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Abstract— Subspace predictive control (SPC) is recently seen
in the literature for joint system identification and control
design. The existing SPCs parameterize H2 optimal control
laws by the identified Markov parameters from data. It has
been proved that the SPCs based on open-loop subspace
identification are equivalent to the classical LQG design, when
the data horizon goes to infinity. It is the purpose of this paper
to establish this equivalence for the closed-loop SPC algorithm
we have recently developed. When the data horizon is finite,
we also present in this paper a state-feedback LQG control law
based on the identified Markov paremters, where the states are
estimated in an optimal sense from the past I/O samples of a
plant.

I. INTRODUCTION

Conventional LQG optimal control is based on system
models either built from physical principles or identified
from data, [1]. The subspace predictive control (SPC) ap-
proaches, as recently seen in [2], [3], [4], [5], circumvent
the modeling step, and directly seek the predictors of fu-
ture outputs from data. The combination of the subspace
identification algorithm, N4SID in [6], with LQG design
is first seen in [2]. The SPC does not proceed further to
recover the state-space matrices from the estimated state
sequences as does in N4SID, which is again an estimation
problem and may need to choose model order (as also seen
in [7], a state-space model is realized from the predictor to
integrate the identified output predictor with the conventional
MPC). The approaches in [2], [4] focus on open-loop data;
while those in [3], [5] extend the applicability of the SPCs
to closed loops. The closed-loop SPC algorithm in [5] is
developed based on the VARX (vector autoregressive with
exogenous inputs) algorithm, developed in [8], [9] for closed-
loop identification. It is also shown in [5] the advantage of
the VARX-based approach over that proposed in [3]; in the
sense that the former excludes the need of any information
about the controller in the loop; while the latter, based on
the closed-loop identification algorithm of [10], leads to a
biased predictor when the controller is not LTI.

The SPCs design control inputs by minimizing the
summed squares of the predicted future tracking errors; and
are hence closely related to LQG design. It is shown in [2]
that the open-loop SPC is indeed equivalent to the classical
LQG control, when the data horizon goes to infinity. When
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the horizon is finite, however, this equivalence is not direct,
since the output predictor parameterized by the identified
Markov parameters does not ensure the optimality of state
estimation, hidden behind the input and output relation. This
motivates us to address two problems in this paper.

1) Whether the closed-loop SPC algorithm of [5] is
equivalent to the classical LQG?

2) How to establish the optimality of the state estimation
step hidden behind the SPC design, when the horizon
is finite?

We shall answer Problem 1 in Section III.
In SPCs, Markov parameters are needed to parameterize

the control law, instead of a dynamic model. LQG design
from Markov parameters is also seen in [11], [12]. The
state at time instance t is optimally estimated as a linear
combination of the past inputs and outputs, s sampling
instances prior to t, [12]. A finite horizon LQG design
is derived in a closed form based on the plant Markov
parameters. This solution provides an answer to Problem
2. We shall therefore extends [12] to the identified Markov
parameters.

The rest of this paper is organized as follows. We review
the closed-loop SPC design of [5] in Section II. The infinite-
horizon case is discussed in Section III. The finite-horizon
LQG solution is derived in Section IV, with a closed-form.
Section IV presents a simulation example. The paper con-
cludes in Section VI with the direction for future research.

II. CLOSED-LOOP SUBSPACE PREDICTIVE CONTROL

A. Closed-loop Subspace Identification

Consider the innovation type state space model:

x(k + 1) = Ax(k) + Bu(k) + Ke(k) (1)

y(k) = Cx(k) + e(k), (2)

where e(k) is assumed to be a zero-mean white noise with a
nonsingular covariance of EET . The dimensions are assumed
to be x(k) ∈ R

n, y(k) ∈ R
�, and u(k) ∈ R

m. We make
the following assumption on the plant, which is commonly
assumed in subspace identification.

Assumption 1: D = 0; i.e. no direct feedthrough.
Assumption 2: Φ � A − KC is stable, and the system is

minimal.
Assumption 1 is to ensure a one-step delay from the inputs

to the outputs, and hence the well-posedness of the closed-
loop identification problem. Assumption 2 is actually not
restrictive, since any LTI state-space model has such an
observer form; where K is the steady-state Kalman gain,
and yields a stable Φ.
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In the sequel, we denote by s, f respectively the past and
future horizon (s ≥ f ), in both identification and control.
N represents the number of columns in the identification
data matrices. Let t be the current time instance in the
formulation of the identification problem. We shall denote
by k the current time instance in the control formulation.

The first step in identifying the state space model (1) and
(2) is to solve the following least square problem,

Yt = CΦsXt−s + Ξ0Z[t−s,t) + Et. (3)

Ξ0 �
[
CΦs−1B CΦs−1K · · · CB CK

]
contains the

Markov parameters of the system, in terms of Φ. Xt−s =[
x(t−s) x(t−s+1) · · · x(t−s+N −1)

]
is the sequence

of the unknown initial states. Yt =
[
y(t) y(t + 1) · · · y(t +

N − 1)
]

and Et =
[
e(t) e(t + 1) · · · e(t + N − 1)

]
are

respectively the future output and innovation sequence. The
past I/O data are collected in the matrix

Z[t−s,t) =

⎡⎢⎢⎢⎢⎢⎣
u(t − s) u(t − s + 1) · · · u(t − s + N − 1)
y(t − s) y(t − s + 1) · · · y(t − s + N − 1)

u(t − s + 1) u(t − s + 2) · · · u(t − s + N)
y(t − s + 1) y(t − s + 2) · · · y(t − s + N)

.

.

.
.
.
.

.

.

.
u(t − 1) u(t) · · · u(t + N − 2)
y(t − 1) y(t) · · · y(t + N − 2)

⎤⎥⎥⎥⎥⎥⎦.

The subscript “[t − s, t)” stands for the range of the time
index along the first column of the Z matrix; while the
number of columns, N , is omitted to simplify the notations.
To ensure Z[t−s,t) has full row rank, we need to make the
following assumption, which is the necessary and sufficient
condition for persistently exciting the system of any order.

Assumption 3: [9], the spectrum of the joint input and

output signals z(k) =
[
uT (k) yT (k)

]T
(denoted by Φz) is

bounded and bounded away from zero on the unit circle, i.e.
∃0 < c ≤ M < ∞, s.t. cI ≤ Φz(ejω) ≤ MI, ∀ω ∈ [0, 2π).

In the sequel, we shall denote the estimated Ξ0 by Ξ̂0 =[
CΦs−1B CΦs−1K · · · CB CK

]
. With Ξ̂0, we are able to

predict the future output trajectory.

B. The Closed-loop SPC

Let the prediction horizon be f . To distinguish with
Z[t−s,t) in the identification problem, we use Z̄[k−s,k) =[
u(k−s)T y(k−s)T · · · u(k−1)T y(k−1)T

]T
to represent

the past I/Os in the control problem. It is shown in [5] that the
future f step ahead output predictor, with true plant Markov
parameters, takes the following form,

ŷ[k,k+f) =

⎡⎢⎣ CΦsx(k − s)
CΦsx(k − s + 1)

.

.

.
CΦsx(k − s + f − 1)

⎤⎥⎦
︸ ︷︷ ︸

bx

+

⎡⎢⎣ Ξ0
Ξ1

.

.

.
Ξf−1

⎤⎥⎦Z̄[k−s,k)

+

⎡⎢⎣ 0
Ψ1 0

.

.

.
. . .

. . .

Ψf−1 · · · Ψ1 0

⎤⎥⎦ ·

⎡⎢⎢⎣
u(k)
y(k)

.

.

.
u(k + f − 1)
y(k + f − 1)

⎤⎥⎥⎦,

(4)

where Ψτ � CΦτ−1
[
B K

]
, τ = 1, · · · , f − 1; and

Ξi =
[
0l×i(m+�) CΦs−1B CΦs−1K · · ·CΦiB CΦiK

]
is

simply a right-shifted and zero-padded version of Ξ0. Here
we use 0m×n to represent an m-by-n zero matrix; and
Im an m-dimensional identity matrix. bx is not known.
We can either simply ignore it by choosing a large s
as in all the existing SPCs; or treat it as a deterministic
disturbance as in [13]. If both bx and the estimation errors
in the Markov parameters are ignored, we shall refer to
(4), as the “nominal deterministic predictor”, denoted by

ŷd
[k,k+f) �

[
(ŷd(k))T (ŷd(k+1))T · · · (ŷd(k+f−1))T

]T
.

Let u[k,k+f−1) �
[
uT (k) uT (k + 1) · · · uT (k + f − 2)

]T

be the future control inputs. The following lemma computes
ŷd

[k,k+f) from the identified Ξ̂0.
Lemma 1: The nominal deterministic predictor for the

future f outputs is

ŷd
[k,k+f) = ΓZ̄[k−s,k) + Λu[k,k+f),

Γ =

⎡⎢⎢⎣
Γ0
Γ1
Γ2

.

.

.
Γf−1

⎤⎥⎥⎦, Λ =

⎡⎢⎢⎣
0

Λ1 0
Λ2 Λ1 0

.

.

.
.
.
.

. . .
. . .

Λf−1 Λf−2 · · · Λ1 0

⎤⎥⎥⎦ (5)

where the parameters, {Γi, Λj |i, j = 1, · · · , f − 1}, are
derived from

Γi = Ξ̂i +
∑i−1

τ=0 CΦi−τ−1K · Γτ , Γ0 = Ξ̂0,

Λj = CΦj−1B +
∑j−1

τ=1 CΦj−τ−1K · Λτ , Λ1 = CB,
(6)

Ξ̂i =
[
0l×i(m+�), CΦs−1B,CΦs−1K, · · · , CΦiB,CΦiK

]
.

Proof: See [5].
Remark 1: Note that in (4), the true y[k,k+f−1) is used

on the right hand side. If we substitute y[k,k+f−1) with
ŷ[k,k+f−1), then we have to modify the bias term bx by

b̃x =

⎡⎢⎢⎣
L1

L2 L1

...
...

. . .
Lf Lf−1 · · · L1

⎤⎥⎥⎦
︸ ︷︷ ︸

L

bx, (7)

where Lj =
∑j−1

τ=1 CΦj−1−τK · Lτ , j = 2, · · · , f with
L1 = Il. This can be verified by propagating {CΦsx(k −
s), · · · , CΦsx(k − s + i − 1)} to ŷ(k + i), 1 ≤ i ≤ f − 1.
In fact, the bias bx contains the unknown states, which are
however negligible under the conditions stated in the next
two sections. The expression, (7), is particularly interesting
in establishing the equivalence of the closed-loop SPC with
the classical LQG.

The closed-loop SPC in [5] is based on this nominal
deterministic predictor. Consider the following quadratic cost
function,

J(k) = ‖ŷd
[k,k+f)‖2

Q + ‖u[k,k+f)‖2
R, (8)

where Q,R 	 0 are weighting matrices. ‖v‖2
Q � vT Qv

defines a weighted 2-norm. Then the solution to the uncon-
strained closed-loop SPC design problem,

u[k,k+f) = arg min
u[k,k+f)

J(k), (9)
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has the following closed form

u∗
[k,k+f) = −(R + ΛT QΛ)−1ΛT QΓZ̄[k−s,k). (10)

We shall refer to the constrained SPC problem to [5]; while
only focus on the unconstrained LQG solution, (10), in this
paper. The goal is to establish the equivalence of (10) with
the classical LQG design.

III. THE EQUIVALENCE OF THE INFINITE-HORIZON CASE

WITH THE CLASSICAL LQG

A. The explicit form of Λj and Lj

Before establishing the equivalence, we need to explore
the information hidden behind the implicit form of Λj in
(6) and Lj in (7). We emphasize that the results in this
subsection hold no matter how long the data horizon is.
It is straightforward to prove the following statement by
induction.

Lemma 2: Λj and Lj respectively estimate the Markov
parameters from the input and the noise channels to the
output channels; i.e.

Λj = CAj−1B, (11)

Lj = CAj−2K. (12)

B. The closed-loop identification with infinite data horizon

The following assumption explains rigorously what we
mean by “infinite data horizon”.

Assumption 4: [9], the past horizon s goes to infinity with

the length N while satisfying, s ≥ log N−d/2

log |ρ| with 1 < d <

∞ and s = o(log(N)α) with α < 1.
Lemma 3: Under Assumption 1, 2, 3, and 4,

Ξ̂0 = Yt · Z†
[t−s,t) (13)

is an unbiased estimate of Ξ0. “†” stands for pseudo inverse.
Proof: Since by Assumption 2, lims→∞ ‖Φs‖2 = 0;

the bias term, lims→∞ CΦsXt−s = 0, where ‖Xt−s‖2 < ∞
under Assumption 3. On the other hand, note that in (3),
each column of Et is at least one step ahead in the future
of the I/Os along the corresponding column of Z[t−s,t). Due
to the causality of the system, limN→∞ 1

N Et · ZT
[t−s,t) = 0.

Then Ξ̂0 is unbiased.
Remark 2: Note that Ξ̂0 is a random variable, although

it is unbiased. The covariance matrix of the vectorized
estimation error, vec(Ξ̂0 − Ξ0), depends on the signal to
noise ratio (SNR) of the identification signals. The higher
the ratio, the less uncertain the estimate Ξ̂0 is. See [13] for
details.

C. Infinite-horizon closed-loop SPC

Define the state-space model hidden behind the unbiased
estimates of the Markov parameters in (11) and (12) as

x(k + 1) = Āx(k) + B̄u(k) + K̄e(k) (14)

y(k) = C̄x(k) + e(k), (15)

The “bar” over A,B, C, K emphasizes the randomness of
the identified Markov parameters. When the SNR of the

identification data is high enough, the randomness of the
identified A,B, C,K can be neglected.

Define the extended observability matrix and the Toeplitz
Markov parameter matrix of this model as,

Of =

⎡⎢⎣
C

CA

.

.

.

CAf−1

⎤⎥⎦, Hf =

⎡⎢⎣
0

CB 0

.

.

.
.
.
.

. . .

CAf−2B CAf−3B · · · 0

⎤⎥⎦.

The equivalence of the SPC design in [2] with the classical
LQG is briefly reviewed in the appendix. We establish the
same equivalence for the closed-loop SPC design (10) in the
following theorem.

Theorem 1: With N, s, f → ∞, the closed-loop SPC (10),
is equivalent to (26). If in addition, the closed-loop SPC
is started from a stable equilibrium of the system ((14)
and (15)), then it produces the same stabilizing control
input u∗(k) as resulted from the steady-state solution of the
classical LQG-controller (28).

Proof: Obviously, under Assumption 4, lims→∞ ‖b̃x‖2

= 0, provided the closed-loop plant is internally stable prior
to the time instance k − s + f − 1. This is clearly true, if
the system stays at a stable equilibrium before starting the
closed-loop SPC. If u∗(k) is indeed equivalent to the steady-
state solution of the classical LQG-controller (28), then it
stabilizes the closed-loop system, and ensures ‖b̃x‖2 < ∞
for ever. In this case, we do not have to estimate the states in
b̃x; because no matter being estimated or true, they simply
vanish due to the zero weighting CΦs. We will only use b̃x

as a dummy variable in this proof. And we shall use CΦs

to replace CΦs.

We only need to establish the equivalence between (10)
and (26). Then what remains is completely the same with
the proof in [2], and shall be omitted. Since from Lemma
2, Λ = Hf ; we are only left with showing ΓZ̄[k−s,k) =
Of x̂(k|k − 1). x̂(k|k − 1) is the state estimated from the
steady-state Kalman filter (q = k − s, · · · , k − 1),

x̂(q+1|q) = Āx̂(q|q−1)+B̄u(q)+K̄
[
y(q)− C̄x̂(q|q−1)

]
,

(16)
which is stable from Assumption 2. It is in fact a common
practice to treat K̄ as a steady-state Kalman gain in the
subspace identification literature, [2], [14].

It is straightforward to see that

Γ0Z̄[k−s,k) + CΦsx(k − s) = C̄x̂(k|k − 1),

Γ1Z̄[k−s,k) + CK · CΦsx(k − s) + CΦsx(k − s + 1)

= CA · x̂(k|k − 1).

Now, suppose ∀0 ≤ p ≤ i,

Γp · Z̄[k−s,k) +
[

Lp+1 Lp · · · L1

] ·⎡⎢⎣
CΦsx(k − s)

CΦsx(k − s + 1)

.

.

.

CΦsx(k − s + p)

⎤⎥⎦ = CAp · x̂(k|k − 1).
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Then for p = i + 1,

Γi+1 · Z̄[k−s,k) + [ Li+2 Li+1 · · · L1 ] ·⎡⎢⎣
CΦsx(k − s)

CΦsx(k − s + 1)

.

.

.

CΦsx(k − s + i + 1)

⎤⎥⎦
= (Ξ̂i+1 +

i∑
j=0

CΦi−jK · Γj) · Z̄[k−s,k) +

CΦsx(k − s + i + 1) + [ CΦiK · · · CK ] ·⎡⎢⎣ L1
L2 L1

.

.

.
.
.
.

. . .

Li+1 Li · · · L1

⎤⎥⎦ ·

⎡⎢⎣
CΦsx(k − s)

CΦsx(k − s + 1)

.

.

.

CΦsx(k − s + i)

⎤⎥⎦
= CΦsx(k − s + i + 1) + Ξ̂i+1Z̄[k−s,k) +

[ CΦiK · · · CK ]·
([

Γ0

.

.

.
Γi

]
· Z̄[k−s,k) +

[
L1

.

.

.
. . .

Li+1 · · · L1

]
·
⎡⎣ CΦsx(k − s)

.

.

.

CΦsx(k − s + i)

⎤⎦)
= CΦi+1 · x̂(k|k − 1) + [ CΦiK · · · CK ] ·⎡⎢⎣

C̄

CA

.

.

.

CAi

⎤⎥⎦ · x̂(k|k − 1)

=
(

CΦi+1 + [ CΦiK · · · CK ] ·
⎡⎣ C̄

.

.

.

CAi

⎤⎦)
·

x̂(k|k − 1)
= CAi+1 · x̂(k|k − 1),

which indicates that indeed ΓZ̄[k−s,k) = Of x̂(k|k−1). This
completes the proof.

IV. THE FINITE-HORIZON CLOSED-LOOP SPC AND LQG

Since the closed-loop SPC avoids the intermediate steps
of identifying the parametric matrices in a state-space form,
they are particularly attractive for adaptively tuning predic-
tive controllers online, because the estimation of the Markov
parameters is simply a least square problem, [5]. This, how-
ever, limits the data horizon to finitely long. In this case, the
estimate, (3), is no longer unbiased. Besides, the term, b̃x, is
not zero any more. The rigorous treatment of these biases is
more involved than the scope of this paper, and is presented
in [13]. Due to the scaling by CΦs, the biases can in fact be
made arbitrarily small by choosing a sufficiently large s as
long as allowed by the hardware capacity. Specifically, we
shall make the following assumption to simplify the analysis
in this paper.

Assumption 5: The SNR of the identification signals is so
large that the identified Markov parameters is almost certain.
In addition, the past horizon s is large enough to neglect
the biases, CΦsXt−s and b̃x, respectively in the identified
Markov parameters and the future output predictor.

Under this assumption, we can ignore the model-plant
mismatch, in terms of the Markov parameters. Now, we
are ready to propose a finite-horizon LQG solution for the
closed-loop SPC design, based on the nominal deterministic
estimates in (13). The derivation is mainly based on [12].

A. Optimal state estimation with finite data horizon

As argued in the introduction, although (10) minimizes the
quadratic cost of (8), it is not directly an LQG design, in the
sense that no optimality can be claimed for estimating the
states hidden behind the input and output relation.

An optimal state estimator is developed in [12] by mini-
mizing a mean squared estimation error,

J = E
[‖ξT x(k) − x̂(k)‖2

2

]
, (17)

for some scaling factor ξ; where x̂(k) is the linear combina-
tion of the past inputs and outputs,

x̂(k) =
[

cT
k−s dT

k−s · · · cT
k−1 dT

k−1

]︸ ︷︷ ︸
K

·Z̄[k−s,k).

(18)
A closed-form optimal solution is derived in [15], [12],
which is equivalent to a classical Kalman filter, derived from
Riccati recursions, [14].

B. Finite horizon LQG solution

The classical LQG is a state feedback design, i.e.

u∗(k) = Tk · x̂(k),

with x̂(k) an estimate of x(k) from a Kalman filter. Substi-
tute (18) into the above equation,

u∗(k) = Tk · K · Z̄[k−s,k).

It is shown in [12] that the control gain Tk · K can be
completely determined by the plant Markov parameters. In
what follows, we shall develop such a solution based on the
identified Markov parameters.

Define the controlled outputs of the system, (14) and (15),
as,

z(k) =
[

q · C̄
0

]
︸ ︷︷ ︸

Cz

x(k) +
[

0
R

]
︸ ︷︷ ︸

Dz

u(k), (19)

where q > 0 is a tuning factor; and R is the Cholesky
factorization of the weight on the input at each time
instance; i.e. taking the weighting matrix R in (8) as
diag(RTR, · · · ,RTR) 	 0. Consider now the cost function

J (k) =
f−1∑
τ=0

zT (k+τ)z(k+τ) = ‖x[k,k+f)‖2
Q̄+‖u[k,k+f)‖2

R,

(20)
where Q̄ = diag(q2 · C̄T C̄, · · · , q2 · C̄T C̄).

Let the past and future horizon be s = f = 2h. Collect
the h I/Os prior to the current time k in the vector forms as

ũ[k−h,k) =

⎡⎣ u(k − 1)
...

u(k − h)

⎤⎦ and ỹ[k−h,k) =

⎡⎣ y(k − 1)
...

y(k − h)

⎤⎦.
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We summarize the closed-form solution to (20) in the fol-
lowing theorem.

Theorem 2: If Assumption 5 holds, then the finite horizon
LQG design can be completely determined by the Markov
parameters identified from closed-loop I/O signals. The op-
timal control input at the current time instance k takes the
following closed form,

u∗(k) = −(RTR + N TPT ΠPN )−1·[N TPT ΠPF · ũ[k−h,k) −N TPT ΠPG
·WT (WWT )† · (Vũ[k−h,k) − ỹ[k−h,k))

]
,

(21)

where the parametric matrices are defined in (22); and

Π = I −D(DTD)†DT .
Remark 3: The stabilizing finite-horizon SPC control law

can be found if the horizon h ≥ n, [12]. This condition,
as well as Assumption 5, requires to set h to a large
integer. Note that the other three conditions mentioned in
[12] are automatically satisfied in the design; i.e. the open-
loop system is assumed to be minimal and therefore contains
no unstable hidden modes; Dz has full column rank (since
RTR 	 0); and the feed-through matrix I from the noise to
the output, in the model (14) and (15), has full row rank.

Three steps are needed to implement the control law.

1) solve (13) for Ξ̂0;
2) compute the Markov parameters {CΦτB, CΦτK|τ =

0, · · · , 2h − 1} according to (6) and (7);
3) compute the input at the current instance k by (21).

V. A SIMULATION EXAMPLE

As a case study, we consider a reference-tracking problem
of a linearized VTOL (vertical takeoff and landing) aircraft
model, originally appeared in [16],

ẋ(t) = Ax(t) + Bu(t) (23)

y(t) = Cx(t) + e(t) (24)

A =

[ −0.0366 0.0271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 0.3681 −0.707 1.42

0 0 1 0

]
,

B =

[
0.4422 0.1761
3.5446 −7.5922
−5.52 4.49

0 0

]
, C =

[
1 0 0 0
0 1 0 0
0 0 1 0
0 1 1 1

]
,

where e(t) is a 4-dimensional zero-mean white noise, with a
covariance of SST = 10−12 · I4, added as the measurement
noise. The model is discretized with a sampling period of 0.1
second. No stochastic disturbance term, “Ke(t)”, appears in
(23), as assumed in (1). We shall use the VTOL model to
demonstrate the generality of the proposed approaches.

N = 10000 I/O samples are generated to identify the
output predictor, from a closed-loop experiment with an
initial stabilizing controller, u(k) = Lx(k) + d(k), where
the dither signals d(k) are a 2-dimensional zero-mean white
noise with a unity covariance matrix. The state feedback
gain, L, is computed from the LQR control law.

The past and future horizon are respectively set as s =
30 and f = 30; and hence h = 15. In this case,
‖Cov(vec(Ξ̂0 − Ξ0))‖2 = 4.2 × 10−3 and ‖CΦs−1B‖2 =

4.4 × 10−2, ‖CΦs−1K‖2 = 7.4 × 10−2. Assumption 5 is
clearly satisfied. The biases and stochastic errors in the
identification and control can therefore be safely ignored.
Choose q = 106, Q = qI , and R = I . Three schemes
are tested; namely (10), (21), and the classical LQG law
of u(k) = L̄x̂(k), where x̂(k) is estimated by the steady-
state Kalman filter with gain K̄. The simulation results are
shown in figure 1. Clearly, the closed-loop SPC leads to
similar closed-loop response with the classical LQG, which
verifies their equivalence. Starting from an earlier instance,
the control law, (21), also stabilizes the system.
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0
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0 100 200 300 400 500
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−5

0

5
output 3

0 100 200 300 400 500
−10
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0

5
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samples

Fig. 1. The outputs of the VTOL control system: red solid, (21); blue
dashed, the classical LQG; purple dash-dotted, (10); black bold solid, the
starting instance of (21) after the first h = 15 samples without control
efforts; black bold dashed, the starting instance of (10) and the LQG after
the first s = 30 samples without control efforts.

VI. CONCLUSION

We have established in this paper the equivalence of the
closed-loop SPC in [5] with the classical LQG when the
data horizon is infinite. When this horizon is finite, the
solution of the closed-loop SPC problem by the LQG design
in [12] ensures the optimality both in the state estimation
step hidden behind the input and output relation and in the
control gain, just based on the identified Markov parameters.
The future research shall be focused on ensuring the closed-
loop stability in the finite-horizon design.
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N =

⎡⎢⎣
q · CB

q · CAB

.

.

.

q · CAh−2B

⎤⎥⎦ , F =

⎡⎣ q · CAB · · · q · CAhB

.

.

.
.
.
.

q · CAh−1B · · · q · CAs−2B

⎤⎦ , G =

⎡⎣ q · CAK · · · q · CAhK

.

.

.
.
.
.

q · CAh−1K · · · q · CAs−2K

⎤⎦,

P =

⎡⎢⎢⎢⎢⎢⎣
Il 0 · · · 0
0 0 · · · 0
0 Il · · · 0
0 0 · · · 0

.

.

.
.
.
.

.

.

.
0 0 · · · Il

0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ , D =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 0
R 0 · · · 0 0

q · CB 0 · · · 0 0
0 R · · · 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

q · CAh−3B q · CAh−4B · · · q · CB 0
0 0 · · · 0 R

⎤⎥⎥⎥⎥⎥⎦,

W =

⎡⎢⎢⎣
I CK · · · CAh−2K

. . .
. . .

.

.

.

. . . CK
I

⎤⎥⎥⎦ , V =

⎡⎢⎢⎣
0 CB · · · CAh−2B

. . .
. . .

.

.

.

. . . CB
0

⎤⎥⎥⎦

(22)

APPENDIX

THE SPC DESIGN IN [2]

In [2], the following SPC control design minimizing the
cost (8) is proposed

u∗
[k,k+f) = −(R + LT

u QLu)−1LT
u QLwZ̄[k−s,k). (25)

Lu, Lw are estimated from N4SID subspace identification,
which define the future output predictor, i.e.

ŷd
[k,k+f) = Luu[k,k+f) + LwZ̄[k−s,k).

It is shown in [2] that under the assumption that s = f → ∞,
the right hand side of (25) is equivalent to

u∗
[k,k+f) = −(R + HT

f QHf )−1HT
f QOf x̂(k|k − 1), (26)

where x̂(k|k − 1) is the state estimate by the Kalman filter,

x̂(q + 1|q) = Āx̂(q|q − 1) + B̄u(q)+
Kq

[
y(q) − C̄x̂(q|q − 1)

]
,

Kq = (K̄SST + ĀΣqC̄
T )(SST + C̄ΣqC̄

T )−1,
Σq+1 = ĀΣqĀ

T + K̄SST K̄T − (K̄SST + ĀΣqC̄
T )

·(SST + C̄ΣqC̄
T )−1(K̄SST + ĀΣqC̄

T )T ,

(27)

where q = k − s, · · · , k − 1. Since s → ∞, the Kalman
filter is at the steady state; meaning that the Kalman gain
is the steady-state gain; and the influence of the initial state
x̂(k − s) dies out.

On the other hand, in the classical LQR design, the input
u(k) that minimizes the cost (8) is

u∗(k) = Lkx̂(k|k − 1), (28)

where Lk is the solution to the following recursive equations,

LT
k = −(CT Q1D + AT PfB)·
(R1 + DT Q1D + BT PfB)−1,

Pq+1 = AT PqA + CT Qf−qC − (CT Qf−qD+
AT PqB) · (Rf−q + DT Qf−qD + BT PqB)−1·
(CT Qf−qD + AT PqB)T ,

(29)

where q = 1, · · · , f − 1. Qi ∈ R
l×l is the i-th diagonal

block of Q. When f → ∞, Lk results from the steady-state
Riccati equation, (29).

It is proved in [2] that when s = f → ∞ the control input
at the current time instance, u∗(k), from the SPC design (25)
is equivalent to the classical LQG design of (28).
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