϕ = ϕD

and ψ ≤ ψ. For the lower bound on ψ in (9), assume that

the problem in (22) is not feasible. Then, for M � 0, we

have that

{

M : TrM = ϕD
}

⋂

{M : Xt � ±Ct,
∑n
t=1Xt �M} = ∅.

This last emptiness statement implies, by the second conclu-

sion in Theorem 1, that

{

M : TrM = ϕD
}

⋂

{M : M � ∑n
t=1 utCt, ∀u : |ut| ≤ π/2} = ∅

and

{

M̃ : TrM̃ = ϕD

π/2

}

⋂

{

M̃ : M̃ � ∑n
t=1 ũtCt, ∀ũ : |ũt| ≤ 1

}

= ∅

Consequently, we have ψ ≥ ϕD

π/2 = ψ
π/2 . �

Proof of Lemma 2. Let z
.
= [xT 1]T . Then, κ(Q) can be

written as

κ(Q) = sup
p(·)

Prob {x : q(x) < 0} (23)

subject to:
∫

Rn zz
Tp(x)dx = In+1,

where maximization is over all probability distributions p
with the first and second moments equal to 0 and In,

respectively. Let 1q(·) : R
n → {0, 1} be the indicator

function of the set {x ∈ R
n : q(x) < 0}, i.e., 1q(x) = 1

if q(x) < 0 and 1q(x) = 0, otherwise. Since strong duality,

by Theorem 8 Section 16.4 in [17], holds for the problem

in (23), dualizing with respect to the constraint in (23), we

can equivalently write κ(Q) as

inf
M

sup
p(·)

∫

1q(x)p(x)dx + Tr

(

M(I −
∫

zzTp(x)dx)

)

= inf
M

{

TrM + sup
p(·)

∫

(

1q(x) − zTMz
)

p(x)dx

}

[

1q(x) − zTMz ≤ 0 to get the supremum

inside the curly brackets definite

]

= inf
M

TrM subject to: 1q(x) ≤ zTMz ∀x ∈ R
n

[using the definition of 1q]

= inf
M�0

TrM subject to:

zTMz ≥ 1 ∀x ∈ {x ∈ R
n : q(x) < 0}

[using the S-procedure]

= inf
M�0,τ≥0

TrM subject to: M − J + τQ � 0

= inf
τ≥0

Tr(J − τQ)+,

where M ∈ R
(n+1)×(n+1) and all integrals are over R

n. �
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