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Abstract— We consider the issue of stability for
semidiscrete Galerkin approximations of neutral delay-
differential equations. We recall recent results which show

how a renorming of the energy state space can be used to
obtain a dissipative inequality which implies exponential
stability of the solution semigroup associated with the
delay differential equation. We then show in detail how the
norm is used to construct finite dimensional semidiscrete
Galerkin approximations which preserve the stability be-
havior of the original neutral equation. In applications to
optimal control problems, it is important that semidiscrete
approximation schemes have this property.

I. INTRODUCTION

Consider the following system of neutral delay-

differential equations

d

dt
[x(t) + Cx(t − r)] = Ax(t) + Bx(t − r),

x(0) + Cx(−r) = η0,

x(θ) = φ0(θ), −r ≤ θ < 0, (1)

where 0 < r, η0 ∈ C| n, φ0 ∈ L2(−r, 0; C| n), and A,

B, and C are n × n matrices with complex entries.

These equations arise in many applications (see the

examples in [1]). In the last several decades there has

been ongoing research into the question of sufficient

conditions (specifically, conditions on the matrices A,

B, and C and sometimes on the delay r) for exponential

stability of the solution semigroup for the system (1). A

related question of interest is - if the solution semigroup

associated with (1) is exponentially stable, do the

solution semigroups of finite dimensional semidiscrete

approximations of (1) preserve the stability behavior

uniformly in the discretization parameter? We shall in-

vestigate this question for a linear spline-based Galerkin

approximation scheme.

The preservation of stability under approximation

is an important issue for applications in control and

optimization of dynamics governed by infinite dimen-

sional evolution equations in general, including delay

equations, partial differential equations, etc. We refer

to [2], [3], [4], and [5] for a discussion of this issue in
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general, and [6], [7], [8], and [9] for discussion of this

issue as it relates to delay equations.

II. PRELIMINARIES

Roughly speaking, the analysis of the stability of (1)

involves either using a Liapunov-type function, or a

direct analysis of the associated characteristic equation

∆(λ) = det(A − λI + Be−λr − λCe−λr) = 0. (2)

It is known that exponential stability of (1) is equivalent

to the condition that

sup {Re λ : ∆(λ) = 0} = ω < 0, (3)

and it is the difficulty of determining the location of

the roots of ∆(λ) which makes this an interesting

problem. Recently in [10] the authors have taken the

approach of renorming the underlying state space so

as to obtain a dissipative inequality which implies the

desired exponential stability. We shall briefly describe

this approach, and then in the next sections discuss how

the new norm may be used to construct a spline-based,

finite dimensional semidiscrete Galerkin approximation

scheme.

In a standard fashion (1) can be reformulated as an

abstract Cauchy problem on a Hilbert space. In partic-

ular, define the Hilbert space Z = C| n×L2(−r, 0; C| n)
endowed with the norm

‖(η, φ)‖2
Z = ‖η‖2

n +

∫ 0

−r

‖φ(θ)‖2
n dθ, (4)

and compatible inner product

〈(η, φ), (ξ, ψ)〉Z = ηT ξ +

∫ 0

−r

φ(θ)T ψ(θ) dθ. (5)

Here ‖·‖n is the standard Euclidean norm on C| n. Next

define the linear operator A : domA ⊂ Z → Z on the

domain

domA = {(η, φ) ∈ Z : φ ∈ H1(−r, 0),

η = φ(0) + Cφ(−r)},

by

A(η, φ) = (Aφ(0) + Bφ(−r), φ′). (6)

It is well known that A is the infinitesimal generator

of a strongly continuous semigroup T (t) on Z , and
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if we make the identification z(t) = (x(t) + Cx(t −
r), x(t+θ)) then as introduced in [11] equation (1) can

be reformulated as the Cauchy problem

d

dt
z(t) = Az(t), (7)

z(0) = (η0, φ0),

on Z .

The following stability result has recently been ob-

tained in [12] (for the definition of matrix measure, see

[13]).

Theorem 1: Consider the neutral system (1). Define

the matrices G = −(A + AT )/2 and H = G + A =
(A − AT )/2. If the matrix measure of A satisfies

µ(A) < 0, and if

G − CT GC −
1

k
CT HT HC

−
1

|µ(A)| − k
BT B > 0 (8)

for some constant 0 < k < |µ(A)|, then the semigroup

T (t) associated with (7) is exponentially stable.

In the proof of this theorem a new norm on Z is

constructed, which is equivalent to the original norm.

Observe that G is a positive-definite, self-adjoint ma-

trix, so one can define a norm on Z by

‖(η, φ)‖2
e = ηT η +

∫ 0

−r

e−2γθφ(θ)T Gφ(θ) dθ

for all (η, φ) ∈ Z , with a compatible inner product

given by

〈(η, φ), (ξ, ψ)〉e = ξT η +

∫ 0

−r

e−2γθψ(θ)T Gφ(θ) dθ,

for all (η, φ), (ξ, ψ) ∈ Z . It is shown that with this

norm one obtains the dissipative inequality

Re 〈Az, z〉e ≤ α ‖z‖2
e (9)

for all z ∈ domA, where α < 0. Our main result in

this paper will be to show that a similar inequality can

be obtained, uniformly in the discretization parameter,

for a convergent, finite dimensional, linear spline-based

Galerkin approximation scheme for (1).

III. STABILITY AND APPROXIMATION FOR DELAY

EQUATIONS

A typical semi discrete approximation scheme for

a Cauchy problem like (7) consists of a sequence

{AN , ZN}∞N=0 of finite dimensional subspaces ZN ⊂
Z and operators AN : ZN → ZN . The operators

AN define semigroups T N(t) = etAN

on ZN , and

the subspaces ZN define orthogonal projections P N :
Z → ZN . Such an approximation scheme defines a

finite dimensional Cauchy problem

d

dt
zN (t) = ANzN(t), (10)

zN(0) = PNz0,

on ZN . A typical convergence result involves showing

that P N → I strongly and that T N(t)PN → T (t)
in the Trotter-Kato sense. Such a convergence result

justifies using (10) to approximate the dynamics of (7),

and being finite dimensional, (10) can be solved on the

computer. However for certain applications in optimiza-

tion and optimal control, it is known that the approx-

imation scheme should also have the property that the

approximating semigroups T N(t) for (10) preserve the

stability behavior of the semigroup T (t) for (7). The so-

called ‘averaging’ scheme (a finite difference scheme

with characteristic functions as basis functions) is one

popular approximation scheme for which convergence

has been shown for both retarded [14] and neutral

delay equations [15]. For retarded equations it is known

that the approximating semigroups T N(t) preserve the

stability behavior of the semigroup T (t), uniformly in

the discretization parameter N (see [16]), and recently

in [17] the present authors showed that this is also true

for the neutral equations. Here we would like to obtain a

similar result for spline-based approximations. An early

use of spline-based approximation for a retarded delay

equation is found in [18]. It was observed numerically

in [6] that the scheme did not provide convergence

of the approximate adjoint semigroups (which is de-

sirable particularly in optimal control problems), and

an improved scheme was constructed in [8]. The issue

of semigroup convergence for spline-based approxima-

tions of neutral equations has been dealt with in [19],

but we are unaware of any preservation of stability

results for neutral equations (certainly for retarded

equations this has been fairly well studied).

Thus in the remainder of the paper we will do the

following:

1) define an approximation scheme {AN , ZN}∞N=0

in which the finite dimensional spaces ZN are

constructed using linear splines,

2) prove the semigroup convergence T N(t)PN →
T (t),

3) verify that the operators AN satisfy a dissipative

inequality similar to (9) uniformly in the dis-

cretization parameter N .

We shall make use of the following Trotter-Kato

semigroup convergence result.

Theorem 2: Suppose that V and H are Hilbert
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spaces, with V densely and continuously embedded in

Z , and suppose that A : dom A ⊂ V ⊂ Z → Z is

the infinitesimal generator of a C0-semigroup T (t) on

Z . Further assume that there is a sesquilinear form

σ : V × V → C| and a fixed α ∈ R| satisfying

σ(u, v) = 〈Au, v〉Z ∀u ∈ domA, v ∈ V (11)

and

Reσ(u, u) ≤ α ‖u‖2
Z ∀u ∈ V. (12)

Let {ZN}∞N=1 be a sequence of finite dimensional

subspaces of V , and let P N denote the orthogonal

projection of Z onto ZN . For each N define the

operator AN : ZN → ZN by

〈ANu, v〉Z = σ(u, v) ∀u, v ∈ ZN . (13)

If there exists s ≥ 1 and L > 0 such that for all v ∈
domAs, there exists vN ∈ ZN satisfying

C1 |σ(u, v − vN )| ≤ L ‖u‖Z ‖v − vN‖V for all

u ∈ V , and

C2 ‖v − vN‖V → 0 as N → ∞,

then T N(t)PN → T (t) strongly on Z .

This useful convergence theorem, which was applied

to retarded delay equations in [20], is similar to those

found in [21], [22].

IV. LINEAR SPLINE APPROXIMATION FOR A

NEUTRAL DELAY EQUATION

In this section we discuss in detail a linear spline-

based approximation scheme which is both convergent

(in the Trotter-Kato sense) and stability preserving. For

clarity of the presentation we describe the construction

for the case of a scalar neutral equation, and note that

similar results can be obtained for a system of neutral

equations by using a similar construction. Therefore in

(1) we assume that η0 ∈ C| , φ0 ∈ L2(−r, 0; C| ), and

A, B, and C are complex scalars. We assume that the

assumptions of Theorem 1 hold. In the scalar case, this

means we assume that A < 0, |C| < 1, and there exists

a constant k such that 0 < k < |A| and

|A| − |A| |C|2 −
1

|A| − k
|B|2 > 0. (14)

Note that in the scalar case µ(A) = A. Equation (14)

implies that there exists γ < 0 such that

|A|e2γr − |A| |C|2 −
1

|A| − k
|B|2 = 0. (15)

Now we endow the state space Z with the norm

‖(η, φ‖2
e = |η|2 +

∫ 0

−r

g(θ) |φ(θ)|2 dθ, (16)

where g(θ) = |A| e−2γθ. This is equivalent to the norm

‖·‖Z , and has a compatible inner product

〈(η, φ), (ξ, ψ)〉e = ηξ +

∫ 0

−r

g(θ)φ(θ)ψ(θ) dθ.

Next define the Hilbert space V = C| × H1(−r, 0)
with the usual norm ‖(η, φ)‖2

V = |η|2 + ‖φ‖2
H1 . For

u = (η, φ), v = (ξ, ψ) define the sesquilinear form

σ : V × V → C| by

σ(u, v) = [A(η − Cφ(−r)) + Bφ(−r)]ξ

+

∫ 0

−r

g(θ)φ′(θ)ψ(θ) dθ

+|A|[η − φ(0) − Cφ(−r)]ψ(0).

It is straightforward to check that

σ(u, v) = 〈Au, v〉e

for all u ∈ domA, v ∈ V , so (11) holds.

To see that (12) holds, observe that for u = (η, φ) ∈
V ,

σ(u, u) = [A(η − Cφ(−r)] + Bφ(−r)]η

+

∫ 0

−r

g(θ)φ′(θ)φ(θ) dθ

+|A|[η − φ(0) − Cφ(−r)]φ(0).

Thus

Re σ(u, u) = A|η|2 + Re(B − AC)φ(−r)η

+
1

2
g(0)|φ(0)|2 −

1

2
g(−r)|φ(−r)|2

+γ

∫ 0

−r

g(θ)|φ(θ)|2 dθ − |A||φ(0)|2

+|A|Re [η − Cφ(−r)]φ(0)

where we used that − 1
2g′(θ) = γg(θ). Since A = −|A|,

g(0) = |A| and g(−r) = |A| e2γr, we may continue

and get

Re σ(u, u) = −|A| |η|2 + Re(B + |A|C)φ(−r)η

−
1

2
|A| |φ(0)|2 −

1

2
|A| e2γr|φ(−r)|2

+γ

∫ 0

−r

g(θ)|φ(θ)|2 dθ

+|A|Re [η − Cφ(−r)]φ(0).

Now use the Cauchy-Schwarz inequality

Re [η − Cφ(−r)]φ(0) ≤
1

2
|η − Cφ(−r)|2 +

1

2
|φ(0)|2
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to get

Re σ(u, u) ≤ −|A| |η|2 + Re(B + |A|C)φ(−r)η

−
1

2
|A| e2γr|φ(−r)|2

+γ

∫ 0

−r

g(θ)|φ(θ)|2 dθ

+
1

2
|A| |η − Cφ(−r)|2.

Next use the fact that

|η−Cφ(−r)|2 = |η|2 + |C|2 |φ(−r)|2 −2ReCφ(−r)η

to get

Re σ(u, u) ≤ −
1

2
|A| |η|2 + Re Bφ(−r)η

−
1

2
|A| (e2γr − |C|2)|φ(−r)|2

+γ

∫ 0

−r

g(θ)|φ(θ)|2 dθ.

Finally, use the Cauchy-Schwarz inequality

Re Bφ(−r)η ≤
ǫ

2
|A| |η|2 +

1

2ǫ

1

|A|
|B|2|φ(−r)|2

with ǫ = (|A| − k)/|A| to get

Re σ(u, u) ≤ −
k

2
|η|2 + γ

∫ 0

−r

g(θ)|φ(θ)|2 dθ

−
1

2

(

|A| e2γr − |A| |C|2 −
|B|2

|A| − k

)

≤ α ‖u‖2
e,

where α = max{−k/2, γ} < 0. Thus (12) is true, and

since α < 0, it follows from (11) that the semigroup

T (t) generated by A is exponentially stable with a

decay rate α. Furthermore, once we construct the spaces

ZN and use (13) to define AN , it will similarly follow

that the semigroups T N(t) are exponentially stable,

with a decay rate α as well, uniformly in N . All that

will then remain will be to verify (C1) and (C2).

To proceed, let us now construct the linear spline-

based spaces ZN . For each N define a partition of

[−r, 0] by θN
j = −jr/N for j = 0, 1, . . . , N . Define

the piecewise linear functions (the so-called ‘hat’ func-

tions)

eN
0 (θ) =







N
r

(θ − θN
1 ) if θN

1 ≤ θ ≤ 0

0 elsewhere

eN
N (θ) =







−N
r
(θ − θN

N−1) if θN
N ≤ θ ≤ θN

N−1

0 elsewhere

and, for j = 1, 2, . . . , N − 1,

eN
j (θ) =























−N
r
(θ − θN

j−1) if θN
j ≤ θ ≤ θN

j−1

N
r

(θ − θN
j+1) if θN

j+1 ≤ θ ≤ θN
j

0 elsewhere.

Now set

BN
0 = (1, 0)

BN
j = (0, eN

j−1) j = 1, 2, . . . , N + 1,

and define ZN = span {BN
j }N+1

j=0 . Thus ZN is a finite

dimensional subspace of V . For each N we use (13)

to define AN : ZN → ZN . Notice that these basis

functions and spaces ZN are the same as those used in

[8] for a retarded delay equation. What is new here is

not just that we are considering a neutral instead of a

retarded delay equation, but that we are constructing the

operators AN via Galerkin projections in our new norm.

A significant reason for doing this is that Galerkin

projections in the original norm lead to approximating

operators which fail to preserve the stability of the

original system, which has been well documented for

retarded delay equations.

It remains for us to verify conditions (C1) and (C2).

For ψ ∈ H3(−r, 0), let ψN
I (θ) be the linear spline

which interpolates ψ. Thus ψN
I (θ) is continuous, piece-

wise linear, and takes the values ψN
I (θN

j ) = ψ(θN
j )

for j = 0, 1, . . . , N . The interpolating spline has the

property that

‖ψ − ψN
I ‖L2(−r,0) ≤ O(

1

N2
)

and

‖
d

dθ
(ψ − ψN

I )‖L2(−r,0) ≤ O(
1

N
)

(see [23]). Thus we take s = 3 in Theorem 2 and

observe that if

v = (ψ(0) + Cψ(−r), ψ) ∈ domA3,

then ψ ∈ H3(−r, 0) and we can define

vN = (ψN
I (0) + CψN

I (−r), ψN
I ) ∈ ZN .

Notice that v − vN = (0, ψ − ψN
I ), which implies that

‖v − vN‖2
V = ‖ψ − ψN

I ‖2
H1(−r,0) → 0

as N → ∞, so (C2) holds. Also

(ψ − ψN
I )(0) = (ψ − ψN

I )(−r) = 0,
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so for any u = (η, φ) ∈ V we have

|σ(u, v − vN )| = |σ((η, φ), (0, ψ − ψN
I ))|

=

∣

∣

∣

∣

∫ 0

−r

g(θ)φ′(θ)[ψ(θ) − ψN
I (θ)] dθ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 0

−r

φ(θ)
d

dθ
(g(θ)[ψ(θ) − ψN

I (θ)]) dθ

∣

∣

∣

∣

≤ K‖φ‖L2(−r,0) ‖ψ − ψN
I ‖H1(−r,0)

≤ L ‖u‖e ‖v − vN‖V .

Thus (C1) holds, and we obtain the desired Trotter-Kato

convergence for this approximation scheme.

V. EXAMPLE

In this section we illustrate the theory in an example.

Consider the scalar neutral delay-differential equation

d

dt
[x(t) + Cx(t − r)] = Ax(t) + Bx(t − r), (17)

with appropriate initial conditions (the initial conditions

are not relevant to the construction of the operators

A and AN , which is all that we consider here. They

would become relevant if we were intent on solving

the Cauchy problems (10) forward in time.) Fix the

following parameter values:

A = −2, B = 1/2, C = 3/4, r = 1. (18)

The theory in Section IV is applied to construct finite

dimensional operators AN , where N is the discretiza-

tion parameter related to the number of linear spline

basis functions used. This discretization is based upon

the use of the new norm defined in (16). We note that in

the scalar case under consideration here, it is possible to

determine quite accurately the optimal decay rate α as

follows (it is more difficult to make this calculation for

systems of delay-differential equations). Since −k/2
is a decreasing function of k, and from (15) γ is an

increasing function of k, and α = max{−k/2, γ}, then

the optimal value of the decay rate α occurs when

α = γ = −k/2. From (15), the value of k which yields

this optimal rate is the root of

e−rk = |C|2 +
|B|2

|A|2 − k|A|
.

For our choice of parameters this gives

α = −0.22101.

It is also possible to construct finite dimensional op-

erators AN using the same basis functions but with

the Galerkin projections in the original energy norm.

In this case there would not be a guaranteed decay

rate (even though there would be Trotter-Kato con-

vergence). In Figure 1 and Figure 2 we compare

the eigenvalues of the operators AN arising from the
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Fig. 1. Eigenvalues of AN , energy norm
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Fig. 2. Eigenvalues of AN , new norm

two different Galerkin constructions, for values N =
100, 200, 400, 800. The figures illustrate that only the

discretization using the new norm maintains a uniform

stability behavior, justifying the theory in the paper.

We note that for such neutral delay-differential equa-

tions there will exist a so-called ‘neutral chain’ of

eigenvalues of the operator A. This is a sequence of

eigenvalues asymptotic to the vertical line located at
1
r

log |C| = −.28768 on the real axis. We have included

this line in the figures, and clearly both discretization

schemes ‘capture’ this behavior. This capturing of the

neutral chain behavior is better seen in Figure 3 and

Figure 4, in which we repeat the plots for N = 800
but with a different scale on the real axis. (We note

that due to scaling, some eigenvalues have been left off

all of the plots).
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VI. CONCLUSION

We have provided a detailed construction of a linear

spline-based semidiscrete approximation scheme for a

scalar neutral equation, which is convergent in the

Trotter-Kato sense and which preserves the decay rate

uniformly in the discretization parameter. The ideas

extend and apply easily to a neutral system.
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