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Abstract— Behavioral system theory has become a successful
framework in providing a viewpoint that does not depend on
a priori notions of inputs/outputs. In particular, this theory
provides notions as controllability, without an explicit reference
to the state space formalism. One also obtains several interesting
consequences of controllability, for example, direct sum decom-
position of the signal space with a controllable behavior B as
a direct summand. While there are some attempts to extend
this theory to infinite-dimensional systems, for example, delay
systems, the overall picture remains incomplete. This article
extends this theory, particularly the notion of controllability,
to a well-behaved class of infinite-dimensional systems, called
pseudorational. A crucial notion in this context is the Bézout
identity, and we relate a recent result to the context of
behavioral controllability. We establish its relationships with
notions as image representation and direct sum decompositions.

I. INTRODUCTION

Behavioral system theory has become a successful frame-

work in providing a viewpoint that does not depend on

the a priori notions of inputs/outputs. An introductory and

tutorial account is given in [9], [3]. In particular, this theory

successfully provides such notions as controllability, without

an explicit reference to state space formalism. One also

obtains several interesting and illuminating consequences of

controllability, for example, direct sum decomposition of

the signal space with a controllable behavior B as a direct

summand.

There are several attempts to extend this theory to infinite-

dimensional systems, for example, delay systems, and some

rank conditions for behavioral controllability have been ob-

tained; see, e.g., [4], [2], [7], [8]. While these results give a

nice generalization of their finite-dimensional counterparts,

the overall picture still needs to be further studied in a more

general and abstract setting. For example, one wants to see

how the notion of zeros and poles can affect controllability

in an abstract setting. This is to some extent accomplished in

[4], [2], [7] to an extent that is amenable to delay-differential

systems, and then generalized to a more general class in [8].

We here intend to give a theory in a general and unified

setting of the class of pseudorational transfer functions that

has been developed in [10], [11], etc.; this framework is

close to the one used in [8], but has the advantage of

closer relationships with state space realizations, and various

spectral properties.

The paper is organized as follows: Section II introduces

pseudorationality, and then generalizes this notion to the be-

havioral context. We briefly describe a state space formalism

and realization procedures in Section III. Spectral properties

and eigenfunction completeness are also reviewed, and they

are crucial in characterizing coprimeness properties. Section

IV introduces the notions of behavioral controllability in the

present context, and gives various criteria for controllability.

Of particular importance is the Bézout identity. Section V

gives a proof for a condition for the Bézout identity, with

generalization to the multivariable case.

II. PSEUDORATIONALITY

We start by considering the following example of a be-

havior given by a delay-differential equation. We will use

distributions in the subsequent developments, and the reader

is referred to the Appendix for notation and conventions for

distributions and spaces consisting of them.

Example 2.1:

d

dt
w1(t)−w1(t −1)−

d

dt
w2(t) = 0. (1)

Using distributions, we can express the solution space as

[

δ ′− δ1, −δ ′
]

∗

[

w1

w2

]

= 0,

where ∗ denotes convolution (the signal space will be speci-

fied later in a more formal treatment). The delta distribution

δ1 and the derivative δ ′ may be regarded as elements of

the polynomial ring R[δ ′,δ1], and this yields a a common

treatment in the literature. However, for a behavior defined

by
[

δ ′− δ1 − χ , −δ ′
]

∗

[

w1

w2

]

= 0,

where χ is defined by

χ(t) :=

{

1, 0 ≤ t ≤ 1

0, otherwise,
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it is not possible to describe this equation with a convolution

equation with elements in a polynomial ring like R[δ ′,δ1].
On the other hand, all these elements have compact

support. This leads to considering a convolution algebra con-

sisting of elements (distributions) having compact support.

This has an advantage that all system equations are essen-

tially finite-time determined. This leads us to the following

definition, which is an extension of the notion given in [10].

Definition 2.2: Let R be an p× w matrix (w ≥ p) with

entries in E ′(R). It is said to be pseudorational if there exists

a p×p submatrix P such that

1) P−1 ∈D ′
+(R) exists with respect to convolution where

D ′
+(R) denotes the subspace of D ′ having support

bounded on the left;

2) ord(detP−1) = −ord(detP), where ordψ denotes the

order of a distribution ψ [5], [6] (for a definition, see

the Appendix).

Let L2
loc(−∞,∞) be the space of locally square integrable

functions. We give the following definition:

Definition 2.3: Let R be pseudorational as defined above.

The behavior B defined by R is given by

B := {w ∈ (L2
loc(−∞,∞))w|R∗w = 0} (2)

The convolution R∗w is taken in the sense of distributions.

Since R has compact support, this convolution is always well

defined [5].

The behavior B is time-invariant in the sense that σtB ⊂
B for every t ∈ R, where σt is the left shift operator in

L2
loc(−∞,∞) defined by

(σtw)(s) := w(s+ t). (3)

This clearly follows from the definition (2) since R∗(σtw) =
R∗ δ−t ∗w = δ−t ∗R∗w = 0.

We introduce behaviors in a wider space of signals,

namely in the space of distributions. Let D ′ be the space

of distributions on R, and let R be pseudorational. The

distributional behavior B
D

′ defined by R is given by

B
D

′ := {w ∈ (D ′)w|R∗w = 0}. (4)

A. State Space Representation

Let R∈ E ′(R)p×w
be pseudorational. Suppose, without loss

of generality, that R is partitioned as R =
[

P Q
]

such that

P satisfies the invertibility condition of Definition 2.2, i.e.,

we consider the kernel representation

P∗ y +Q∗u = 0 (5)

where w :=
[

y u
]T

is partitioned conformably with the

sizes of P and Q.

When G := P−1∗Q belongs to L2
loc(−∞,∞)

p×m
, and suppG

is contained in [0,∞), it is possible to give a state space model

to (5).

To this end, it is possible to invoke realization theory

developed in [10]; see also [13] for a comprehensive survey.

The idea is the following: Suppose that G belongs to

L2
loc[0,∞). Let 0 be the present time, and consider the set

of all output functions (G ∗ u)|[0,∞) generated by all input

functions u ∈ L2(−∞,0] having bounded support. Let X be

the closure of all such output functions in L2
loc[0,∞). X is

easily seen to be invariant under left shift operators (3).

Taking this as the state transition semigroup, one can obtain

a canonical realization [10].

A nice consequence of pseudorationality is that this space

X is always a closed subspace of the following more tractable

space XP:

XP := {x ∈ (L2
loc[0,∞))p |P∗ x|[0,∞) = 0}, (6)

and it is possible to give a realization using XP as a state

space. This realization turns out to be always observable

([10]), and whether X = XP depends on the coprimeness of

the pair (P,Q) [11].

A remarkable feature of the realization given with XP

as a state space is that the spectrum of A is completely

characterized in terms of the zeros of the Laplace transform

of P.

Theorem 2.4: The spectrum σ(A) is given by

σ(A) = {λ | det P̂(λ ) = 0}, (7)

where P̂ denotes the Laplace transform of P (see the

Appendix). Furthermore, every λ ∈ σ(A) is an eigenvalue

with finite multiplicity. The corresponding eigenfunction for

λ ∈ σ(A) is given by eλ tv where P̂(λ )v = 0. Similarly for

generalized eigenfunctions such as teλ tv′. See [11] for de-

tails. Furthermore, for each λ ∋ σ(A), the resolvent operator

(λ I−A)−1 exists, and is compact.

Since P̂ (and hence det P̂) is an entire function of expo-

nential type by Theorem 6.1, the spectrum is discrete, and

with finite multiplicities.

III. CONTROLLABILITY AND COPRIMENESS

We now introduce the notion of controllability [3] in the

present context.

Definition 3.1: Let R be pseudorational, and B the be-

havior associated to it. B is said to be controllable if for

every pair w1,w2 ∈ B, there exists T ≥ 0 and w ∈ B, such

that w(t) = w1(t) for t < 0, and w(t) = w2(t −T ) for t ≥ T

(see Fig. III).

In other words, every pair of trajectories can be concatenated

into one trajectory that agrees with them in the past and

future.

2

0 T

1
w

w

σ w
T

W

time

W

Fig. 1. Concatenation of trajectories

We also introduce an extended notion of controllability as

follows:

Definition 3.2: Let R be pseudorational, and B
D

′ be the

distributional behavior (4). B
D

′ is said to be distributionally
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controllable if for every pair w1,w2 ∈B
D

′ , there exists T ≥
0 and w ∈ B

D
′ , such that w|(−∞,0) = w1 on (−∞,0), and

w|(T,∞) = σ−T w2 on (T,∞).
We now introduce various notions of coprimeness.

Definition 3.3: The pair (P,Q), P,Q ∈ E
′(R) is said to

be spectrally coprime if P̂(s) and Q̂(s) have no common

zeros. It is approximately coprime if there exist sequences

Φn,Ψn ∈E ′(R) such that P∗Φn +Q∗Ψn → δ I in E ′(R). The

pair (P,Q) is said to satisfy the Bézout identity (or simply

Bézout), if there exists Φ,Ψ ∈ E ′(R) such that

P∗Φ+ Q∗Ψ = δ I, (8)

Or equivalently,

P̂(s)Φ̂(s)+ Q̂(s)Ψ̂(s) = I (9)

for some entire functions Φ̂,Ψ̂ satisfying the Paley-Wiener

estimate (31).

It is well known [3] that controllability admits various nice

characterizations in terms of coprimeness, image represen-

tation, full rank conditions, etc. We here attempt to give a

generalization of such results to the present context. To this

end, we confine ourselves to the simplest scalar case, i.e.,

p = m = 1. We will also assume that q also satisfies the

condition that the zeros of q̂(s) are contained in a half plane

{s |Re s < c} for some c ∈ R. (This is needed in the proof of

Theorem 4.1.)

Theorem 3.4: Let R be pseudorational, and suppose with-

out loss of generality that R is of form R :=
[

p q
]

where

p satisfies the invertibility condition in Definition 2.2. Let

B
D

′ be the distributional behavior (4). Then the following

statements are equivalent:

1) B
D

′ is controllable.

2) There exist ψ ,φ ∈ E ′(R) such that p ∗φ + q∗ψ = δ .

3) B
D

′ admits an image representation, i.e., there exists

M over E ′(R) such that for every w∈B
D

′ , there exists

ℓ ∈ D ′ such that w = M ∗ ℓ.

4) B
D

′ is a direct summand of (D ′)2, i.e., there exists an

distributional behavior B′ such that D ′ = B
D

′ ⊕B
′.

5) Let Λ := {λ ∈C|p̂(λ ) = 0}. Suppose that the algebraic

multiplicities of the zeros λ ∈ Λ are globally bounded.

There exist k ≥ 0 and c > 0 such that

|λ kq̂(λ )| ≥ c, ∀λ ∈ Λ. (10)

Proof We will prove 2) ⇒ 3), 4), 5), and 3), 4) ⇒ 1),

and 1) ⇒ 2), and then prove 5) → 2) separately in the next

section.

2) ⇒ 3) Consider the mapping

πB
D

′
: D ′ ∋ ℓ →

[

q

−p

]

∗ ℓ ∈ (D ′)2. (11)

We claim that this gives an image representation. Since

[

p q
]

[

q

−p

]

∗ ℓ = 0,

the image of (11) clearly belongs to B
D

′ . We need only to

prove that this mapping is surjective to B
D

′ . Take any

[

y

u

]

in B
D

′ , and set

ℓ :=
[

ψ φ
]

∗

[

y

u

]

. (12)

It follows that
[

q

−p

]

∗
[

ψ φ
]

∗

[

y

u

]

=

[

q ∗ψ q ∗φ
−p ∗ψ −p ∗φ

]

∗

[

y

u

]

=

[

δ − p ∗φ q ∗φ
−p ∗ψ q ∗ψ − δ

]

∗

[

y

u

]

=

[

y−φ ∗ (q∗ u− p ∗y)
u−ψ ∗ (q∗ u− p ∗y)

]

=

[

y

u

]

Hence πB
D

′
is surjective and 3) follows.

2) ⇒ 4) To prove 4), first note that
[

p q

−ψ φ

]

is a unimodular matrix in E ′(R). In fact, its determinant is

p ∗φ + q ∗ψ = δ . Define ˜B
D

′ by

˜B
D

′ :=

{[

y

u

]

|
[

−ψ φ
]

∗

[

y

u

]

= 0

}

.

We first claim B
D

′ ∩ ˜B
D

′ = {0}. Indeed, If
[

y u
]T

belongs to both B
D

′ and ˜B
D

′ ,
[

p q

−ψ φ

]

∗

[

y

u

]

= 0

which readily yields
[

y u
]T

= 0 because of the unimod-

ularity of the matrix on the right.

Now take any
[

y u
]T

in (D ′)w. Define
[

v

x

]

:=

[

p q

−ψ φ

]

∗

[

y

u

]

. (13)

Then
[

y

u

]

=

[

p q

−ψ φ

]−1

∗

[

v

x

]

=

[

φ −q

ψ p

]

∗

[

v

x

]

=

[

−q

p

]

∗ x +

[

φ
ψ

]

v.

The first term belongs to B
D

′ while the second term to ˜B
D

′ .

Hence the correspondence (13) is surjective to D ′w, and

D ′w = B
D

′ ⊕ ˜B
D

′ . Furthermore, since this correspondence

is clearly continuous with respect to the topology of D ′, this

direct sum decomposition is topological.

2) ⇒ 5) Suppose 2) holds. Substituting λ ∈ Λ, we obtain

q̂(λ )φ̂(λ ) = 1. Since φ has compact support, φ̂ is at most

of polynomial order [5]. Taking k to be such an order, 5)

follows.

3) ⇒ 1) Suppose 3) holds, and let w1,w2 ∈B
D

′ . Then there

exist ℓ1, ℓ2 ∈ D ′ such that w1 = M ∗ ℓ1 and w2 = M ∗ ℓ2. By

suitably shifting M to the left, we may assume without loss
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of generality that suppM is contained in (−a,0) for some

a > 0. Now take any T > a. It is easy to see that

πT (M ∗σT ℓ2) = πT (M ∗πT (σT ℓ2)) (14)

where πT f = f |(T,∞). Now define ℓ ∈ D ′ such that

ℓ|(−∞,0) := ℓ1|(−∞,0), (15)

ℓ|(T,∞) := σT ℓ2|(T,∞). (16)

It is possible to connect ℓ using the partition of unity [5]. It is

also clear that M∗ℓ agrees with w1 = M∗ℓ1 and πT (σT w2) on

(−∞,0) and (T,∞), respectively. Hence B
D

′ is controllable.

4) ⇒ 1) Suppose (D ′)2 = B
D

′ ⊕ B̃
D

′ with

˜B
D

′ =

{[

y

u

]

|
[

−ψ φ
]

[

y

u

]

= 0

}

. (17)

We will show that

R :=

[

p q

−ψ φ

]

is unimodular, i.e., detR is invertible. Since B
D

′ ∩ ˜B
D

′ = 0,

R∗ [y,u]T = 0 clearly implies [y,u]T = 0. We claim that R is

surjective. Let r := detR = p∗φ +q∗ψ . It suffices to prove

that r is unimodular. Since r belongs to E
′(R), its Laplace

transform r̂(s) admits the Hadamard factorization (33):

r̂(s) = skeas
∞

∏
n=1

(

1−
s

λn

)

exp

(

s

λn

)

.

It is easy to see that a is real. If r̂ has a zero, say λ , then

x := eλ t satisfies r∗x = 0. Thus detR has a nontrivial kernel,

and hence R cannot be injective, which is a contradiction.

Hence r is unimodular, i.e., r−1 ∈ E ′(R). It now follows that

p ∗φ ∗ r−1 + q∗ψ ∗ r−1 = r ∗ r−1 = δ .

1) ⇒ 2) We first consider the case for B with p−1

belonging to L2
loc(−∞,∞). By shifting p−1 suitably to the

left, we may assume without loss of generality that p−1

belongs to L2
loc[0,∞) and also that p,q ∈ E ′(R−). Partition w

conformably with p and q as w =
[

y u
]T

. We can invoke

realization theory for p−1 ∗ q as developed in [10] to obtain

x(t) = xfree(t)+ (p−1 ∗ q∗ u)|(0,∞) (18)

where xfree(t) is the solution to

p ∗ x = 0.

Hence every xfree(t) should take the form p−1 ∗ x0 for

some x0. Since B is controllable, there exist T > 0 and
[

y u
]T

∈ B such that

(y,u) =

{

(0,0) t < −T

(p−1,0) t > 0

This readily implies that there exists ψ ∈ L2[−T,0] such that

p−1 ∗ q∗ψ |(0,∞) = p−1. In other words,

p−1 ∗ q∗ψ = p−1 −φ

for some φ ∈ L2[−T,0]. Convolving p from the left yields

p ∗φ + q ∗ψ = δ .

For the general case for B
D

′ and p−1 ∈ D
′
+(R), we

need only to extend the above “state space formulas” to

distributions. Formula (18) works equally well. We omit the

details. �

Remark 3.5: Related results have been obtained in [8], but

the relationships between various notions are not necessarily

equivalences (not necessary and sufficient). The transparency

of the results here is clearly due to the introduction of

distributional behavior B
D

′ .

IV. BÉZOUT IDENTITY

As we have seen in the previous section, the Bézout

identity plays a crucial role in characterizing controllability.

This is first obtained in [12] for the case of E ′(R−). We

here extend this result to E ′(R).

Let us first note that we may assume that both p and q

belong to E ′(R−) by suitably shifting them to the left. This

would make a difference only by a factor δa, a ≤ 0, but

since δa is unimodular in E ′(R), this does not cause any

difficulty. Likewise, we may also assume max{r(p),r(q)}=
0 by shifting them either to the left or right. So let us

hereafter assume that one of p and q, say, p satisfies r(p) = 0.

This guarantees “eigenfunction completeness” [11], i.e., the

eigenfunctions {tmkkeλkt} span a dense subspace of the space

X p [11].

The following theorem is obtained in [12]:

Theorem 4.1: Let p−1 ∗ q be pseudorational such that

r(p) = 0. Suppose that there exists a nonnegative integer m

such that

|λ m
n q̂(λn)| ≥ c,n = 1,2, . . . (19)

Then the pair (p,q) is Bézout.

The rest of this section is devoted to the proof of this

theorem.

Note first that (8) means [q] ∼= [δ ] modulo p, namely [q]
is invertible over the quotient algebra E

′(R−)/(p). This is

characterized in [12]. We here briefly review the outline of

the proof and indicate the basic idea, with indications for a

generalization to the multivariable case.

We first observe that E ′(R−) and E [0,∞) are dual to each

other with respect to the following duality:

〈α, f 〉 := (α ∗ f )(0), α ∈ E ′(R−), f ∈ E [0,∞). (20)

It is easy to see that (20) defines a separately continuous

bilinear form on E ′(R−)×E [0,∞), and they are indeed dual

to each other.

The outline of the proof is as follows:

1) To characterize the invertibility of [q] in E ′(R−)/(p),
we view E

′(R−)/(p) as the dual of a closed subspace

(denoted E (p)) of E [0,∞).

2) E (p) admits a very simple representation. Due to the

condition r(p) = 0, E (p) is eigenfunction complete

[11], and every element admits an infinite series ex-

pansion: x = ∑n αneλnt .

3) With respect to the duality (20), the action of q on eλnt

is given by

〈q,eλnt〉 = (q ∗ eλnt)(0) = q̂(λn). (21)
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4) Using (21), we see that the candidate for ψ := [q]−1

should satisfy ψ̂(λn) = 1/q̂(λn).
5) Whether this formula leads to a well defined element

in E
′(R−)/(p) is the crucial step.

Let us start with the following lemma:

Lemma 4.2: The dual space of E ′(R−)/(p) is given by

(E ′(R−)/(p))′ = {x ∈ E [0,∞)|p ∗ x ∈ E ′(R−)}

=: E (p). (22)

Proof Since (E ′(R−))′ = E [0,∞), we have

(E ′(R−)/(p))′ = {x ∈ E [0,∞) |〈α,x〉 = 0,∀α ∈ (p)}

= {x ∈ E [0,∞) |(δ−t ∗ p ∗x)(0) = 0,∀t ≥ 0}

= {x ∈ E [0,∞) |p ∗ x ∈ E
′(R−)}.

�

From here on suppose for simplicity that the zeros λn of

q̂(s) are all simple zeros, and that m in (19) is 0 (although

these are not at all necessary).

Lemma 4.3: Under the hypothesis of r(p) = 0,

span{eλnt}∞
n=1 (23)

is dense in E (p). Furthermore, every x ∈ E (p) admits an

expansion of type

x =
∞

∑
n=1

αneλnt ∈ E (p) (24)

that converges with respect to the topology of E [0,∞).
Proof The dense property of the subset (23) can be proven

similarly as that given in [11]. (The proof given there is for

L2
loc[0,∞) instead of E [0,∞) but the proof is similar).

We want to show (24).

Take any x ∈ E (p). Then there exists a sequence xi such

that

xi(t) =
n(i)

∑
n=1

α
(i)
n eλnt

and xi → x ∈ E (p) as i → ∞. This means that every derivative

of finite order ∑
n(i)
n=1 α

(i)
n λ m

n eλnt converges to (d/dt)mx. In

particular, ∑
n(i)
n=1 α

(i)
n λ m

n is convergent for every m ≥ 0. By

the same argument as given for (27) below, ∑
n(i)
n=1 α

(i)
n λ m

n eλnt

is uniformly and absolutely convergent on every bounded

interval [0,T ].

We first claim that for each fixed n, the sequence {α
(i)
n }

is convergent as i → ∞. By the Hahn-Banach theorem, take

a continuous linear functional fn ∈ (E (p))′ such that

〈 fn,e
λ jt〉 = δ jn

where δ jn denotes Kronecker’s delta. Then

〈 fn,∑
n(i)
n=1 α

(i)
n eλnt〉 = α

(i)
n . By continuity, the left-hand

side converges to 〈 fn,x〉, so that α
(i)
n is convergent, as

i → ∞.

Now define αn := limi→∞ α
(i)
n . Then

x(t) = lim
i→∞

xi(t) = lim
i→∞

n(i)

∑
n=1

α
(i)
n eλnt .

Since the last term converges locally uniformly and abso-

lutely, we can exchange the order of lim and ∑, and see that

the last term is equal to ∑∞
n=1 αneλnt . The same can be said

of every finite-order derivative, and this shows that the series

∞

∑
n=1

αneλnt

actually converges in E (p). This completes the proof. �

Note that the proof above works equally well for the

multivariable case. All we need to do is to replace αn by

a corresponding eigenvector.

In view of the Lemma above, we are led to the definition

〈
∞

∑
n=1

αneλnt ,ψ〉 =
∞

∑
n=1

αn/q(λn). (25)

We need to show that this gives a continuous linear form on

E (p). Once this is shown to be convergent, it clearly gives

the inverse of [q] over E ′(R−)/(p) in view of (21).

This is guaranteed by the following lemma:

Lemma 4.4: Let

x =
∞

∑
n=1

αneλnt ∈ E
(p). (26)

Then for every r,
∞

∑
n=1

αnnr < ∞. (27)

In particular,
∞

∑
n=1

|αn| < ∞. (28)

Sketch of Proof The idea of the proof is that if (26)

is convergent (which is guaranteed by Lemma 4.3), then it

means a very strong convergence since it should converge

with respect to the topology of E [0,∞). In particular, the

derivative of an arbitrary order should converge. Since λn are

the zeros of an entire function p̂(s) of exponential type, it

grows with order as fast as n [1, Chapter 8]. This essentially

yields (27). A complete proof may be found in [12]. �

V. DISCUSSIONS

It is proven in [2], [4] that systems with commensurable

delays are controllable if and only if the matrix R has

constant rank for all λ ∈ C. This is somewhat mysterious

in the light of Theorem 3.4, since condition 5) requires that

there be no “asymptotic cancellation at ∞,” while the result

by [2], [4] requires only “no cancellation in C.”

For the commensurate-delay case, p and q belong to

R[δ ′,δ−a], i.e., p̂, q̂ ∈ R[s,eas] for some a > 0. We can then

write p̂ = p̂(s,z) and q̂ = q̂(s,z) with z = eas. Regard q̂(s,z)
as a polynomial of two variables in s,z. Then q̂(s,z) as s→∞
can go to zero only at most with polynomial order in s,z.

Hence if there is an asymptotic cancellation as s → ∞, this

can be removed by multiplying a suitable factor sm, because

such a cancellation must be of polynomial order. Hence

condition (10) is satisfied. This observation is in comformity

with a result in [7, Proposition 4.2] which requires that

the “cancellation” should be of polynomial type. It also
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agrees with the general observation why the above simple

result for the commensurate delay does not carry over to the

noncommensurable delay case.

Example 5.1: Consider the pair (z,sz − 1), z = es. This

pair has an asymptotic cancellation for z = 1/s, as s → ∞.

But this cancellation can be removed by multiplying s to the

first component z. Hence the pair (es,ses−1) is Bézout over

E ′(R). Indeed, es × s+(ses −1)× (−1) = 1.
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APPENDIX: NOTATION AND NOMENCLATURE

Let D
′ be the space of distributions on R, and D

′
+(R)

its subspace consisting of those having support bounded on

the left. E ′(R) denotes the subspace consisting of those with

compact support. E ′(R−) is the subspace of E ′(R) consisting

of those with support contained in the negative half line

(−∞,0]. Each of these spaces constitutes a convolution

algebra. Distributions such as Dirac’s delta δa placed at

a ∈ R, its derivative δ ′
a are examples of elements in E ′(R−).

A distribution α is said to be of order at most m if it

can be extended as a continuous linear functional on the

space of m-times continuously differentiable functions. Such

a distribution is said to be of finite order. The largest number

m, if one exists, is called the order of α ([5], [6]). The delta

distribution δa, a ∈ R is of order zero, and its derivative δ ′
a

is of order one, etc. A distribution with compact support is

known to be always of finite order ([5], [6]).

For a distribution α ∈ E
′(R), define real numbers ℓ(α)

and r(α) by

ℓ(α) := inf{t|t ∈ suppα}, (29)

r(α) := sup{t|t ∈ suppα}. (30)

For a distribution f ∈D ′, we denote its Laplace transform

by f̂ , if it exists. Every f ∈ E ′(R) has Laplace transform.

The following Paley-Wiener theorem is fundamental for the

Laplace transform of elements in E ′(R).
Theorem 6.1 ([5]): A complex analytic function f (s) is

the Laplace transform of a distribution φ ∈ E
′(R) if and

only if f (s) is an entire function that satisfies the following

growth estimate for some C > 0,a > 0 and integer m ≥ 0:

| f (s)| ≤ C(1 + |s|)mea|Res|. (31)

In particular, f (s) = φ̂(s) for some φ ∈ E ′(R−) if and only

if it satisfies the estimate

| f̂ (s)| ≤ C(1 + |s|)meaRes,Re s ≥ 0,

≤ C(1 + |s|)m,Res ≤ 0 (32)

for some C > 0,a > 0 and integer m ≥ 0. In this case, the

support of φ is contained in [−a,0]
We will refer to (31) as the Paley-Wiener estimate.

The zeros of f̂ (s) are discrete, and each zero has a

finite multiplicity. This in particular implies the following

Hadamard factorization for f̂ (s) [1]:

f̂ (s) = skeas
∞

∏
n=1

(

1−
s

λn

)

exp

(

s

λn

)

. (33)

Since there are no finite accumulation point for {λn}, λn →∞
as n → ∞.
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