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Abstract—Necessary and sufficient conditions for the 
existence of diagonal, block-diagonal and triangular decoupling 
controllers in linear multivariable systems are presented for the 
most general setting. The plant model in this paper is general 
enough to accommodate non-square plant and non-unity 
feedback cases with 1DOF (one-degree-of-freedom) or 2DOF 
controller configuration. It is shown that the existence condition 
is finally described in terms of rank conditions on coefficient 
matrices in partial fraction expansion. 

I. INTRODUCTION 
HE existence condition of decoupling controllers in linear 
multivariable systems has been studied in the past. 
Vardulakis [10] proposed a sufficient condition that a 
diagonal decoupling controller exists if there is no 

unstable pole-zero coincidence of the plant. Necessary and 
sufficient conditions for decoupling controllers were 
obtained in various ways. Lin [5,6] exploited the internal 
stability requirement as the constraints in constructing 
diagonal and block-diagonal input-output maps. Youla and 
Bongiorno [13] took similar approach with that of [5,6] for a 
diagonal decoupling problem but the class of all stabilizing 
decoupled transfer matrices were explicitly parameterized, 
which made it possible to derive the optimal H2 decoupling 
controller.  G□mez and Goodwin [2]  adopted an algebraic 
approach based on coprime factorizations to treat diagonal 
and triangular decoupling designs. In [12],  a unifying 
approach was suggested to treat diagonal, block-diagonal and 
triangular decoupling problems. Above mentioned papers, 
however, considered the conventional model with unity 
feedback [2,5,6,10] or with state- feedback [12].  In [13], the 
unity feedback constraint was loosened but arbitrary 
non-unity feedback was still not assumed. Deseor and 
G□ndes[15] derived all diagonal input-output maps 
achievable by stabilizing 2DOF(two-degree-of-freedom) 
controllers. Their derivation was based on a general setting 
which included delay or infinite dimensional systems. 
 
In this paper, necessary and sufficient conditions for the 

existence of decoupling controllers are presented in the 
generalized plant model which accommodates non-square 
plants and non-unity feedback case with 1DOF or 2DOF 
configuration. The approach taken in this paper is so simple 
and direct that diagonal, block- diagonal and triangular 
decoupling problems are treated in a unified frame. It turns 
out that the existence condition is described in terms of rank 
conditions on the coefficient matrices in partial fraction 
expansion.  
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Notations; Throughout the paper, only real rational 
matrices are considered. The notation baT  stands for the 
transfer matrix from a  to b . A rational matrix  is said 
to be stable if it is analytic in  and iff stands for “if 
and only if”. The Kronecker product of two matrices is 
denoted as 

)(sG
0Re ≥s

RG ⊗ .  denotes the vector formed by 
stacking all the columns of the matrix G . The Khatri-Rao 
product of two matrices is denoted as ⊙ and is the matrix 
whose i -column is given by ii  where i  and ir  are the 

-column of G  and i - column of R , respectively. For a 
diagonal matrix, vecd  denotes the vector formed by 
stacking all the diagonal elements of the matrix G . When 

is a diagonal matrix,  

)(Gvec

G R
rg ⊗ g

i
)(G

V =)(AVDvec =⊗ )()' VD
Vvecd

( vecA  
⊙ [1]. '(D )()A

II. INTERNAL STABILITY AND REALIZABILITY CONDITIONS 
The generalized plant model under consideration is shown 

in Figure 1. The variable r  is an exogenous input and the 
variable v is the target variable we are interested in. The 
variables  and  are the control input and the measured 
variable, respectively. The variables 

u y
r  and  are the ones 

such that the transfer matrix vrT  is to be decoupled. In most 
cases, 

v

r  is the reference input and  is the plant output. The 
transfer matrix of the generalized plant is given by  

v
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The variables v and r  have the same dimension of 1×m . 
The variables u and  have the dimensions y 11 ×m  and 

12 ×m , respectively.  
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Figure 1.  The generalized plant model 
 

 
The following assumption is necessary and sufficient for 

the existence of a stabilizing controller [9]. 
 
Assumption 1: The general plant block  is free of 

hidden modes in  and . 
)(sP

0Re ≥s ++ Ψ=Ψ
22PP

T 
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The notation  denotes the characteristic denominator [14] 
of the rational matrix  and  absorbs all the zeros in 

. Consider the polynomial coprime fractional 
expressions for ; 

PΨ
)(sP +ΨP

0Re ≥s
22P
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There always exist polynomial matrices  
and  such that  
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with . (Adopting proper stable rational 
coprime fractions does not affect the remaining results of this 
paper). It is well known [7] that the condition  in 
Assumption 1 is equivalent to the one that 

0)(det)(det 1 ≡/sXsX

++ Ψ=Ψ
22PP

 
20110200 PYAPP − ,   and                         (4) 102 AP 20AP

 
are stable. is the transfer matrix to be decoupled and is  
given by 

)(sTvr

 
       .                (5) 20

1
220200 )()(: CPCPIPPsTT vr

−−+==
 

Definition 1: A rational matrix is said to be realizable 
for the given plant  if there exists a stabilizing controller 

 that realizes the transfer matrix of the system as 
the matrix . 

)(sT
)(sP

)(sC )(sTvr

)(sT
 
From (1), it follows that  and, usually, the 

variable 
uPrPv 0200 +=

v  is the plant output and it does not contain a direct 
term of the reference input r . Hence, in almost all cases 

becomes a null matrix. When , it follows that  00P 000 =P
 

20
1

2202 )( CPCPIPT −−=                         (6) 
 
 In decoupling design, the transfer matrix T  is required to be 
of full rank as well as the diagonal requirement. In view of (6) 
it is necessary that   and   for the full 
rank requirement of 

1mm ≤ mPrank =)02(
T . Similarly, it is required that 2   

and  . Although we presume that 
mm ≤

mPrank =)( 20 000 =P , we 
don’t assume this to keep the plant model as general as 
possible and assume only the following rank conditions. 

 
Assumption 2: 

 ,  and 1mm ≤ 2mm ≤ mPrankPrank == )()( 2002 .      
 
Next, consider the class of all stabilizing controllers 

characterized by the formula  
 

                     (7) )()()( 1
1

1 KAYKBXsC +−−= −

 
where  arbitrary real rational stable matrices such that 

.  Inserting this formula to (5), we obtain  
)(sK

0)det( 1 ≡/− KBX
 

201020 KAPAPTT −= ,                                 (8) 
where  

201102000 : PYAPPT −=                                  (9) 
 

is a stable matrix by (4). Notice that T is also stable 
since , and 102 AP 20AP K are stable. Since =)( 02Prank  

 )( 20Prank m= , the ranks of  and  are also  and 
in this case it is well known that there exist and 

 unimodular matrices  and [3,4] such that 

102 AP 20AP m

11 mm ×

22 mm × 1V 2V
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where . Now, consider the following partition  1

2
1

1
ˆ −−= KVVK
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where the dimensions of 11 and 22 areK̂ K̂ mm × and 

)( 1 mm − )( 2 mm −× , respectively. Then it follows that 
 

2011100
ˆ RKRTT −=                               (13) 

and hence 
                       .                            (14) 1

20
1

10
1

200
1

1011
ˆ −−−− −= TRRRTRK

 
In view of (7) and (14), a stable rational matrix T  is 

realizable for  iff it makes  stable. 
As we can see, a realizable 

)(sP 1
20

1
10

1
200

1
10

−−−− − TRRRTR
T  determines only 11 , a part 

of
K̂

K̂ , and the other parts of  K̂  can be obtained by other 
criterions of control system design. 

 
The equation in (14) has the typical structure to which 

many realizability problems ultimately reduce. So, instead of 
solving the specific equation of (14) we will stick to the more 
general form in the following: 

 
Standard problem for realizability(SPR): Given matrices 

γβα ,,, =Φ ii , find a stable T  that makes sΦ  stable where 
 

βαγ ΦΦ−Φ=Φ Ts
                               (15) 

                   
and the dimensions of αΦ ,

βΦ  and T  are nm ×3 , 4mn × and 
nn × , respectively. 

 
The realizability problem of T  for the generalized plant 

model in Fig. 1 reduces to the SPR with 
 

 ,    and           (16) 1
200

1
10

−−=Φ RTRγ
1

10
−=Φ Rα

1
20
−=Φ Rβ

 
For different realizability problems, we have different values 
of 

βα ΦΦ , and  (see section V). γΦ
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III. DECOUPLING PROBLEMS 
 
In the previous section, we have defined SPR in which we 

find a stable transfer matrix T that guarantees the existence 
of a stabilizing controller .  When an additional 
requirement is added to the transfer matrix 

C
T , we need to add 

this constraint on T in solving SPR. It will be shown shortly 
that when a decoupling constraint is added, the standard 
equation in SPR can be transformed to a new standard 
equation by vector operation and this invokes introduction of 
a new standard problem. 
 
 
Standard Problem for Decoupling Design (SPDD): Given 
a vectorφ and a matrix , find a stable vector that makes Ψ )(sh

sφ  stable where 
 

         nmnhhs
~:,1~:; 5 ×Ψ×Ψ−= φφ .                (17) 

 
In the following, we will consider the three decoupling 

problems and explain the procedure of transforming SPR 
with a given decoupling constraint to SPDD. 
 

A.  Diagonal Decoupling 
Suppose that we ask  T  to be diagonal in SPR. Taking 

vector operation on both sides of eq. (15) we get SPDD 
equation in (17) with 

 
          )( γφ Φ= vec , ⊙  and .        (18)     '

βΦ=Ψ αΦ )(Tvecdh =

B. Block Decoupling 
Suppose that T in SPR is a block diagonal matrix of the 

form where is an block matrix and 
 . Consider the partitions 

{ }k
iiTdiagT 1== iT ii nn ×
nnnn k =+++ L21

 
][ 21

ααα
α kΦΦΦ=Φ L ,                      (19) 

        
'])'()'()'([ 21

βββ
β kΦΦΦ=Φ L ,               (20) 

 
where the dimensions of  and  are α

iΦ β
iΦ inm ×3  

and , respectively. Then it follows that 4mni ×
 

 .                                (21) βα
βα ii

k
i i TT ΦΦ=ΦΦ ∑ =1

 
Taking vector operation on both sides of (15) with (21), we 
get the equation (17) with 
 
    (22) ])'()'()'([ 2211

αβαβαβ
kk Φ⊗ΦΦ⊗ΦΦ⊗Φ=Ψ L

 
     )( γφ Φ= vec , .  (23) [ ]')'()'()'( 21 kTvecTvecTvech L=

 

C. Triangular Decoupling 
We consider only the lower triangular case here. The 

formula for the upper triangular case can be obtained by 
minor modification of the results given below. Suppose that 

T in SPR  is a lower triangular form of ][ ijtT =  , 0=jit , 
for ji > .  In this case, it can be shown that 
 

βα
βα )1(,1)1(1 , indi

n
i ni TT −+−= ΦΦ=ΦΦ ∑                      (24) 

 
where is the matrix consisting of the columns of α

21 ,ccΦ αΦ  
from - column to - column and is the matrix 
consisting of the rows of 

1c 2c β
21 ,rrΦ

βΦ  from  row to −1r −2r  row  
and id  denotes the lower  off-diagonal matrix of T thi −
T with the dimension )()( inin −×−  . That is, 
 

    { }inniiidi ttttdiagT −+++= ,3,32,21,1 ,,,, L     (25) 
for 1,,1,0 −= ni L . Taking vector operation on both sides of  
(15) with (24), we get (17) with 
 

=Ψ [ ⊙ ⊙ ⊙ ], )'( ,1
β

nΦ )'( 1,1,1
βα

−ΦΦ nn M )'( 1,1,2
βα ΦΦ MLMn

α
nn ,Φ

)( γφ Φ= vec                                        (26) 
and   

[ ] ')'()'()'( )1(10 dndd TvecdTvecdTvecdh −= L .      (27)         

IV. SOLVABILITY CONDITION OF SPDD 
In the previous section, we have shown that the 

realizability problems associated with various decoupling 
constraints are reduced to SPDD. Now we will find the 
necessary and sufficient condition for the existence of a 
solution to SPDD. 

A. Simple Pole Case 
Suppose that ν,,2,1, L=isi are distinct unstable poles of 

φ or Ψ in (17) and they are simple. Then it is possible to 
express φ  and Ψ as 
 

)(01
s

ss
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i
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i φφ
ν

+
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= ∑ =
   and  )(01

s
ss

R
i

i

i Ψ+
−

=Ψ ∑ =

ν ,  (28) 

 
where and  are the residues of ir iR φ  and Ψ  at , 
respectively, and

is
)(0 sφ and )(0 sΨ are stable . Then it follows 

from (17) that 
 

  )()()(
)(

001
shss

ss
shRr

i
i

ii
s Ψ−+

−
−

= ∑ =
φφ

ν               (29) 

 
and the vector sφ is stable iff the summation term is stable, 
which is equivalent to the condition that ,)( iii rshR =  

ν,,2,1 L=i . This linear equation has a solution    iff )( ish
 

                 )]([)( iii rRrankRrank M=                               (30) 
 
(or, equivalently, i  is included in the range space of i ) for 
each 

r R
ν,,2,1 L=i . Suppose that the above rank condition is 

satisfied and let a solution for be i)( ish μ . It is not difficult to 
show that there always exists a stable vector satisfying 
the interpolation conditions

)(sh
νμ →== 1,)( ish ii . Hence the 

rank condition in (30) is the necessary and sufficient 
condition for SPDD to have a solution. 
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B. General  Case 
Now we consider the general case. Let ν,,2,1, L=isi be 

the distinct unstable poles of φ or in (17) and let 
where and  are the multiplicities 

of as the pole of 

Ψ

),max( Ψ= pppi φ φp Ψp

is φ and , respectively.  Then Ψ φ  
and are expressed as Ψ
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where )(0 sφ and are stable. From (17), it follows that )(0 sΨ
 

                        (33) )()()( 001 shssi sis Ψ−+= ∑ = φφφ ν
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Since )(0 sφ , and are stable, )(0 sΨ )(sh sφ  is stable iff siφ is 
stable for each ν,,2,1 L=i . Let’s find the partial fraction 
expansion of siφ  at the pole . For ease of presentation, we 
will consider the case . After straightforward 
calculation, we get the results 

is
3=ip
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where 
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and 0siφ  a stable vector. Since 0siφ  is stable, siφ  is stable iff  
 

3,2,1,0 == kk
iξ .                           (37) 

 
Resolving (36) and (37), we get the following linear equation 
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Hence the condition in (37) is satisfied iff there exists a 
solution ih~ for the equation (38) and this leads to the 

condition 
 

            )]~~([)~( iii rRrankRrank M= .                           (41) 
 
Suppose that the above rank condition is met and let 

'])'(2/1)'()'[(~ 210
iiii μμμμ = be a solution for ih~ so that  

  
     .       (42) 210 )('')(',)( iiiiii shandshsh μμμ ===

 
The remaining thing is to show that there exists a stable 
rational vector satisfying the interpolation conditions in 
(42). Let’s denote the elements of the vectors and 

 as following; 

)(sh
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q
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q
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q
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Then finding a vector satisfying the interpolation 
conditions in (42) becomes finding a scalar function 

satisfying the following interpolation conditions for 

)(sh

)(shk

nk ~1 →= ; 
 

  .      (45) 210 )('')(',)( ikikikikikik shandshsh μμμ ===
 
Let )(/)()( sgsmsh kkk =  where  is an arbitrary 
polynomial and is an arbitrary fixed strict-Hurwitz 
polynomial. Then, 

)(smk

)(sg k

                                    (46) )()()( smshsg kkk =
    )(')(')()()(' smshsgshsg kkkkk =+                   (47) 

)('')('')()(')('2)()('' smshsgshsgshsg kkkkkkk =++    (48)  
 

Hence the values of and are 
obtained from and and let’s denote 
them as . Now the problem of finding 

satisfying (45) becomes one of finding the polynomial 
satisfying the interpolation conditions 

)(',)( ikik smsm )('' ik sm
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and such a polynomial always exists. Now let’s extend 
these results to the general case. Since the interpolation 
conditions in (45) should be satisfied for each value of 

)(smk

ν,,2,1 L=i , the scalar function  should satisfy the 
interpolation conditions 

)(shk
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As shown previously, the problem can be changed to one of 
finding a polynomial satisfying the interpolation 
conditions 

)(smk
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q
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q
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It is well known that such a polynomial always exists )(smk
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[page 49, 11]. Hence the rank equality in (41) for each i  is 
the necessary and sufficient condition for SPDD to have a 
solution. Now we are ready to state the main theorem. 
 
Theorem: Let ν,,2,1, L=isi , be the distinct unstable poles 
of φ or in (17) with multiplicity . The 
SPDD has a solution iff 

Ψ ),max( Ψ= pppi φ

iii rhR ~~~ = has a solution for each i  
or, equivalently, the following rank conditions are satisfied; 
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Here, and  are the coefficients of the term in 
partial fraction expansions of 

q
ir q

iR q
iss )/(1 −

φ  and , respectively. Ψ
 
To sum up, checking the existence of a decoupling 

controller for the generalized plant model is finally reduced 
to checking the rank conditions in (52). A realizable 
decoupling matrix T can be obtained by finding a 
stable satisfying the interpolation constraints.  Note also 
that 

)(sh

iR~  in (53) is a lower triangular block Toeplitz matrix. 

V. SPECIAL CASES 
The plant model in Fig. 1 is general enough to include the 

cases of non-square plants, non-unity feedback, 1DOF and 
2DOF controller configurations. When we make some 
assumptions on the structure of the transfer matrices of  , 
we get more specified results. 

)(sP

 

A.  Square Plant with 1DOF Controller Case 
Suppose that , 1 (square plant case) and 000 =P mm = IP =20  
(1DOF case). In this case, we can show from (8) that a stable 
rational matrix is realizable iff , 

22
, 

 and  are stable and 
 (This condition can also be obtained by 

input-output stability requirement [8]). These five matrices 
can be compactly described by 
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Hence   is realizable iff   is stable, which leads to the 
SPR in (15) with 
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The existence condition of various decoupling controllers for 
this special case can be checked by the procedures in sections 
III and IV and notice that, in this case, we don’t need coprime 
factorizations. 

When a diagonal decoupling T is sought, we can 
parameterize it further. From (55), T is realizable iff 

and 22 are stable. For the term 
to be stable, 

TPP 1
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~ − 1
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~ˆ PTPPP −+
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Δ is an arbitrary diagonal stable matrix and  
with 

m
iidiag 1}{ ==Δ θθ

iθ being the monic polynomial of the minimal degree 
such that { −i column of  } i

1
0222

~ −PP θ× is stable. Hence T is 
realizable iff  is stable which leads to the 
SPDD with 

22
1

0222 P −
22

~ˆ PPP ΔΔ+ θ

 
   ,    )ˆ( 22Pvec=φ )'( 22P−=Ψ ⊙         (58) )~( 1

0222 θΔ−PP
 

                            ))(()( svecdsh Δ= .                              (59) 

B. Other Cases 
By exploiting the results of Theorem we can easily prove 

that a diagonal decoupling controller exists for the following 
cases; 1) 000 =P and the plant is stable. 2))(22 sP 000 =P , 

']0[20 IP = and ']'0[22 aPP = (2DOF case). 3) 000 =P , 
1mm =  (square plant), IP =20 (1DOF case), 2202 PP −=  (unity 

feedback case) and there is no unstable  pole-zero 
coincidence of the plant . 22

Since the proofs of 1) and 2) are trivial, only the proof of 3) 
is given. Under the assumptions in 3), the equation in (14) 
becomes 

P

 
    .                (60) 11

1
1

111
ˆˆ −−− +−=== TABAYKKK

 
This leads to the standard equation of SPDD with  

 
      ,    ⊙              (61) )( 1

1
−= AYvecφ )'( 1−=Ψ A 1

1
−B

 
                            ))(()( sTvecdsh = .                              (62) 

 
Any unstable pole of φ or Ψ , if exists, comes from that of 

1−A or . Let’s consider an unstable pole  of . Since 
the poles of 

1
1
−B is 1

1
−B

1−A and  are different by assumption, the 
coefficient vector  for  is zero and hence the condition 

1
1
−B

ir~ is
=)~( iRrank  )]~~([ ii rRrank M  is trivially satisfied. Next, 

consider an unstable pole of js 1−A . From (3), we have  
IBYAX =+ 1111  and it follows that  

 and hence 
=+ −−− 1

1
11

111 AYABAX
11

1
−− AB
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             .                         (63) 11
1

1
1

1
1

−−−− =+ ABAYBX
 
Taking vector operation on both sides, we obtain 
 
   ⊙ ) .   (64) =+ −− )()( 1

1
1

1 AYvecBXvec )'(( 1−A 1
1
−B )( mIvecd

 
Inserting this equality to (61), we obtain another expression 
for )(sφ as 
 

    ⊙ ) .       (65) )'(()( 1−= Asφ 1
1
−B )( mIvecd )( 1

1
−− BXvec

 
Let’s denote the partial fraction coefficient matrix of Ψ for 

 as js jR~ . Since  dose not have the pole , the partial 
fraction coefficient vector 

1−B js

jr~ of φ for  becomes js
)(~

mj IvecdR and this implies that jr~  is a linear combination 
of the columns of 

jR~ . Hence the condition =)~( jRrank  

)]~~([ jj rRrank M is satisfied and this completes the proof. 

VI. EXAMPLE 
Consider the case of 1DOF controller configuration with the 
square plant and the non-unity feedback sensor)(sPa F . In 
this case the transfer matrices in (1) are given by 
 
              (66) )(,),(,0 22200200 sFPPandIPsPPP aa −====

 
Consider the following plant [13] and the non-unity feedback 
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Notice that we can use the formulas in (58) and (59). Since  
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we obtain  after simple calculations. The 
vector 

}1,1{ −=Δ sdiagθ

)(sφ and the matrix have a simple pole at )(sΨ 11 =s . 
The residue values at are obtained as 11 =s
 

']66003300[1 −−−−=r                          (69) 
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00183600918
66003300

1 ⎥
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⎤
⎢
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⎡
−−
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=R  .      (70) 

 
Since , a diagonal decoupling 
solution exists. Taking a solution for the equation 

11  as , then a diagonal solution for 
 is parameterized as 

2)]([)( 111 == rRrankRrank M

1 )( rshR = ']10[)1( =h
)(sT
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where a and b are arbitrary stable rational functions. The 
controller C(s) in this case can be obtained from (5).  

h h

VII. CONCLUSION 
The existence condition of diagonal, block-diagonal and 
triangular decoupling controllers are obtained for the 
generalized plant model. It is shown that these decoupling 
problems can be transformed to a solvable standard form 
SPDD and procedures to obtain solutions of SPDD by 
solving interpolation problems are explained. The existence 
condition of a solution for SPDD is described in terms of rank 
condition on a block Toeplitz matrix whose elements are the 
coefficient matrices in partial fraction expansion. 

 
Possible future research works include the characterization 

of solution for SPDD,  analyzing the relationship with 
the previous related works on the existence conditions of 
decoupling controllers, and investigating the algebraic 
properties of lower-triangular block Toeplitz matrices. 

)(sh

REFERENCES 
[1] J. W. Brewer,“ Kronecker products and matrix calculus in system 

theory,” IEEE Trans.  Circuits sys.,  vol. 25,  pp. 772-781, Sep.  1978. 
[2] G. I. Gómez and G. C. Goodwin, “An algebraic approach to decoupling 

in linear multivariable systems,”   International Journal of Control, 
vol.73, no. 7, pp. 582-599, 2000. 

[3] T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980. 
[4]  H. P. Lee and J. J. Bongiorno, Jr., “Wiener-Hopf design of optimal 

decoupling controllers for plants with non-square transfer matrices,” 
International Journal of Control, vol. 58, no. 6, pp. 1227-1246, 1993.  

[5] C. A. Lin, “Necessary and sufficient conditions for existence of 
decoupling controllers,” IEEE Transactions on Automatic Control, vol. 
42, no. 8, pp. 1157-1161, Aug., 1997. 

[6] C. A. Lin and C. M. Wu, “Necessary and sufficient conditions for 
existence of bloc decoupling controllers,” in Proc.35th  Conf. on 
Decision and Control, Kobe, Japan, Dec. 1996,  pp. 4774-4775. 

[7] C. N. Nett, “Algebraic aspects of linear control systems stability,” 
IEEE Trans. on Automat. Cont., vol. AC-31, pp. 941-949, 1986. 

[8]  K. Park, “ H2  design of one-degree-of-freedom decoupling controllers 
for square plants,” International Journal of Control, vol. 81, no. 9, pp. 
1343-1351,2008. 

[9] K. Park and J. J. Bongiorno, Jr.,“A general theory for the Wiener-Hopf 
design of multivariable control systems,” IEEE Trans. on Automat. 
Contr.,  vol. AC-34,  pp. 619-626, June 1989. 

[10] A. I. G. Vardulakis,“ Internal stabilization and decoupling in linear 
multivariable systems by unity output feedback compensation,” IEEE 
Trans. Automat.  Contr.,  vol.AC-32,  pp. 735-739, Aug. 1987. 

[11] J. L. Walsh, Interpolation and approximation. New York City, NY: 
American Mathematical Society, 1935. 

[12] T. W. C. Williams and P. J. Antsaklis, “A unifying approach to the 
decoupling of linear multivariable systems,”   International Journal of 
Control, vol. 44, no. 1, pp.181-201, 1986. 

[13] D. C. Youla and J. J. Bongiorno, Jr., “Wiener-Hopf design of optimal 
decoupling one-degree-of-freedom controllers,” International Journal 
of Control, vol. 73, no. 18, pp. 1657-1670, 2000. 

[14]  D. C. Youla, H. Jabr, and J. J. Bongiorno, Jr., “Modern Wiener-Hopf 
design of optimal controllers-Part II: The multivariable case,” IEEE 
Trans.  Automat.  Contr., vol. AC-21, pp. 319-338, June 1976. 

[15] C. A. Deseor and A. N. G□ndes, “Decoupling linear multiinput 
multioutput plants by dynamic feedback: An algebraic theory,” IEEE 
Trans.  Automat.  Contr.,  vol.AC-31,  pp. 744-750, Aug. 1986. 

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC03.5

5163


