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Abstract— In this work, we focus on model predictive control
of nonlinear systems subject to time-varying measurement
delays. The motivation for studying this control problem is
provided by networked control problems and the presence
of time-varying delays in measurement sampling in chemical
processes. We propose a Lyapunov-based model predictive
controller which is designed taking time-varying measurement
delays explicitly into account, both in the optimization problem
formulation and in the controller implementation. The proposed
predictive controller guarantees that the closed-loop system is
ultimately bounded in a region that contains the origin if the
maximum delay is smaller than a given constant. The theoretical
results are illustrated through a chemical process example.

I. INTRODUCTION

The problem of designing feedback control systems for

nonlinear systems subject to time-varying measurement de-

lays is a fundamental one and its solution can find significant

application in a number of control engineering problems

including, for example, design of networked control systems

(NCS). NCS are control systems which operate over a com-

munication network (wired or wireless) and can lead to sig-

nificant improvements in the efficiency, flexibility, robustness

and fault-tolerance of industrial control systems as well as to

reduction of the installation, reconfiguration and maintenance

costs. However, the design of NCS has to account for the

dynamics introduced by the communication network which

may include time-varying delays, data quantization or data

losses. In addition to NCS, another source of time-varying

delays in the feedback loop is measurement sensor delays,

which are particularly important during the measurement

of species concentrations and particle size distributions in

process control applications.

Model predictive control (MPC) is an advanced method of

process control that has been in use in the process industries

such as chemical plants and oil refineries since the 1980s;

see for example [1], [2] for a review of results in this area.

In order to guarantee stability of the closed-loop system,

MPC schemes must include a set of stability constraints.

Different MPC schemes can be found in the literature, see [3]

for a review on MPC stability results. In a recent series

of papers, we proposed Lyapunov-based model predictive
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control (LMPC) schemes for nonlinear systems [4], [5] based

on uniting receding horizon control with control Lyapunov

functions as a way of guaranteeing closed-loop stability.

The main idea is to formulate appropriate constraints in

the predictive controller’s optimization problem based on

an existing Lyapunov-based controller, in such a way that

the MPC controller guarantees closed-loop practical stability.

Lyapunov-based model predictive control has been applied

with success to constrained non-linear systems, switched

systems and to fault-tolerant control problems [4], [5], [6],

[7]. However, the available results on Lyapunov-based MPC

do not account for the effect of time-varying measurement

delays, and when time-varying measurement delays are taken

into account, these schemes are not guaranteed to maintain

the desired closed-loop stability properties. In terms of other

research work pertaining to the control problem studied in

this manuscript, we note that most of the available results

on MPC of systems with delays deal with linear systems

(e.g., [8], [9]). Finally, the importance of time delays in the

context of networked control systems has motivated signifi-

cant research effort in modeling such delays and designing

control systems to deal with them, primarily in the context

of linear systems (e.g., [10], [11], [12], [13], [14], [15]).

Motivated by the above, this work deals with the design

of predictive controllers for nonlinear system subject to

time-varying measurement delay in the feedback loop. In

particular, we propose to design the controller in a Lyapunov-

based MPC scheme. While there are several Lyapunov-based

MPC schemes that have been proposed in the literature (see

for example [16]), in this work we design the proposed

Lyapunov-based MPC based on the results developed in [4],

[5], [6] by our group. In the LMPC scheme proposed in the

present work, when measurement delays occur, the nominal

model of the system is used together with the delayed

measurement to estimate the current state, and the resulting

estimate is used to evaluate the LMPC controller; at sampling

times where no measurements are available due to the delay,

the actuator implements the last optimal input trajectory

evaluated by the controller. The proposed LMPC scheme

allows for an explicit characterization of the stability region

and guarantees that the closed-loop system in the presence

of time-varying measurement delays is ultimately bounded

in a region that contains the origin if the maximum delay

is smaller than a constant that depends on the parameters of

the system and the Lyapunov-based controller that is used to

formulate the optimization problem. The theoretical results

are illustrated through a chemical process example.
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II. PRELIMINARIES

A. Problem formulation

In this work, we consider a nonlinear system subject to

disturbances with the following state-space description

ẋ(t) = f(x(t), u(t), w(t)) (1)

where x(t) ∈ Rnx denotes the vector of state variables,

u(t) ∈ Rnu denotes the vector of manipulated input

variables, w(t) ∈ Rnw denotes the vector of disturbance

variables, and f is a locally Lipschitz vector function on

Rnx ×Rnu ×Rnw . The disturbance vector is bounded, i.e.,

w(t) ∈ W where

W := {w ∈ Rnw s.t. |w| ≤ θ, θ > 0}1.

We assume that the nominal system (system (1) with

w(t) ≡ 0 for all t) has an asymptotically stable equilibrium

at the origin x = 0 for a given feedback control h : Rnx →
Rnu which satisfies h(0) = 0 (this assumption is equivalent

to the existence of a control Lyapunov function (CLF) for the

system ẋ = f(x, u, 0)). This feedback law will be used in

the design of the LMPC controller. Using converse Lyapunov

theorems (see [17]), this assumption implies that there exist

functions αi(·), i = 1, 2, 3, 4 of class K2 and a Lyapunov

function V which is continuous and bounded in Rnx , that

satisfy the following inequalities

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)

∂x
f(x, h(x), 0) ≤ −α3(|x|)

|∂V (x)

∂x
| ≤ α4(|x|)

(2)

for all x ∈ O ⊆ Rnx where O is any open neighborhood of

the origin, see [17]. We denote the region Ωρ
3 ⊆ O as the

stability region of the closed-loop system under controller

h(x). In the remainder, we will refer to the controller h(x)
as the Lyapunov-based controller.

By continuity and the local Lipschitz property assumed

for the vector field f(x, u, w), there exist positive constants

M , Lw and Lx such that

|f(x, h(x), w)| ≤ M (3)

|f(x, h(x), w) − f(x′, h(x), 0)| ≤ Lw|w| + Lx|x − x′| (4)

for all x, x′ ∈ Ωρ and w ∈ W . These constants will be used

to prove the main results of this work.

B. Model of measurement delays

Although system (1) is defined in continuous time, we

focus on a sample and hold implementation of the controller

subject to time-varying measurement delays because we

work within a model predictive control framework. State are

sampled with a sampling time ∆ at times tk = t0 + k∆
where k = 0, 1 . . . and t0 is the initial time. However,

1| · | denotes Euclidean norm of a vector.
2Class K functions are strictly increasing functions of their argument and

satisfy αi(0) = 0.
3We use Ωr to denote the set Ωr := {x ∈ Rnx |V (x) ≤ r}.

x(tk−d(tk))
Buffer(Delay)

x(tk)

Sampler

x(t)
System

u(t)

Discrete-Continuous

u(tk)Controller

Fig. 1. Sampled-data closed-loop system subject to time-varying measure-
ment delays.

due to the time-varying measurement delays, the controller

may not receive the latest measurement, but a previous one.

We assume that each measurement is time-labeled, so the

controller is able to discard non-relevant information; i.e.,

the controller discards earlier measurements if it has already

received more recent information. We do not consider delays

in the computation and implementation of the control actions.

This model is of relevance to systems subject to asyn-

chronous delayed measurements and to networked control

systems, where the delay is introduced by the communication

network connecting the sensor and the controller. Figure 1

shows a schematic of the closed-loop system for the control

problem considered.

To model measurement delays, an auxiliary random vari-

able d(tk) is introduced to indicate the number of sampling

times that the measurement received at time tk is delayed.

That is, at sampling time tk, the controller receives the

delayed measurement x(tk−d(tk)). When more than one

measurements are received, the controller only uses the latest

one and discards the rest. For example, if at sampling time tk,

three new measurements are received with a delay of 5, 4 and

3 sampling times respectively, the controller only uses the

measurement with a delay of 3 sampling times (recall that the

measurements are time-labeled). The sequence {d(tk) ≥ 0}
characterizes the time needed to obtain a new measurement

in the case of asynchronous measurements or the quality of

the feedback link in the case of NCS. Because of the delay, it

is possible that there exist sampling times tk in which a new

measurement is not received. In this case, the controller must

decide the control action in open-loop, for example, setting

the control input to zero or to the last implemented value. In

the next section, we present an LMPC controller in which

time-varying delays are taken into account explicitly both in

the controller design and in the implementation procedure.

In general, if the sequence {d(tk) ≥ 0} is modeled using

a random process, there exists the possibility of arbitrarily

large delays. In this case, it is not possible to provide

guaranteed stability properties, because there exists a non-

zero probability that the controller operates in open-loop

for a period of time large enough for the state to leave

the stability region or even escape to infinity (i.e., finite

escape time). In order to study the stability properties in a

deterministic framework, in this paper we consider systems

where there exists an upper bound D on the delay of the

state measurement that we receive at each sampling time,
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i.e. d(tk) ≤ D, k = 0, 1 . . ..

III. LYAPUNOV-BASED MODEL PREDICTIVE CONTROL

A. LMPC design

Lyapunov-based MPC is based on uniting receding hori-

zon control with control Lyapunov functions and computes

the control input trajectory solving a finite horizon con-

strained optimal control problem. The control input trajectory

(i.e., the free variable of the LMPC optimization problem)

is constrained to belong to the family of piece-wise constant

functions S(∆) with sampling period ∆ and length equal

to the prediction horizon. As mentioned in the introduction,

LMPC is characterized by a set of constraints based on an

existing Lyapunov-based controller.

Previous LMPC schemes (see [4], [5], [6] for standard

results and [7] for systems subject to asynchronous mea-

surements and data losses) do not consider time-varying

measurement delays. Under certain assumptions these con-

trollers guarantee practical stability of the closed-loop sys-

tem, however, when time-varying measurement delays are

present, these results do not hold. In this section, a Lyapunov-

based model predictive controller for system (1) which takes

into account time-varying measurement delays explicitly,

both in the constraints imposed in the optimization problem

and in the implementation procedure, is proposed. The

proposed controller guarantees that, under certain conditions,

the closed-loop system subject to time-varying measurement

delays is ultimately bounded in a set that contains the origin.

A controller for a system subject to time-varying mea-

surement delays must take into account two important issues.

First, when a new measurement is received, this measurement

may not correspond to the current state of the system. This

implies that in this case, the controller has to take a decision

using an estimate of the current state. Second, because the

delays are time-varying, the controller may not receive new

information every sampling time. This implies that in this

case, the controller has to operate in open-loop using the

last received measurements. In order to deal with these two

issues, we propose to take advantage of the model predictive

control scheme to decide the control input based on a

prediction obtained using the nominal model of the system.

This prediction is used both for estimating the current state

from previous measurements and for deciding the input when

the controller does not receive new information.

The proposed Lyapunov-based MPC that takes into ac-

count time-varying measurement delays in an explicit way

is based on the following finite horizon constrained optimal

control problem

u∗

k(t) = arg min
uk∈S(∆)

J (5)

subject to

˙̃x(t) = f(x̃(t), uk(t), 0) (6a)

uk(t) = u∗

k−1(t),∀t ∈ [tk−d(tk), tk] (6b)

x̃(tk−d(tk)) = x(tk−d(tk)) (6c)

˙̂x(t) = f(x̂(t), h(x̂(tj)), 0), t ∈ [tj , tj+1] (6d)

x̂(tk) = x̃(tk) (6e)

V (x̃(t)) ≤ V (x̂(t)), ∀t ∈ [tk, tk+D+1−d(tk)] (6f)

with

J =

∫ tk+N

tk−d(tk)

[x̃(τ)T Qcx̃(τ) + uk(τ)T Rcuk(τ)]dτ (7)

where S(∆) is the family of piece-wise constant functions

with sampling period ∆, x̃(t) is the predicted sampled trajec-

tory of the nominal system for the input trajectory computed

by the LMPC (5), j = k, . . . , k + N − 1, x(tk−d(tk)) is the

delayed measurement that is received at tk, u∗

k−1(t) is the

optimal control input trajectory computed at time tk−1, x̂(t)
is the nominal sampled trajectory under the Lyapunov-based

controller u = h(x̂(t)) along the prediction horizon with

initial state the estimated state x̃(tk), and Qc, Rc are weight

matrices that define the cost.

If at a sampling time, a new measurement x(tk−d(tk))
is received, an estimate of the current state x̃(tk) is ob-

tained using the nominal model of the system (constraint

(6a)) and the control inputs applied to the system from

tk−d(tk) to tk (constraint (6b)) with the initial condition

being x̃(tk−d(k)) = x(tk−d(tk)) (constraint (6c)). Note that

this implies that the controller has to store the past control

input trajectory. The estimated state x̃(tk) is then used to

obtain the optimal future control input trajectory solving the

finite horizon constrained optimal control problem (5). The

Lyapunov-based MPC scheme uses the nominal model to

predict the future trajectory x̃(t) for a given input trajectory

uk(t) ∈ S(∆) with t ∈ [tk, tk+N ]. A cost function is

minimized (equation (7)), while assuring that the value of

the Lyapunov function along the predicted trajectory x̃(t)
satisfies a Lyapunov-based contractive constraint (constraint

(6f)) where x̂(t) is the state trajectory corresponding to

the nominal system in closed-loop with the Lyapunov-based

controller (constraint (6d)) with the initial condition being

x̂(tk) = x̃(tk) (constraint (6e)). Note that the contractive

constraint (6f) depends on the current delay d(tk). If the

controller does not receive any new measurement at a sam-

pling time, it keeps implementing the last evaluated opti-

mal trajectory. This strategy is a receding horizon strategy,

which takes time-varying measurement delays explicitly into

account. The receding horizon scheme is modified as follows

to take into account time-varying delays:

1) If a new measurement is received, then solve (5) and

obtain u∗

k(t), else u∗

k(t) = u∗

k−1(t).
2) Apply u(t) = u∗

k(t) for all t ∈ [tk, tk+1].
3) Obtain a new sample and go to 1.

This modification states that if no measurement is received,

then the previous optimal control input trajectory is applied.
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This is equivalent to using the model to predict the future

evolution of the state of the system and update the input

accordingly as in [7], [18], [11], [19], [20] In addition,

the modified receding horizon scheme and constraint (6b)

guarantee that uk−1(t) stores the control input applied to

the system from tk−d(tk) to tk.

t
tk−d(tk) tk tk+j

x(t)

x̃(t)
x̃(t)

x̂(t)

Fig. 2. Possible scenario of the measurements received by the LMPC and
the corresponding state trajectories defined in problem (5).

Figure 2 shows a possible scenario for a system of

dimension 1. A delayed measurement x(tk−d(tk)) is received

at time tk and the next new measurement is not obtained until

tk+j . This implies that at time tk we solve problem (5) and

we apply the optimal input u∗

k(t) from tk to tk+j . The solid

vertical lines are used to indicate sampling times in which a

new measurement is obtained (that is, tk and tk+j) and the

dashed vertical line is used to indicate the time corresponding

to the measurement obtained in tk (that is, tk−d(tk)).

B. Stability properties of the proposed LMPC

In this section, we present the stability properties of the

proposed LMPC controller for systems subject to time-

varying measurement delays. To this end, we need to intro-

duce several auxiliary results that will be used in the proof

of the main theorem of the paper. We first investigate the

properties of the Lyapunov-based controller h(x) applied in

a sample-and-hold fashion without considering uncertainty

or time-varying measurement delays. These properties are

important because the proposed LMPC scheme is based on

the nominal model of system (1).

Proposition 1 (c.f. [7]): Consider the nominal sampled

trajectory x̂(t) of system (1) for a controller h(x) that

satisfies (2) obtained by solving recursively

˙̂x(t) = f(x̂(t), h(x̂(tk)), 0), t ∈ [tk, tk+1]

where tk = t0 + k∆, k = 0, 1, . . . Let ∆, ǫs > 0 and

ρ > ρs > 0 satisfy

−α3(α
−1
2 (ρs)) + α4(α

−1
1 (ρ))LxM∆ ≤ −ǫs/∆. (8)

Then, if ρmin ≤ ρ where

ρmin = max{V (x̂(t + ∆)) : V (x̂(t)) ≤ ρs}
and x̂(t0) ∈ Ωρ, the following inequalities hold

V (x̂(tk)) ≤ max{V (x̂(t0)) − kǫs, ρmin}
V (x̂(t)) ≤ max{V (x̂(tk)), ρmin}, ∀t ∈ [tk, tk+1].

(9)

Proposition 1 guarantees that if system (1) with w(t) ≡ 0
for all t under the control law u = h(x), implemented in a

sample-and-hold fashion, starts in Ωρ, then it is ultimatelly

bounded in Ωρmin
. The following proposition provides an

upper bound on the deviation of the state trajectory obtained

using the nominal model, from the real state trajectory when

the same control input trajectory is applied.

Proposition 2: Consider the following state trajectories

ẋa(t) = f(xa(t), u(t), w(t))
ẋb(t) = f(xb(t), u(t), 0)

(10)

with initial states xa(t0) = xb(t0) ∈ Ωρ, then the following

inequality holds,

|xa(t) − xb(t)| ≤ fW (t − t0), (11)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W where

fW (τ) =
Lwθ

Lx

(eLxτ − 1).

Proof: Define the error vector as e(t) = xa(t)−xb(t).
The time derivative of the error is given by

ė(t) = f(xa(t), u(t), 0) − f(xb(t), u(t), 0).

Applying (3), the following inequality holds

|ė(t)| ≤ Lw|w(t)−0|+Lx|xa(t)−xb(t)| ≤ Lwθ +Lx|e(t)|
for all xa(t), xb(t) ∈ Ωρ and w(t) ∈ W . Integrating |ė(t)|
with initial condition e(t0) = 0 (recall that xa(t0) = xb(t0)),
the following bound on the norm of the error vector is

obtained

|e(t)| ≤ Lwθ

Lx

(eLx(t−t0) − 1).

This implies that (11) holds for

fW (τ) =
Lwθ

Lx

(eLxτ − 1).

The following proposition bounds the difference between

the magnitudes of the Lyapunov function of two different

states in Ωρ. This proposition is used together with Proposi-

tions 1 and 2 to obtain an upper bound on the value of the

Lyapunov function of the real state if a given control input

trajectory is applied.

Proposition 3: Consider the Lyapunov function V (·) of

system (1). Given any positive constant ρ > 0, there exists a

quadratic function fV (·) such that

V (x) ≤ V (x̂) + fV (|x − x̂|) (12)

for all x, x̂ ∈ Ωρ.

Proof: Because the Lyapunov function V (x) is contin-

uous and bounded on compact sets, we can find a positive

constant β such that a Taylor series expansion of V around

x̂ yields

V (x) ≤ V (x̂) +
∂V

∂x
|x − x̂| + β|x − x̂|2,∀x, x̂ ∈ Ωρ.

Note that the term β|x − x̂|2 bounds the high order terms

of the Taylor series of V (x) for all x, x̂ ∈ Ωρ. Taking into

account (2), the following bound for V (x) is obtained

V (x) ≤ V (x̂)+α4(α
−1
1 (ρ))|x− x̂|+β|x− x̂|2,∀x, x̂ ∈ Ωρ.
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This implies that (12) holds for fV (x) = α4(α
−1
1 (ρ))x +

βx2.

Theorem 1 provides sufficient conditions under which

the LMPC scheme (5) guarantees stability of the nonlinear

closed-loop system in the presence of time-varying measure-

ment delays.

Theorem 1: Consider system (1) in closed-loop with the

LMPC scheme (5) based on a controller h(x) that satis-

fies (2). Let constants ǫs, ρs > 0, ∆, θ and D satisfy (8) and

the following constraint:

−ǫs + fV (fW (D∆)) + fV (fW (D + 1)∆) < 0. (13)

If D + 1 ≤ N , x(t0) ∈ Ωρ and d(t0) = 0, then x(t) is

ultimately bounded in Ωρc
where

ρc = ρmin + fV (fW (D∆)) + fV (fW (D + 1)∆).
Proof: In order to prove that system (1) in closed-

loop with the proposed LMPC is ultimately bounded in

a region that contains the origin we will prove that the

Lyapunov function V (x) is a decreasing function of time

with a lower bound on its magnitude. We assume that the

delayed measurement x(tk−d(tk)) is received at time tk and

that a new measurement is not obtained until tk+j . The

optimization problem (5) is solved at tk and the optimal

input u∗

k(t) is applied from tk to tk+j .

The trajectory x̂(t) corresponds to the nominal system in

closed-loop with the Lyapunov-based controller implemented

in a sample-and-hold fashion with initial condition x̃(tk)
(constraints (6d) and (6e)). Applying Proposition 1, we

obtain the following inequality:

V (x̂(tk+j)) ≤ max{V (x̂(tk)) − jǫs, ρmin}.

The contractive constraint (6f) of the proposed LMPC guar-

antees that

V (x̃(τ)) ≤ V (x̂(τ)),∀τ ∈ [tk, tk+D+1−d(tk)]

and constraint (6e) guarantees that V (x̂(tk)) = V (x̃(tk)).
This implies that

V (x̃(tk+j)) ≤ max{V (x̃(tk)) − jǫs, ρmin}.

Assuming that x(t) ∈ Ωρ for all times, we can apply

Proposition 3 to obtain the following inequalities

V (x̃(tk)) ≤ V (x(tk)) + fV (|x(tk) − x̃(tk)|).

and

V (x(tk+j)) ≤ V (x̃(tk+j)) + fV (|x(tk+j) − x̃(tk+j)|)

This assumption is automatically satisfied if the system is

proved to be ultimately bounded. Constraints (6a), (6c), (6b)

and the implementation procedure allow us to apply Proposi-

tion 2 because it is guaranteed that the real state x(t) and the

state estimated using the nominal model x̃(t) are obtained

using the same input trajectory. Applying Proposition 2 we

obtain the following upper bounds on the deviation of x̃(t)
from x(t)

|x(tk) − x̃(tk)| ≤ fW (d(tk)∆)

|x(tk+j) − x̃(tk+j)| ≤ fW ((d(tk) + j)∆)

Using these inequalities the following upper bound on

V (x(tk+j)) is obtained:

V (x(tk+j)) ≤ max{V (x(tk)) − jǫs, ρmin}
+fV (fW (d(tk)∆))
+fV (fW ((d(tk) + j)∆))

(14)

In order to prove that for all possible sequences d(tk)
the Lyapunov function is guaranteed to decrease between

two consecutive new measurements until a lower bound is

obtained we will consider the worst case scenario; that is,

after a new measurement is obtained at sampling time tk,

the controller has to operate in open-loop for the maximum

possible time due to the time-varying delays. Taking into

account that the maximum allowable delay is D, it holds

that the maximum number of sampling times in which the

system will operate in open-loop is D + 1 − d(tk). This

implies that the worst case is given for j = D + 1 − d(tk).

V (x(tk+D+1−d(tk))) ≤ max{V (x(tk))
−(D + 1 − d(tk))ǫs, ρmin}
+fV (fW (d(tk)∆))
+fV (fW ((D + 1)∆))

In order to prove that the Lyapunov function is decreasing

between two consecutive new measurements for the worst

possible case the following inequality must hold

(D+1−d(tk))ǫs > fV (fW (d(tk)∆))+fV (fW ((D+1)∆))

for all d(tk) = 0, . . . , D. The worst possible case is d(tk) =
D. This implies that if condition (13) is satisfied, then for

all d(tk) = 0, 1, . . . , D and all j = 1, . . . , D + 1 − d(tk)
(where j indicates when a new measurement is received after

sampling time tk) there exists ǫw > 0 such that the following

inequality holds

V (x(tk+j)) ≤ max{V (x(tk)) − ǫw, ρc} (15)

which implies that when x(tk) ∈ Ω/Ωρc

4, V (x(t)) will

decrease until the state converges to Ωρc
for all t ∈ [tk, tk+j ],

and when x(tk) ∈ Ωρc
, it remains inside Ωρc

for all t ∈
[tk, tk+j ].

If x(t0) ∈ Ω and it is known, using (15) recursively it is

proved that the closed-loop trajectories of system (1) subject

to time-varying measurements delays satisfy

lim sup
t→∞

V (x(t)) ≤ ρc.

for all possible sequences {d(tk)}. This proves that the

closed-loop system is ultimately bounded in Ωρc

Remark 1: The main difference between the original

LMPC controller [4], [5], [6] and the proposed scheme

(apart from the modified receding horizon implementation

technique) is that the contractive constraint (6f) in the

original LMPC optimization problem has to hold only in

the first predicted step. This implies that even if the same

4We use the operator “/” to denote set substraction, i.e., A/B := {x ∈
Rnx |x ∈ A, x /∈ B}
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TABLE I

PROCESS PARAMETERS

F 4.998 [m3/h] k10 3*106 [h−1]

Vr 1[m3] k20 3*105 [h−1]

R 8.314 [KJ/kmol · K] k30 3*105 [h−1]

TA0 300 [K] E1 5*104 [KJ/kmol]
CA0 4 [kmol/m3] E2 7.53*104 [KJ/kmol]
∆H1 -5.0*104 [KJ/kmol] E3 7.53*104 [KJ/kmol]
∆H2 -5.2*104 [KJ/kmol] σ 1000 [kg/m3]

∆H3 -5.4*104 [KJ/kmol] cp 0.231 [KJ/kg · K]

implementation procedure is used with the original LMPC,

stability cannot be guaranteed. This point will be illustrated

in the next section.

Remark 2: The main difference between the LMPC con-

troller for systems subject to data losses [7] and the proposed

scheme (apart from the modified receding horizon imple-

mentation technique) is that the contractive constraint (6f)

in the LMPC optimization problem for systems subject to

data losses has to hold for the whole prediction horizon.

This constraint makes the computed control action more

conservative (and thus less optimal). This implies that even if

the same implementation procedure is used with the LMPC

for systems subject to data losses, the resulting controller

will be, in general, less optimal than the proposed LMPC

controller (5). This point will be illustrated in the next

section.

IV. APPLICATION TO A CHEMICAL REACTOR

Consider a well mixed, non-isothermal continuous stirred

tank reactor where three parallel irreversible elementary

exothermic reactions take place of the form A → B, A → C
and A → D. B is the desired product and C and D are

byproducts. The feed to the reactor consists of pure A at

flow rate F , temperature TA0 and molar concentration CA0+
∆CA0 where ∆CA0 is an unknown time-varying uncertainty.

Due to the non-isothermal nature of the reactor, a jacket

is used to remove/provide heat to the reactor. Using first

principles and standard modeling assumptions the following

mathematical model of the process is obtained

dT

dt
=

F

Vr

(TA0 − T ) −
3

∑

i=1

∆Hi

σcp

ki0e
−Ei
RT CA +

Q

σcpVr

dCA

dt
=

F

Vr

(CA0 + ∆CA0 − CA) +
3

∑

i=1

ki0e
−Ei
RT CA

(16)

where CA denotes the concentration of the reactant A,

T denotes the temperature of the reactor, Q denotes the

rate of heat input/removal, Vr denotes the volume of the

reactor, ∆Hi, ki0, Ei, i = 1, 2, 3 denote the enthalpies, pre-

exponential constants and activation energies of the three

reactions, respectively, and cp and σ denote the heat capacity

and the density of the fluid in the reactor. The values of the

process parameters are shown in Table I.

System (16) has three steady-states (two locally asymp-

totically stable and one unstable). The control objective is

to stabilize the system at the open-loop unstable steady state

Ts = 388 K, CAs = 3.59 mol/l. The manipulated input is

the rate of heat input Q and the allowable input is bounded

by |Q| ≤ 105 KJ/h. We consider a time-varying uncertainty

in the concentration of the inflow |∆CA0| ≤ 0.2 mol/l. The

control system is subject to time-varying measurement delays

in the measurements of the concentration of the reactant, CA,

and in the measurements of the temperature, T .

To illustrate the theoretical results, we first design a

Lyapunov based feedback law using the method presented

in [21]. System (16) belongs to the following class of non-

linear systems

ẋ(t) = f(x(t)) + g(x(t))u(t) + w(x(t))θ(t)

where xT = [T − Ts CA − CAs] is the state, u = Q is the

input and θ = ∆CA0 is a time varying bounded disturbance.

Consider the control Lyapunov function V (x) = xT Px with

P =

[

1 0
0 104

]

.

The values of the weights have been chosen to account for

the different range of numerical values for each state. The

following feedback law [21] asymptotically stabilizes the

open-loop unstable steady-state of the nominal system (i.e.,

θ(t) = 0) and is of the form (2):

h(x) =

{

−Lf V +
√

(Lf V )2+(LgV )4

LgV
if LgV 6= 0

0 if LgV = 0
(17)

where LfV = ∂V (x)
∂x

f and LgV = ∂V (x)
∂x

g denote the

Lie derivatives of the scalar function V with respect to the

vectors fields f and g respectively. This controller will be

used to design the LMPC controller. The stability region Ωρ

is defined as V (x) ≤ 700, i.e., ρ = 700.

In order to choose an appropriate sampling time we

resort to extensive off-line closed-loop simulations under

the Lyapunov-based controller of (17). After trying different

sampling times, we choose ∆ = 0.025h. For this sampling

time, the closed-loop system without measurement delays

under u = h(x) is practically stable and the performance

is similar to the closed-loop system with continuous mea-

surements. We chose the maximum allowable measurement

delay equal to 6∆ (i.e., D = 6). The cost function is defined

by the weight matrices Qc = P and Rc = 10−6. The values

of the weights have been tuned in such a way that the values

of the control inputs are comparable to the ones computed

by the Lyapunov-based controller.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

Time [h]

d

Fig. 3. Delay sequence d(tk) used in the simulation shown in Figure 4.

We will first compare the proposed LMPC scheme (5)

with the original LMPC scheme (see Remark 1). For this

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB06.6

4637



0 0.1 0.2 0.3 0.4 0.5 0.6

360

380

400

T
 [
k
]

0 0.1 0.2 0.3 0.4 0.5 0.6

3.5

4

C
A
 [
m

o
l/
l]

0 0.1 0.2 0.3 0.4 0.5 0.6
−1

0

1
x 10

5

Time [h]

Q
 [
J
]

(a)

360 370 380 390 400 410 420

3.3

3.4

3.5

3.6

3.7

3.8

T [K]

C
A
 [
m

o
l/
l]

Ω
ρ

(b)

Fig. 4. (a)(b) Trajectories of system (16) with the proposed LMPC
scheme (5) (plain line) and the original LMPC scheme (dashed line) when
the maximum allowable measurement delay D is 6.

simulation, we choose the prediction horizon of the two

LMPC controllers N equal to 7 (N ≥ D + 1). The

same weights, sampling time and prediction horizon are

used. We implement the original LMPC scheme using the

modified receding horizon scheme, that is, the current state

is estimated using the nominal model of system (16) when a

delayed measurement is received and the last optimal input

is applied when no new measurement is received. In order to

simulate the process in the presence of measurement delays,

we use a random process to generate the delay sequence

d(tk). Figure 3 shows the delay sequence d(tk) used in

these simulations. Note that when d(tk+1) = d(tk) + 1,

the controller does not receive any new measurement. In

Figure 4, the trajectories of the closed-loop system under

TABLE II

PERFORMANCE COSTS ALONG THE CLOSED-LOOP TRAJECTORIES.

sim. Proposed LMPC LMPC for data losses

1 1.8295 × 104 2.4428 × 104

2 4.2057 × 104 6.0522 × 104

3 3.2481 × 103 1.0428 × 104

4 7.4328 × 102 7.3961 × 102

5 1.4229 × 103 2.7798 × 105

6 4.9435 × 104 6.1596 × 104

7 3.2519 × 104 3.4319 × 104

8 2.7590 × 104 4.7075 × 104

9 9.4216 × 102 9.4866 × 102

10 5.4505 × 102 5.4322 × 102

11 1.9723 × 104 3.1282 × 104

12 2.7235 × 104 3.8772 × 104

13 1.8671 × 103 1.9200 × 103

14 3.7789 × 104 4.0050 × 104

15 2.1839 × 103 2.1392 × 103

16 4.2920 × 104 4.4594 × 104

17 1.5153 × 102 1.7190 × 102

18 4.9955 × 103 9.9094 × 103

19 3.2086 × 104 4.8838 × 104

20 1.5420 × 103 1.5197 × 103

both controllers are shown in the presence of measurement

delay with D = 6. It can be seen that the original LMPC

controller can not stabilize the system at the desired open-

loop unstable steady-state and the trajectories leave the

stability region, while the proposed LMPC scheme keeps

the trajectories inside the stability region.

We have also carried out a set of simulations to compare

the proposed LMPC scheme with the LMPC scheme for

systems subject to data losses (see Remark 2) from a

performance index point of view. We also implement the

LMPC controller for systems subject to data losses using the

modified receding horizon scheme. Table II shows the total

cost computed for 20 different closed-loop simulations under

the proposed LMPC and the LMPC for systems subject to

data losses. To carry out this comparison, we have computed

the total cost of each simulation based on the following

performance index

M
∑

i=0

x(ti)
T Qcx(ti) + u(ti)

T Rcu(ti)

where t0 is the initial time of the simulations and tM = 2 h
is the final simulation time. The prediction horizon in this set

of simulations is N = 10. For each pair of simulations (one

for each controller) a different initial state inside the stability

region, a different uncertainty trajectory and a different

random measurement delay sequence is chosen. As it can

be seen in Table II, the proposed LMPC controller has a

cost lower than the corresponding total cost under the LMPC

controller designed for system subject to data losses in 16

out of 20 simulations. These simulations illustrate that the

proposed LMPC controller is, in general, more optimal from

a performance point of view.

We have also carried out a set of simulations to study the

dependence on the value of the maximum delay D of the set

in which the trajectory of system (16) under the proposed
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Fig. 5. Estimates of the set in which the trajectories of the system (16) with
the proposed LMPC scheme are ultimately bounded when the maximum
allowable measurement delay D is 2, 4 and 6.

LMPC scheme is ultimately bounded. In order to estimate the

size of each set for a given D, we start the system very close

to the equilibrium state and run it for a sufficient long time.

In this set of simulations, we set ∆CA0 = 0.1 kmol/m3

and N = 7. The simulation time is 25 h. Figure 5 shows

the location of the states, (CA, T ), at each sampling time

and the estimated regions for D = 2, 4, 6. Three ellipses

are used to estimate the boundaries of the sets, and they

are chosen to be as small as possible but still include all

the corresponding points indicating the states. From Figure

5, we see that the size of these sets becomes larger as D
increases. Note that all the sets for D = 2, 4, 6 are included

in the stability region of the closed loop system under the

proposed LMPC (Ωρ, ρ = 700).

The simulations have been carried out using Matlab in

a Pentium 3.20G Hz. The nonlinear optimization problem

has been solved using the function fmincom with an initial

feasible solution provided by the Lyapunov based controller.

To solve the CSTR ODEs, both in the simulations and in

the optimization algorithm, an Euler method with a fixed

integration time of 0.001hr has been implemented in a mex

DLL using the C Programming Language. The mean time

of 100 runs to solve the LMPC optimizaion problem of this

set of simulations has been 1.32s for N = 7 and 1.98s for

N = 10.
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