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Abstract— Blockingness is one of the major obstacles that
need to be overcome in the Ramadge-Wonham supervisory syn-
thesis paradigm. Owing to the high computational complexity
usually resulted from synchronous product, it is difficult to
synthesize a nonblocking supervisor for a large scale system.
In this paper we aim to overcome this difficulty by presenting a
distributed synthesis approach. The core idea of this approach
is to create abstractions of parts of a target system during the
synthesis process to avoid any potentially large representation.
Meanwhile, those abstractions allow synthesizing local super-
visors which guarantee the global nonblockingness, when they

are applied to the target system in a conjunctive style.
Index Terms— discrete-event systems, nondeterministic finite-

state automata, automaton abstraction, distributed synthesis

I. INTRODUCTION

The automaton-based Ramadge-Wonham (RW)

supervisory control paradigm first appeared in the control

literature in 1982, which was subsequently summarized

in [1] [2]. Since then there has been a large volume of

literature under the same paradigm but with different

architectural setups, e.g. [3] on modular control, [4] [5]

on decentralized control, [6] on hierarchical control. One

of the main challenges of RW supervisor synthesis is to

achieve nonblockingness when a target system consists of

a large number of states, often resulted from synchronous

product of many relatively small local components. To

overcome this computational difficulty, many approaches

have been proposed recently. For example, in [8] the authors

introduce the concept of interface invariance in their

hierarchical interface-based supervisory control approach.

A very large nonblocking control problem may be solved,

e.g. the system size reaches 1021 in the AIP example

[8]. Nevertheless, designing an interface that can remain

invariant during synthesis is rather difficult, which requires

lots of experience and domain knowledge of the target

system. In [9] a supervisor synthesis approach for state

feedback control is proposed based on the concept of state

tree structures. It has been shown in [9] that a system with

1024 states can be well handled. Nevertheless, this approach

is essentially a centralized approach. Thus, it is still not

sufficient to deal with systems of industrial size. Besides, it

does not consider partial observation.
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In this paper we present an aggregated distributed

supervisor synthesis approach based on automaton

abstraction. The idea of abstraction has been known

in the literature, e.g. in [10] abstraction is used in the

modular and hierarchical supervisor synthesis; and in

[11] for decentralized control. Nevertheless, to make their

approaches work, natural projections have to possess the

observer property [7], which may not always hold by a

natural projection. Although a natural projection can always

be modified to become an observer (with respect to a

specific language) [13], such a modification has a potential

drawback in the sense that the alphabet of the codomain of

the projection may be fairly large for the sake of achieving

the observer property, and the consequence is that the

size of the projected image may not be small enough to

allow supervisor synthesis for large-scale systems. In [16]

[17] the authors propose a new automaton abstraction

technique. Such an abstraction has the following property:

the product of a plant model G with another model S (e.g.

a supervisor) is nonblocking if (and only if) the product

of the abstraction κ(G) of G and S is nonblocking. The

abstraction technique bears similarity with the one proposed

in [14]. But in [14] the authors require that a reduced model

is weakly bisimilar to the original one. As a contrast, the

new abstraction technique does not have such a requirement.

The consequence is that, we usually end up with a reduced

model simpler than what the technique proposed in [14] can

achieve, resulting in different ways of supervisor synthesis

subsequently. Based on the new abstraction operation we

propose to compute a distributed supervisor in an aggregated

way, which guarantees the global nonblockingness of the

closed-loop system. This approach bears some similarity to

the one proposed in [18]. But in [18] abstractions are done

by using conflict equivalence similar to the one in [14],

which is different from ours.

This paper is organized as follows. In Section II we intro-

duce automaton composition and abstraction over nondeter-

ministic automata. Then we present a distributed supervisor

synthesis problem based on nondeterministic automata in

Section III. Conclusions are stated in Section IV.

II. AUTOMATON COMPOSITION AND ABSTRACTION

In this section we briefly review basic concepts and

properties described in [16] [17], where more details and

necessary proofs can be found. We follow the notations used

in [15], and assume that readers are familiar with concepts

of Ramadge-Wonham supervisory control paradigm, as
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described in [15].

Since automaton abstraction proposed later in this paper

will result in nondeterministic automata, to avoid unnec-

essary complication we simply start with them. Given an

alphabet Σ, let φ(Σ) be the collection of all nondeterministic

finite-state automata with alphabet Σ. Given an automaton

G = (X, Σ, ξ, x0, Xm), X stands for the state set, Σ for the

alphabet, ξ : X×Σ → 2X for the nondeterministic transition

function, x0 for the initial state and Xm for the marker state

set. We define a map B : φ(Σ) → 2Σ
∗

with

(∀G ∈ φ(Σ))B(G) := {s ∈ Σ∗|ξ(x0, s) 6= ∅

∧ (∃x ∈ ξ(x0, s))(∀s′ ∈ Σ∗) ξ(x, s′) ∩ Xm = ∅}

We call B(G) the blocking set of G. Similarly, define another

map N : φ(Σ) → 2Σ
∗

, where for any G ∈ φ(Σ),

N(G) := {s ∈ Σ∗|ξ(x0, s) 6= ∅ ∧ ξ(x0, s) ∩ Xm 6= ∅}

We call N(G) the nonblocking set of G. It is possible

that B(G) ∩ N(G) 6= ∅, due to nondeterminism. We now

introduce the parallel composition of automata.

Given two automata Gi = (Xi, Σi, ξi, x0,i, Xm,i) ∈ φ(Σi)
(i = 1, 2), the product of G1 and G2, written as G1 × G2,

is an automaton in φ(Σ1 ∪ Σ2) such that

G1×G2 = (X1×X2, Σ1∪Σ2, ξ1×ξ2, (x0,1, x0,2), Xm,1×Xm,2)

where ξ1 × ξ2 : X1 ×X2 × (Σ1 ∪Σ2) → 2X1×X2 is defined

as follows,

(ξ1 × ξ2)((x1, x2), σ) :=






ξ1(x1, σ) × {x2} if σ ∈ Σ1 − Σ2

{x1} × ξ2(x2, σ) if σ ∈ Σ2 − Σ1

ξ1(x1, σ) × ξ2(x2, σ) if σ ∈ Σ1 ∩ Σ2

Clearly, × is commutative and associative. For a slight

abuse of notations, from now on we use G1 × G2

to denote its reachability part. ξ1 × ξ2 is extended to

X1 × X2 × (Σ1 ∪ Σ2)
∗ → 2X1×X2 .

Suppose G = (X, Σ, ξ, x0, Xm). We bring in a new event

symbol τ , which is uncontrollable and unobservable. An

automaton G = (X, Σ ∪ {τ}, ξ, x0, Xm) is standardized if

x0 /∈ Xm ∧ (∀x ∈ X) [ξ(x, τ) 6= ∅ ⇐⇒ x = x0]
∧ (∀x ∈ X − {x0})(∀σ ∈ Σ)x0 /∈ ξ(x, σ)

We can always convert an automaton into a standard

automaton. From now on, unless specified explicitly, we

assume that each alphabet Σ contains τ , and φ(Σ) is the set

of all standardized finite state automata, whose alphabet is Σ.

Definition 1: Given G = (X, Σ, ξ, x0, Xm), a bisimula-

tion relation on X is an equivalence relation R ⊆ X × X
such that for each (x, x′) ∈ R and s ∈ Σ∗, ξ(x, s) 6= ∅

implies ξ(x′, s) 6= ∅ and for any y ∈ ξ(x, s),

(∃y′ ∈ ξ(x′, s)) (y, y′) ∈ R ∧ [y ∈ Xm ⇐⇒ y′ ∈ Xm]

The largest bisimulation relation is called bisimilarity on X ,

written as ∼. �

Definition 2: Given G = (X, Σ, ξ, x0, Xm), let Σ′ ⊆ Σ
and P : Σ∗ → Σ′ be the natural projection. A weak bisim-

ulation relation on X with respect to Σ′ is an equivalence

relation R ⊆ X × X such that for each (x, x′) ∈ R the

following condition holds: for any s ∈ Σ∗, ξ(x, s) 6= ∅

implies that there exists s′ ∈ Σ∗ with P (s) = P (s′) and

ξ(x′, s′) 6= ∅ such that for any y ∈ ξ(x, s),

(∃y′ ∈ ξ(x′, s′)) (y, y′) ∈ R ∧ [y ∈ Xm ⇐⇒ y′ ∈ Xm]

The largest weak bisimulation relation on X with respect

to Σ′ is called weak bisimilarity on X with respect to Σ′,

written as ≈Σ′ . �

For each x ∈ X let < x >:= {x′ ∈ X |(x, x′) ∈≈Σ′},

and X/ ≈Σ′ := {< x > |x ∈ X}.

Definition 3: An automaton abstraction with respect to

Σ and Σ′ is a map κ : φ(Σ) → φ(Σ′) such that any

element G = (X, Σ, ξ, x0, Xm) ∈ φ(Σ) is mapped to

κ(G) = (X ′, Σ′, ξ′, x′

0, X
′

m) ∈ φ(Σ′), where

1) X ′ = X/ ≈Σ′

2) x′

0 =< x0 >∈ X ′

3) X ′

m = {< x >∈ X ′| < x > ∩Xm 6= ∅}
4) ξ′ : X ′ × Σ′ → 2X′

, where for any < x >∈ X ′ and

σ ∈ Σ′,

ξ′(< x >, σ) := {< x′ >∈ X ′|(∃y ∈< x >,
y′ ∈< x′ >)(∃u, u′ ∈ (Σ − Σ′)∗) y′ ∈ ξ(y, uσu′)}

�

What κ does on G is simply to create transitions among

elements of X/ ≈Σ′ . If we use |X | to denote the size of X ,

then |X ′| ≤ |X |. The time complexity of computing κ(G)
is mainly due to the computation of X ′, which is shown in

[17] to be O((mn2 + l) logn), where l = |Xm|, n = |X |
and m is the number of transitions in G.

As an illustration, suppose a standardized automaton G ∈
φ(Σ) is depicted in Figure 1, where Σ = {τ, a, b, c, u}. We

Fig. 1. A Standardized Automaton G and Abstraction κ(G)

take Σ′ = {τ, a}. Then we can show that

X ′ = X/ ≈Σ′= {< 0 >= {0}, < 1 >= {1},
< 2 >= {2, 3}, < 4 >= {4, 5}}
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The abstraction κ(G) is depicted in Figure 1.

In the definition of κ(G), if we do not introduce the event

τ (thus, the standardized automata), it will be difficult for

us to deal with the situation where there is a blocking state

x reachable from the initial state x0 via a ‘silent’ path s ∈
(Σ − Σ′)∗, i.e. x ∈ ξ(x0, s), such that any path s′ from x,

i.e. ξ(x, s′) 6= ∅, is also silent, e.g. the blocking state 5 in

Figure 1. It is also difficult for us to deal with marker states

that are reachable from x0 via silent paths. With the newly

introduced event τ , we can easily solve the problems, as we

have done in Figure 1. Besides, since τ is uncontrollable and

unobservable, introducing it will not affect the existence of

a nonblocking supervisor. Next, we discuss how to perform

distributed supervisor synthesis.

III. DISTRIBUTED SUPERVISOR SYNTHESIS

We first describe how to synthesize a nonblocking super-

visor based on automaton abstraction. Then we provide a

distributed supervisor synthesis procedure.

A. Supervisor Synthesis over Nondeterministic Automata

In the RW paradigm a plant model G ∈ φ(Σ) and a

specification H ∈ φ(∆) with ∆ ⊆ Σ are both deterministic.

In this paper the plant model G may be nondeterministic.

We would like to ask whether we can still synthesize a

supervisor S in terms of a deterministic automaton such

that controllability, observability and nonblockingness are

attainable. The motivation of requiring S to be deterministic

is that S cannot distinguish the nondeterminism in G from

external observation sequences, thus it will apply the same

control action on states in G that are reachable by the same

string. Here the specification H will remain deterministic,

and it is not necessarily standardized, namely it is possible

that τ /∈ ∆ because abstraction will never be applied to H .

To answer our question, we first redefine the concepts of

controllability and observability in the automaton framework.

Let G = (X, Σ, ξ, x0, Xm). For each x ∈ X let

EG : X → 2Σ : x 7→ EG(x) := {σ ∈ Σ|ξ(x, σ) 6= ∅}

and FG : X → 2Σ : x 7→ FG(x) := {σ ∈ Σ|ξ(x, σ) = ∅}

Definition 4: Given Ĝ = (X̂, Σ, ξ̂, x̂0, X̂m), we say Ĝ is

f-homomorphic to G, denoted as Ĝ  f G, if there is a

mapping f : X̂ → X such that the following hold:

1) f(x̂0) = x0

2) f(X̂m) ⊆ Xm

3) For any x̂1, x̂2 ∈ X̂ and σ ∈ Σ,

x̂2 ∈ ξ̂(x̂1, σ) ⇒ f(x̂2) ∈ ξ(f(x̂1), σ)

If f is bijective and G f−1 Ĝ, then G is called isomorphic

to G, denoted as Ĝ ≡ G. �

Definition 5: Given G = (X, Σ, ξ, x0, Xm) ∈ φ(Σ),
where Σ = Σc∪̇Σuc, suppose there is another automaton

A = (W, Σ, ς, w0, Wm) ∈ φ(Σ) such that A  f G. Then

A is controllable with respect to G, f and Σuc if for any

w ∈ W , FA(w) ∩ EG(f(w)) ⊆ Σc. �

Def. 5 is the state interpretation of the concept of

controllability in the RW paradigm, saying that at any

state w in A (which can be interpreted as representing an

objective behavior), a transition σ that is disallowed by A
(i.e. σ ∈ FA(w)) but allowed by G (i.e. σ ∈ EG(f(w)))
must be controllable (i.e. σ ∈ Σc). In other words, no

uncontrollable event can be disallowed in A, if A is

controllable. We now introduce the concept of observability.

Definition 6: Given G = (X, Σ, ξ, x0, Xm) ∈ φ(Σ),
where Σ = Σo∪̇Σuo, suppose there is another automaton

A = (W, Σ, ς, w0, Wm) ∈ φ(Σ) such that A f G. Then A
is observable with respect to G, f and the natural projection

P : Σ∗ → Σ∗

o if the following condition holds: for any

w, w′ ∈ W if there exist s, s′ ∈ Σ∗ with

w ∈ ς(w0, s) ∧ w′ ∈ ς(w0, s
′) ∧ P (s) = P (s′)

then we have (FA(w) ∩ EG(f(w))) ∩ EA(w′) ∪ (FA(w′) ∩
EG(f(w′))) ∩ EA(w) = ∅. �

What Def. 6 says is that, if A is observable then for

any two states w and w′ reachable by two strings s and

s′ having the same projected image (i.e. P (s) = P (s′)),
there is no event allowed at w but disallowed at w′

(i.e. (FA(w′) ∩ EG(f(w′))) ∩ EA(w)) and vice versa

(i.e. (FA(w) ∩ EG(f(w))) ∩ EA(w′)). Notice that, if

Σo = Σ, namely every event is observable, A may still not

be observable, owing to nondeterminism. The state-based

definitions of controllability and observability bear similarity

to those defined in [12]. We now introduce the concept of

nonblocking supervisors.

Definition 7: A deterministic finite-state automaton S =
(Y, Σ, η, y0, Ym) ∈ φ(Σ) is a nonblocking supervisor of G =
(X, Σ, ξ, x0, Xm) ∈ φ(Σ) with respect to a specification

H ∈ φ(∆) with ∆ ⊆ Σ under the natural projection

Po : Σ∗ → Σ∗

o, where Σo ⊆ Σ, if the following hold:

1) N(G × S) ⊆ N(G × H)
2) B(G × S) = ∅

3) G × S is controllable with respect to G, f0 and Σuc

4) G × S is observable with respect to G, f0 and Po

where f0 : X × Y → X : (x, y) 7→ f0(x, y) := x. �

The first condition of Def. 7 says that the closed-loop

behavior (CLB) satisfies the specification H and the second

one says CLB must be nonblocking. The third and fourth

ones are self-explanatory. We have the following result.

Proposition 1: Given G ∈ φ(Σ) and a deterministic

automaton H ∈ φ(∆) with ∆ ⊆ Σ, Σ = Σc∪̇Σuc and

Σ = Σo∪̇Σuo, there exists a nonblocking supervisor

S ∈ φ(Σ) of G with respect to H if and only if there exists

A ∈ φ(Σ) such that A  f G × H , A is controllable with
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respect to G, f and Σuc, A is observable with respect to G,

f and the natural projection P : Σ∗ → Σ∗

o, and B(A) = ∅.�

The proof of Prop. 1, which is not included in this

paper owing to the page limit, indicates that S is simply

the canonical recognizer of N(A), when A is controllable,

observable and B(A) = ∅. Supervisory control of nonde-

terministic finite-state automata has been explored recently

in the literature, e.g. [19] [20]. In this paper we focus on

distributed supervisor synthesis based on abstraction, which

is described in the following section.

B. Aggregate Distributed Supervisor Synthesis

Definition 8: A distributed system with respect to

the given alphabets {Σi|i ∈ I} is a collection of

nondeterministic finite-state automata G := {Gi =
(Xi, Σi, ξi, xi,0, Xi,m) ∈ φ(Σi)|i ∈ I}, where each Gi

(i ∈ I) is called the ith component of G. Each Σi (i ∈ I)

is partitioned into a controllable alphabet Σi,c and an

uncontrollable alphabet Σi,uc, namely Σi = Σi,c∪̇Σi,uc.

It is also partitioned into an observable alphabet Σi,o and

an unobservable alphabet Σi,uo, namely Σi = Σi,o∪̇Σi,uo. �

We assume that for any i, j ∈ I ,

i 6= j ⇒ Σi,c ∩ Σj,uc = ∅ ∧ Σi,o ∩ Σj,uo = ∅

In other words, there is no event, which is controllable in

Gi but uncontrollable in Gj (i 6= j). There is also no event,

which is observable in Gi but unobservable in Gj (i 6= j).

Let Σ := ∪i∈IΣi, Σc := ∪i∈IΣi,c, Σuc := ∪i∈iΣi,uc, Σo :=
∪i∈iΣi,o and Σuo := ∪i∈iΣi,uo. Let J be an index set and

{∆j ⊆ ∪i∈IΣi|j ∈ J} be a collection of alphabets. Suppose

we have a set of specifications H = {Hj ∈ φ(∆j)|j ∈ J},

where each Hj is a deterministic automaton. We want to

synthesize a collection of deterministic automata

S = {Sk ∈ φ(Γk)|k ∈ K ∧ Γk ⊆ ∪i∈IΣi}

where K is an index set, such that ×k∈KSk is a nonblocking

supervisor of ×i∈IGi with respect to ×j∈JHj . Later we

will call such an S a nonblocking distributed supervisor

of G with respect to H, and each Si is called a local

(nonblocking) supervisor.

We first consider a 2-component distributed system

G = {G1, G2}. Then we extend it to a general distributed

system. Suppose there exists a specification H ∈ φ(∆),
where ∆ ⊆ Σ1 ∪ Σ2. Let Σ′ ⊆ Σ1 ∪ Σ2 such that

Σ1 ∩ (Σ2 ∪ ∆) ⊆ Σ′. Let κ1 : G(Σ1) → G(Σ1 ∩ Σ′) be

the automaton abstraction, and A1 := κ1(G1). We now use

A1 as an abstraction of G1 with respect to G2, and treat

A1 × G2 as the plant model. We have the following result.

Proposition 2: Suppose there exists a nonblocking

supervisor S ∈ φ(Γ) of A1 × G2 with respect to H , where

Γ = Σ2 ∪ Σ′. Then S is also a nonblocking supervisor of

G = G1 × G2 with respect to H . �

Proposition 2 allows us to synthesize a distributed

supervisor in an aggregate way. Without loss of generality,

suppose I = {1, 2, · · · , n}. We put an order on those local

components, say (G1, G2, · · · , Gn). Let H = {Hj |j ∈ J}
be the collection of specifications. Then we perform the

following construction.

Aggregate Synthesis of a Distributed Supervisor (ASDS)

1) Initially set T1 := Σ1, Q1 := ∅ and W1 := G1.

2) For k = 2, · · · , n,

a) Set Ik := {k, k + 1, · · · , n} and

Jk := {j ∈ J |∆j ⊆ Tk−1 ∪ Σk} − Qk−1

b) Let ΣIk
:= ∪i∈Ik

Σi and Θk := ∪j∈J−Qk−1
∆j .

c) If Jk 6= ∅, define Vk := ×j∈Jk
Hj . Otherwise,

set Vk as the canonical recognizer of Σ∗

k (thus,

Vk imposes no constraint).

d) Let Ak−1 := κk(Wk−1) with the abstraction

κk−1 : φ(Tk−1) → φ(ΣAk−1
)

where (ΣIk
∪ Θk) ∩ Tk−1 ⊆ ΣAk−1

⊆ Tk−1.

e) Synthesize a nonblocking supervisor Sk ∈ φ(Γk)
of Ak−1 × Gk with respect to Vk , where Γk :=
ΣAk−1

∪ Σk. If such an S is not empty, go to

Step (f). Otherwise, terminate.

f) Let Tk := ΣAk−1
∪ Σk, Qk := Qk−1 ∪ Jk and

Wk := Ak−1 × Gk × Sk. �

To explain ASDS, suppose n = 3 and the ordering

of components is G1, G2, G3. Suppose there are r ∈ N

specifications: H1, H2, · · · , Hr. Among these specifications,

suppose specifications H1, · · · , Hm (m ≤ r) ‘touch’

only G1 and G2 in the sense that ∆i ⊆ Σ1 ∪ Σ2

for i = 1, 2, · · · , m, and the remaining specifications

Hm+1, Hm+2, · · · , Hr touch not only G1 and G2 but also

G3, namely ∆j ⊆ Σ1 ∪ Σ2 ∪ Σ3 and ∆j ∩ Σ3 6= ∅

for j = m + 1, 2, · · · , r. What ASDS does is as

follows. First, it computes a nonblocking supervisor

S2 to make sure that G1×G2×S2 satisfies the specification

V2 = H1 × · · · × Hm. When {H1, · · · , Hm} = ∅, ASDS

simply sets V2 to be the canonical recognizer of Σ∗

2. In this

case only nonblockingness of the closed-loop behavior is the

synthesis goal. To achieve a nonblocking supervisor S2, an

abstraction A1 of G1 is created. The alphabet ΣA1
is chosen

by whatever convenient reasons, as long as the condition

Σ1 ∩ (Σ2 ∪ Σ3 ∪
r
i=1 ∆i) ⊆ ΣA1

⊆ Σ1 holds. The reason of

imposing this condition is that in the subsequent computation

we can always use A1 to replace G1. If we do not want A1

to lose too much information about controllability during

abstraction, we can set Σ1,c ⊆ ΣA1
. Of course, two many

events remaining in ΣA1
may result in an abstraction with

few states being removed from G1. So there is a tradeoff

issue that we need to deal with when we choose ΣA1
, and

such a tradeoff is, in our opinion, case-dependent. We now

have a plant A1×G2 and a specification V2. By the previous

description we can compute a nonblocking supervisor S2
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satisfying V2. Suppose S2 exists, then we can create a

new plant W2 = A1 × G2 × S2 which is nonblocking and

satisfies V2 = H1 × · · · × Hm. We want to synthesize a

nonblocking supervisor S3 such that W2 ×G3 ×S3 satisfies

V3 = Hm+1 × · · · × Hr. To achieve this, we create an

abstraction A2 of W2, and repeat the same procedure as we

have done for computing S2.

When ASDS terminates at k = n, the collection of local

nonblocking supervisors

S = {Sk ∈ φ(Γk)|k ∈ K = {2, 3, · · · , n}}

is called a distributed supervisor of (the plant)

G = {Gi ∈ φ(Σi)|i ∈ I = {1, 2, · · · , n}}

with respect to the ordering (G1, · · · , Gn) under the

collection of specifications H = {Hj ∈ φ(Γj))|j ∈ J}. Let

G := ×i∈IGi, S := ×k∈KSk and H := ×j∈JHj . We have

the following result.

Proposition 3: Let S = {Sk|k ∈ K} be computed by

ASDS. Then S is a nonblocking supervisor of G with

respect to H . �

The proof of Prop. 3 uses induction on k with Prop. 2.

Although during the above construction S contains |I| − 1
local supervisors, several may not impose any control

on the system. This can be checked whenever a local

supervisor Sk is computed. In that case we simply remove

that local supervisor from S during online supervisory

control. Clearly, the ordering is important not only for the

computational complexity purpose but also for the existence

of a distributed supervisor. Given a distributed system

G, some ordering of local components may yield empty

distributed supervisory control under ASDS. How to choose

a good ordering is an interesting problem, which hopefully

can be addressed in our future papers.

By imposing an ordering over local components we may

also attain a limited power of reusing local supervisors

when some local component is added to the target system

or dropped out of it, as often encountered in system

reconfiguration. For example, suppose we have a distributed

supervisor {S2, · · · , Sn} with respect to an ordering

(G1, · · · , Gn). If we change or remove Gk (1 ≤ k ≤ n),

we only need to redesign local supervisors {Sr, · · · , Sn},

where r = max{2, k}. If we add some component Ĝ after

Gk and before Gk+1, then we only need to redesign local

supervisors associated with {Ĝ, Gk+1, · · · , Gn}. Thus, a

certain degree of implementation flexibility is achieved.

Finally, we use a concrete example to illustrate the

techniques developed in the previous sections. Suppose we

have three processing units, whose behaviors are depicted

in Figure 2. Each robot Gi (i = 1, 2, 3) has the following

standard operations: (1) fetch a work piece from a source

(ai); (2) put it to a sink (bi); (3) preprocess (ci); (4)

Fig. 2. Processing Units{G1, G2, G3} and Specifications {H1, H2}

postprocess (di). To produce one piece of product, three

work pieces are needed, one for each robot to go through

those standard steps. When the robot G1 preprocesses a

work piece, there is a slight chance that it may get stuck

(f1). Among each alphabet Σi, the controllable alphabet

is Σi,c = {ci}, and for simplicity suppose the observable

alphabet Σi,o is Σi, namely every event is observable. There

are two local specifications depicted in Figure 2, saying that

the robot G1 must preprocess a work piece if G2 does; and

G2 must preprocess a work piece if G3 does. We now start

to synthesize a distributed supervisor by using ASDS.

First, we create an appropriate abstraction of G1. Since

Σ1∩(Σ2∪Σ3∪∆1∪∆2) = {τ, c1}, we simply choose ΣA1
=

{τ, c1}, which contains all controllable events available to G1

as well. In reality, we may also want to include all observable

events in ΣA1
so that the abstraction κ1 : φ(T1) → φ(ΣA1

)
can capture all possible observations as well. In this example,

we do not consider observations because every event is

observable (except for f1). The abstraction A1 := κ1(G1)
is depicted in Figure 3. We now use A1 ×G2 as the overall

model, which is depicted in Figure 3. Since ∆1 ⊆ Σ1 ∪Σ2,

we use H1 as the specification. Clearly, the event c1 must

be disabled at states 1, 2, 3. Otherwise, the blocking state

5 will be reached. The event c2 at state 1 should also be

disabled. Otherwise, the specification H1 will be violated.

The nonblocking local supervisor S2 of A1×G2 with respect

to H1 is depicted in Figure 3, where the alphabet of S2 is

Γ2 = {τ, a2, b2, c1, c2, d2}. We now use A1 × G2 × S2 as a

new plant, and create an abstraction A2. Since (ΣA1
∪Σ2)∩

(Σ3∪∆2) = {τ, c2}, we choose the alphabet ΣA2
= {τ, c2}.

The abstraction A2 = κ2(A1×G2×S2) is depicted in Figure

4. We can see that the new plant model A2 × G3 has the

Fig. 4. A2 and Nonblocking Local Supervisor S3 of A2 × G3 w.r.t. H2

same transition structure as that of G3. But the alphabet of
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Fig. 3. Automata of A1, A1 × G2 and Nonblocking Local Supervisor S2 of A1 × G2 w.r.t. H1

A2 ×G3 is Σ3 ∪ {c2}. We now use H2 as the specification.

Clearly, the event c3 must be disabled because, otherwise, the

specification H2 will be violated. The final nonblocking local

supervisor S3 is depicted in Figure 4, where the alphabet

of S3 is Γ3 = Σ3 ∪ {c2} = {τ, a3, b3, c1, c3, d3}. We can

check that {s1, s2} is a nonblocking distributed supervisor

of {G1, G2, G3} with respect to specifications {H1, H2}.

We can verify that the maximum number of states of any

intermediate computational result in terms of automata is 5

states, which occurs when we compute A1 × G2. Clearly,

abstractions help to reduce the computational complexity in

this example because otherwise we will have to face the

product G1 × G2 × G3 directly, which has 36 states.

IV. CONCLUSIONS

In this paper we introduce a new technique for au-

tomaton abstraction and present an aggregate approach for

distributed supervisor synthesis based on abstractions of

nondeterministic finite-state automata. The main advantage

of this approach is that only local computation is involved,

thus, high complexity incurred by synchronous product of

a large number of components can be avoided. Besides, we

can achieve a certain level of implementation flexibility in

terms of attaining reusability of some local supervisors when

the structure of a target system changes.
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