
Global Trajectory Tracking Through Static Feedback for Robot

Manipulators With Input Saturations
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Abstract— In this work, two globally stabilizing bounded
controllers for the tracking control of robot manipulators with
saturating inputs are proposed. They may be seen as extensions
of the so-called PD+ algorithm to the bounded input case. With
respect to previous works, our approaches give a global solution
to the problem through static feedback. Moreover, they are not
defined using a specific sigmoidal function, but any one on a
set of saturating functions. Furthermore, the bound of such
functions is explicitly considered in their definition. Hence, the
control gains are not tied to satisfy any saturation-avoidance

inequality and may consequently take any positive value. The
efficiency of the proposed schemes is corroborated through
experimental results.

I. INTRODUCTION

A fundamental scheme for the global trajectory tracking

of robot manipulators is the well-known PD+ control law

proposed in [6]. Such an algorithm considers a continuous

calculation of a special form of the robot dynamics, where

the current position vector is considered at every of its terms

(gravity, inertial, and centrifugal and Coriolis calculated

force vectors), the desired acceleration vector is involved

in the computed inertial force vector, and both the current

and desired velocity vectors are considered in the Coriolis

and centrifugal calculated force vector. This gives rise to

a strategic closed loop form wherefrom it is clear that the

desired trajectory is a solution of the closed-loop system.

But such terms do not guarantee, by themselves, the (global)

stabilization towards the desired trajectory. This is achieved

through the additional consideration of position-error (P)

and velocity-error (D) linear correction terms. Nevertheless,

because of the linearity of such P (proportional on the

position error) and D (proportional on the derivative of the

position error) terms and that of the computed Coriolis and

centrifugal force vector on the current velocity vector, the

PD+ controller turns out to be unbounded. Consequently,

when such an algorithm is implemented in an actual ap-

plication, the resulting control signals may try to force the

actuators to go beyond their natural capabilities, undergoing

the well-known phenomenon of saturation. Unfortunately,

this may give rise to undesirable effects, as pointed out for

instance in [1] and [4].
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In order to avoid the above mentioned problem, a bounded

dynamical extension of the PD+ algorithm has been pro-

posed in [5]. To begin with, the current velocity vector is

replaced by the desired velocity trajectory in the computed

Coriolis and centrifugal force vector. Hence, by considering

twice continuously differentiable desired position trajecto-

ries whose 1st and 2nd time-derivative (i.e. velocity and

acceleration) vectors are uniformly bounded, the computed

(special form of the) system dynamics turns out to be

bounded. Further, the P and D gains are applied to sigmoidal

functions —specifically, the hyperbolic tangent— of the

closed loop error variables, giving rise to bounded nonlinear

P and D terms. Moreover, an auxiliary (internal) dynamical

subsystem is considered for the asymptotic estimation of the

system velocity error variables. Consequently, only position

measurements are involved in the developed algorithm. In

a frictionless setting, such a control scheme was proven to

semi-globally stabilize the closed-loop system.

By considering viscous friction in the open-loop dynamics,

a globally stabilizing version of the control law in [5] was

achieved in [8]. The developed scheme keeps the structure

of the controller in [5], but the viscous friction force vector

is added to the computed robot dynamics, replacing the

current velocity vector by the desired velocity trajectory.

Under such considerations, global tracking is achieved for

suitable trajectories.

Two alternative dynamical approaches were proposed in

[1]. Both consider P and D correction terms where the

hyperbolic tangent of the tracking error and filtered tracking

error variables, respectively, are involved. The first one

includes a bounded adaptive compensation of the robot

dynamics involving position and velocity measurements. The

second one, on the contrary, is free of velocity measurements,

keeping a Computed-Torque-like structure [2, Ch. 10]. It

considers the same form of the gravity, viscous friction, and

Coriolis and centrifugal calculated force vectors used in [8],

but a special form of inertial (complemented) force vector

where the bounded nonlinear P and D terms are included.

Semi-global tracking is achieved by both controllers.

Let us note that by the way the bounded nonlinear P and D

terms are defined in the previous works, the P and D gains are

tied to satisfy a saturation-avoidance inequality (since these

define the bounds of the P and D terms). Consequently, such

control gains cannot take any (positive) value, which restricts

their performance-adjustment natural role.

When velocity measurements are unavailable or highly

noisy, the algorithms in [5], [8], and the second one in

[1] may be considered to give an appropriate solution to
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the tracking problem. On the contrary, the first algorithm

in [1] may be suitably applied when the system parameters

are uncertain. Nevertheless, none of the above-cited works

solve the global tracking problem through a static controller

involving all the system states (positions and velocities) and

parameters. The design of such a scheme does not only

represent an analytical challenge, but its implementation

would give rise to faster closed-loop responses. Indeed,

involving dynamic estimations of some states or parameters

in the control system generally slows down the stabilization

time and adds inertial effects that commonly give rise to

oscillating transient responses. From this point of view, static

controllers expressed in terms of the whole system data

(states and parameters) remain an important choice when

acceptable estimations of such information are available.

In this work, two globally stabilizing bounded static

controllers for the trajectory tracking of robot manipulators

with saturating inputs are proposed. They may be seen as

extensions of the PD+ algorithm to the bounded input case.

With respect to the above-mentioned previous works, they

(both) give a global solution to the problem through static

feedback. Moreover, they are not defined using a specific

sigmoidal function, but any one on a set of saturating func-

tions. Furthermore, the bound of such functions is explicitly

considered in their definition. These are consequently applied

to the whole linear P and D expressions, giving the P and D

gains the liberty to adopt any positive value.

The work is organized as follows. Section II states the gen-

eral n-degree-of-freedom (n-DOF) serial rigid robot manip-

ulator open-loop dynamics and some of its main properties,

as well as considerations and definitions that are involved

throughout the study. In Section III, the proposed controllers

are presented. Section IV states the main results, where the

stability analyses are developed and the control objective

is proved to be achieved (for both proposed controllers).

Experimental results are presented in Section V. Finally,

conclusions are given in Section VI.

II. PRELIMINARIES

The following notation is used throughout the paper. R

and R+ denote the set of real and nonnegative real numbers

respectively, R
n and R

n
+ represent the set of n-dimensional

vectors whose elements are real and nonnegative real num-

bers respectively, and R
n×m is the set of n × m matrices

whose elements are real numbers. We denote 0n the origin

of R
n. Let x ∈ R

n and A ∈ R
n×m. xi represents the ith

element of x. ‖ · ‖ stands for the standard Euclidean vector

norm and induced matrix norm, i.e. ‖x‖ =
[
∑n

i=1 x2
i

]1/2

and ‖A‖ =
[

λmax(A
T A)

]1/2
, where λmax(A

T A) represents

the maximum eigenvalue of AT A. Let A and E be subsets

of some vector spaces A and E respectively. We denote

Cm(A; E) the set of m-times continuously differentiable

functions from A to E . Consider a continuous-time func-

tion h ∈ C2(R+; E). The time-derivative and second-time-

derivative of h are respectively represented as ḣ and ḧ, i.e.

ḣ : t 7→ d
dth and ḧ : t 7→ d2

dt2 h.

Let us consider the general n-DOF serial rigid robot

manipulator dynamics with viscous friction [9, §6.2]:

D(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = τ (1)

where q, q̇, q̈ ∈ R
n are, respectively, the position (generalized

coordinates), velocity and acceleration vectors, D(q) ∈
R

n×n is the inertia matrix, and C(q, q̇)q̇, F q̇, g(q), τ ∈ R
n

are, respectively, the vectors of Coriolis and centrifugal, vis-

cous friction, gravity, and external input generalized forces,

with F being a constant, positive definite, diagonal (viscous

friction coefficient) matrix, i.e. F = diag[f1, . . . , fn], with

fi > 0, ∀i ∈ {1, . . . , n}. The terms of such a dynamical

model satisfy some well-known properties (see for instance

[2, Ch. 4]). Some of them are recalled here.

Property 1: The inertia matrix D(q) is a positive definite

symmetric matrix satisfying dmI ≤ D(q) ≤ dMI , ∀q ∈ R
n,

where I denotes the n×n identity matrix, for some positive

constants dm ≤ dM .

Property 2: The Coriolis matrix C(q, q̇) satisfies:

2.1. xT
[

1
2Ḋ(q, q̇) − C(q, q̇)

]

x = 0, ∀x, q, q̇ ∈ R
n;

2.2. Ḋ(q, q̇) = C(q, q̇) + CT (q, q̇), ∀q, q̇ ∈ R
n;

2.3. C(w, x + y)z = C(w, x)z + C(w, y)z, ∀w, x, y, z ∈
R

n;

2.4. C(x, y)z = C(x, z)y, ∀x, y, z ∈ R
n;

2.5. ‖C(x, y)z‖ ≤ kc‖y‖‖z‖, ∀x, y, z ∈ R
n, for some

constant kc ≥ 0.

Property 3: The gravity vector satisfies ‖g(q)‖ ≤ γ,

∀q ∈ R
n, for some positive constant γ, or equivalently,

every element of the gravity vector, gi(q), i = 1, . . . , n,

satisfies |gi(q)| ≤ γi, ∀q ∈ R
n, for some positive constants

γi, i = 1, . . . , n.

Property 4: The viscous friction coefficient matrix sat-

isfies fm‖x‖2 ≤ xT Fx ≤ fM‖x‖2, ∀x ∈ R
n, where

0 < fm , mini{fi} ≤ maxi{fi} , fM .

Let us suppose that the absolute value of each input τi

is constrained to be smaller than a given saturation bound

Ti > 0, i.e. |τi| ≤ Ti, i = 1, . . . , n. In other words, if ui

represents the control signal (controller output) relative to

the ith DOF, then

τi = Tisat

(

ui

Ti

)

(2)

i = 1, . . . , n, where sat(·) is the standard saturation function,

i.e. sat(ς) = sign(ς)min{|ς|, 1}.

The control scheme proposed in this work involves a

special type of functions fitting the following definition.

Definition 1: Given a positive constant M , a function σ :
R → R is said to be a generalized saturation with bound

M , if it is locally Lipschitz, nondecreasing, and satisfies:

1) ςσ(ς) > 0, ∀ς 6= 0;

2) |σ(ς)| ≤ M , ∀ς ∈ R.

A strictly increasing continuously differentiable function

fulfilling Definition 1 has the following properties.

Lemma 1: Let σ : R → R : ς 7→ σ(ς) be a strictly

increasing continuously differentiable generalized saturation

function with bound M , k and k0 be positive constants, and
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σ′(ς) denote the derivative of σ with respect to its argument,

i.e. σ′(ς) = dσ
dς (ς). Then

1) y[σ(x + y) − σ(x)] > 0, ∀y 6= 0, ∀x ∈ R;

2) σ(y)[σ(x + y) − σ(x)] > 0, ∀y 6= 0, ∀x ∈ R;

3) lim|ς|→∞ σ′(ς) = 0;

4) σ′(ς) is positive and bounded, i.e. there exists a con-

stant σ′
M ∈ (0,∞) such that 0 < σ′(ς) ≤ σ′

M , ∀ς ∈ R;

5)
σ2(kς)
2kσ′

M

≤
∫ ς

0
σ(kr)dr ≤ kσ′

M ς2

2 , ∀ς ∈ R;

6)
∫ ς

0
σ(kr)dr > 0, ∀ς 6= 0;

7)
∫ ς

0
σ(kr)dr → ∞ as |ς| → ∞;

8) |σ(kx + k0y) − σ(k0y)| ≤ σ′
Mk|x|, ∀x, y ∈ R.

9) |σ(kx)| ≤ σ′
Mk|x|, ∀x ∈ R.

Proof:

1) Let x, y, z ∈ R. Since σ is strictly increasing, we have

that σ(z) > σ(x) ⇐⇒ z > x and σ(z) < σ(x) ⇐⇒
z < x. Let z = y+x. Then σ(y+x)−σ(x) > 0 ⇐⇒
y > 0 and σ(y + x)−σ(x) < 0 ⇐⇒ y < 0, ∀x ∈ R,

wherefrom it follows that y[σ(y + x) − σ(x)] > 0,

∀y 6= 0, ∀x ∈ R.

2) Let x, y ∈ R. From the proof of item 1 of the Lemma

and item 1 of Definition 1, we have that σ(y + x) −
σ(x) > 0 ⇐⇒ y > 0 ⇐⇒ σ(y) > 0 and σ(y +
x) − σ(x) < 0 ⇐⇒ y < 0 ⇐⇒ σ(y) < 0, ∀x ∈ R,

wherefrom it follows that σ(y)[σ(y + x)− σ(x)] > 0,

∀y 6= 0, ∀x ∈ R.

3) Since σ is a continuous function that keeps the sign of

its argument (according to item 1 of Definition 1), and

is strictly increasing and bounded by M , there exists a

positive constant c ≤ M such that lim|ς|→∞ |σ(ς)| =
c, or equivalently lim|ς|→∞ σ(ς) = c · sign(ς). Hence,

we have that

lim
|ς|→∞

σ′(ς) = lim
|ς|→∞

lim
h→0

σ(ς + h) − σ(ς)

h

= lim
h→0

lim
|ς|→∞

σ(ς + h) − σ(ς)

h

= lim
h→0

c · sign(ς) − c · sign(ς)

h
= 0

4) Since σ is a continuously differentiable and strictly

increasing function, we have that σ′(ς) exists and is

continuous on R, and σ′(ς) > 0, ∀ς ∈ R. Furthermore,

in view of its continuity, σ′(ς) is bounded on any com-

pact subset of R. Thus, its boundedness will be uniform

if lim|ς|→∞ σ′(ς) < ∞. Since lim|ς|→∞ σ′(ς) = 0
(according to item 3 of the Lemma), we conclude that

σ′(ς) is uniformly bounded, i.e. ∃σ′
M > 0 such that

σ′(ς) ≤ σ′
M , ∀ς ∈ R.

5) From continuous differentiability —implying

Lipschitz-continuity— of σ and item 4 of the

Lemma, it follows that

σ′(kς)

σ′
M

|σ(kς)| ≤ |σ(kς)| ≤ σ′
M |kς|

∀ς ∈ R, wherefrom, considering that σ has the sign of

its argument (according to item 1 of Definition 1), we

have that

∫ ς

0

σ(kr)

σ′
M

σ′(kr)dr ≤
∫ ς

0

σ(kr)dr ≤
∫ ς

0

σ′
Mkrdr

wherefrom we get

σ2(kς)

2kσ′
M

≤
∫ ς

0

σ(kr)dr ≤ kσ′
M ς2

2

∀ς ∈ R.

6) Strict positivity of
∫ ς

0
σ(kr)dr on R \ {0} follows

from item 5 of the Lemma, by noting (from item 1

of Definition 1) that σ2(kς) > 0, ∀ς 6= 0.

7) From the continuous differentiability and strictly in-

creasing characters of σ, and its satisfaction of item

4 of the Lemma, we have that σ′(kσ) is continuous,

positive, and bounded on [−a, a], for any a > 0, in

such a way that

0 < inf
r∈[−a,a]

σ′(kr) ≤ σ′(kς) ≤ sup
r∈[−a,a]

σ′(kr) ≤ σ′
M

(3)

∀ς ∈ [−a, a]. Let us consider a positive constant ka ≤
infr∈[−a,a] σ

′(kr). Then, from (3), we have that

∣

∣

∣
kaa sat

( ς

a

)∣

∣

∣
≤ |σ(kς)|

∀ς ∈ R, wherefrom we get

Sa(ς) =

∫ ς

0

kaa sat
( r

a

)

dr ≤
∫ ς

0

σ(kς)dr

∀ς ∈ R, with

Sa(ς) ,

{

ka

2 ς2 ∀|ς| ≤ a

kaa
(

|ς| − a
2

)

∀|ς| > a

Thus, from these expressions we observe, on the one

hand, that lim|ς|→∞ Sa(ς) ≤ lim|ς|→∞

∫ ς

0
σ(kr)dr,

and, on the other, that Sa(ς) → ∞ as |ς| → ∞,

wherefrom we conclude that
∫ ς

0
σ(kr)dr → ∞ as

|ς| → ∞.

8) Let w, x, y, z ∈ R. From continuous differentiability of

σ and item 4 of the Lemma, we have that σ satisfies the

Lipschitz condition globally on R with σ′
M as Lipschitz

constant (see for instance [3, Lemma 3.3]), i.e. |σ(w)−
σ(z)| ≤ σ′

M |w − z|, ∀w, z ∈ R. By taking w = kx +
k0y and z = k0y, we get |σ(kx + k0y) − σ(k0y)| ≤
σ′

Mk|x|, ∀x, y ∈ R.

9) From item 8 of the Lemma with y = 0, we have that

|σ(kx)| ≤ σ′
Mk|x|, ∀x ∈ R.

We state the control objective as the global stabilization of

the robot configuration vector variable, q, towards a desired

trajectory vector, qd(t), through bounded control signals

avoiding input saturations (i.e. such that |τi(t)| = |ui(t)| <

Ti, i = 1, . . . , n, ∀t ≥ 0; see (2)).
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III. PROPOSED CONTROLLERS

The following assumption turns out to be crucial within

the analytical setting considered in this work:

Assumption 1: Ti > γi, ∀i ∈ {1, . . . , n}.

Further, in order to guarantee the achievement of the stated

control objective, the proposed scheme is restricted to desired

trajectory vectors meeting the following:

Assumption 2: The desired trajectory vector, qd(t), is

a twice continuously differentiable function, i.e. qd ∈
C2(R+; Rn), satisfying

sup
t≥0

‖q̇d(t)‖ ≤ Bdv (4a)

and

sup
t≥0

‖q̈d(t)‖ ≤ Bda (4b)

for some (velocity and acceleration vector) bounds such that

(Bdv, Bda) ∈ B1 ∪ B2 (5)

where

Bi , {(ξ, ζ) ∈ R
2
+ | ξ < Bvi , ζ < Bai} (6)

i = 1, 2,

Bv1 ,







min

{

fm

kc
, B11

}

if kc > 0

B10 if kc = 0
(7a)

Ba1 ,
∆m − kcB

2
dv − fMBdv

dM
(7b)

B11 , −fM

2kc
+

√

(

fM

2kc

)2

+
∆m

kc
(7c)

B10 ,
∆m

fM
(7d)

and

Ba2 ,
∆m

dM
(8a)

Bv2 ,







min

{

fm

kc
, B21

}

if kc > 0

B20 if kc = 0
(8b)

B21 , −fM

2kc
+

√

(

fM

2kc

)2

+
∆m − dMBda

kc
(8c)

B20 ,
∆m − dMBda

fM
(8d)

with

∆m , min
i
{Ti − γi} (9)

Under Assumptions 1 and 2, we propose an SP-SD+

control scheme of the form

u = −s2(K2q̄) − s1(K1 ˙̄q) + τc(q, q̇d, q̈d) (10)

and an SPD+ control law of the form

u = −s0(K2q̄ + K1 ˙̄q) + τc(q, q̇d, q̈d) (11)

where

τc(q, q̇d, q̈d) = D(q)q̈d + C(q, q̇d)q̇d + F q̇d + g(q)

q̄ , q − qd(t); K1 and K2 are positive definite diag-

onal matrices, i.e. K1 = diag [k11, . . . , k1n] and K2 =
diag [k21, . . . , k2n] with k1i > 0 and k2i > 0 for all

i = 1, . . . , n; and sj : R
n → R

n : x 7→ sj(x) =
(

σj1(x1), . . . , σjn(xn)
)T

, j = 0, 1, 2, with σji(·), i =
1, . . . , n, being strictly increasing continuously differen-

tiable generalized saturation functions with bounds Mji

satisfying

M1i + M2i < Ti − dMBda − kcB
2
dv − fMBdv − γi (12)

(see Properties 1, 2.5, 3, and 4), ∀i = 1, . . . , n, in the SP-

SD+ case (controller (10)), and

M0i < Ti − dMBda − kcB
2
dv − fMBdv − γi (13)

∀i = 1, . . . , n, in the SPD+ case (controller (11)). Let us note

that the satisfaction of Assumptions 1 and 2 guarantees the

existence of (positive) bounds M1i and M2i fulfilling (12)

and M0i meeting (13).1

IV. MAIN RESULTS

Proposition 1: Consider the system (1),(2) with the con-

trol law (10). Under Assumptions 1 and 2, and the satis-

faction of inequalities (12), global asymptotic stabilization

of the closed-loop system solutions q(t) towards the desired

trajectory vector qd(t) is guaranteed with |τi(t)| = |ui(t)| <

Ti, i = 1, . . . , n, ∀t ≥ 0.

Proof: From (10), (12), and Properties 1, 2.5, 3 and

4, one sees that |ui(t)| ≤ M1i + M2i + dMBda + kcB
2
dv +

fMBdv + γi < Ti, i = 1, . . . , n, ∀t ≥ 0. From this and (2)

it follows that |τi(t)| = |ui(t)| < Ti, i = 1, . . . , n, ∀t ≥
0. We now focus on the stability analysis. The closed-loop

dynamics takes the form

D(q)¨̄q+[C(q, q̇)+C(q, q̇d)] ˙̄q+F ˙̄q+s1(K1 ˙̄q)+s2(K2q̄) = 0n

(14)

where Property 2.4 has been used (observe from the defi-

nition of q̄, stated in Section III, that q = q̄ + qd(t) and

q̇ = ˙̄q + q̇d(t)). Let us define the scalar function

V1(t, q̄, ˙̄q) =
1

2
˙̄qT D(q̄ + qd(t)) ˙̄q +

∫ q̄

0

sT
2 (K2r)dr

+ε1s
T
2 (K2q̄)D(q̄ + qd(t)) ˙̄q

(15)

1Observe that Assumption 1 guarantees positivity of B11 and B10 in (7a)
(see (7c), (7d), and (9)) and of the right-hand-side expression in (8a) (see
(9)). Furhter, the definitions of Bv1 in (7a) and Ba2 in (8a) respectively
ensure positivity of the right-hand-side expression in (7b) and of B21 and
B20 in (8b) (see (8c) and (8d)). Finally, the definitions of Ba1 in (7b) and
Bv2 in (8b) guarantee positivity of the right-hand-side expression in (12)
and (13).
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where
∫ q̄

0
sT
2 (K2r)dr =

∑n
i=1

∫ q̄i

0
σ2i(k2iri)dri, and ε1 is a

positive constant satisfying2

ε1 < min

{

fm−kcBdv

kcB2M+dM k2M σ′

2M
+

(

kcBdv+
σ′

1M
k1M +fM

2

)

2 ,

√

dm

2d2
M

k2M σ′

2M

}

(16)

with σ′
jM , maxi{σ′

jiM} (see item 4 of Lemma 1) and

kjM , maxi{kji}, j = 1, 2, and B2M ,
[
∑n

i=1 M2
2i

]1/2
.

Let us note, from Property 1 and items 5 and 9 of Lemma

1, that

1

2

∫ q̄

0

sT
2 (K2r)dr+

1

2

(

‖s2(K2q̄)‖
‖ ˙̄q‖

)T

P11

(

‖s2(K2q̄)‖
‖ ˙̄q‖

)

≤ V1(t, q̄, ˙̄q) ≤ 1

2

(

‖q̄‖
‖ ˙̄q‖

)T

P12

(

‖q̄‖
‖ ˙̄q‖

)

where

P11 =

(

1
2k2M σ′

2M

−ε1dM

−ε1dM dm

)

and

P12 =

(

k2Mσ′
2M ε1dMk2Mσ′

2M

ε1dMk2Mσ′
2M dM

)

Further, since ε1 <
√

dm

2d2
M

k2M σ′

2M

(see (16)), one can verify

(after several basic developments) that P11 and P12 are

positive definite symmetric matrices. From this and items

6 and 7 of Lemma 1, one sees that V1(t, q̄, ˙̄q) is positive

definite, radially unbounded, and decrescent. Its derivative

along the system trajectories is given by

V̇1(t, q̄, ˙̄q) = − ˙̄qT C(q̄ + qd(t), q̇d(t)) ˙̄q − ˙̄qT F ˙̄q − ˙̄qT s1(K1 ˙̄q)

− ε1s
T
2 (K2q̄)C(q̄ + qd(t), q̇d(t)) ˙̄q

− ε1s
T
2 (K2q̄)F ˙̄q − ε1s

T
2 (K2q̄)s1(K1 ˙̄q)

− ε1s
T
2 (K2q̄)s2(K2q̄)

+ ε1 ˙̄qT C(q̄ + qd(t), ˙̄q)s2(K2q̄)

+ ε1 ˙̄qT C(q̄ + qd(t), q̇d(t))s2(K2q̄)

+ ε1 ˙̄qT D(q̄ + qd(t))s
′
2(K2q̄)K2 ˙̄q

with s′2(K2q̄) = diag[σ′
21(k21q̄1), . . . , σ

′
2n(k2nq̄n)], where

D(q̄+qd(t))q̈ has been replaced by its equivalent expression

from the closed-loop dynamics (14), and Properties 2.1–2.3

have been used. From Properties 1, 2.5 and 4, item 9 of

Lemma 1, and the satisfactions of inequalities (4), one gets,

2Observe that the satisfaction of Assumption 2 —wherefrom we have
that fm > kcBdv (see (5), (6), and the definitions of Bv1 in (7a) and Bv2

in (8b)), no matter what the nonnegative constant value of kc be— ensures
positivity of the first term within the braces in (16), thus guaranteeing the
existence of a positive ε1 fulfilling (16).

after several basic developments, that

V̇1(t, q̄, ˙̄q) ≤ − ˙̄qT s1(K1 ˙̄q)

−
(

‖s2(K2q̄)‖
‖ ˙̄q‖

)T

Q1

(

‖s2(K2q̄)‖
‖ ˙̄q‖

)

with

Q1 =

(

ε1 Q112

Q112 Q122

)

where

Q112 = −ε1

(

kcBdv +
σ′

1Mk1M + fM

2

)

Q122 = fm − kcBdv − ε1(kcB2M + dMk2Mσ′
2M )

and the facts that ‖s2(K2q̄)‖ ≤
[
∑n

i=1 M2
2i

]1/2
,

B2M and ‖s′2(K2q̄)‖ ≤ maxi{σ′
2iM} , σ′

2M ,

∀q̄ ∈ R
n, have been considered. Further, since ε1 <

fm−kcBdv

kcB2M+dM k2M σ′

2M
+

(

kcBdv+
σ′

1M
k1M +fM

2

)

2 (see (16)), one

can verify (after several basic developments) that Q1 is a

positive definite symmetric matrix. From this and item 1 of

Definition 1, one sees that V̇1(t, q̄, ˙̄q) is negative definite.

Thus, from Lyapunov’s stability theory (applied to non-

autonomous systems; see for instance [3, Th. 4.9]), the

proposition follows.

Proposition 2: Consider the system (1),(2) with the con-

trol law (11). Under Assumptions 1 and 2, and the satis-

faction of inequalities (13), global asymptotic stabilization

of the closed-loop system solutions q(t) towards the desired

trajectory vector qd(t) is guaranteed with |τi(t)| = |ui(t)| <

Ti, i = 1, . . . , n, ∀t ≥ 0.

Proof: From (11), (13) and Properties 1, 2.5, 3 and 4,

one sees that |ui(t)| ≤ M0i + dMBda + kcB
2
dv + fMBdv +

γi < Ti, i = 1, . . . , n, ∀t ≥ 0. From this and (2) it

follows that |τi(t)| = |ui(t)| < Ti, i = 1, . . . , n, ∀t ≥ 0.

The stability analysis is now developed. The closed-loop

dynamics takes the form

D(q)¨̄q + [C(q, q̇) + C(q, q̇d)] ˙̄q + F ˙̄q + s0(K1 ˙̄q + K2q̄) = 0n

(17)

where Property 2.4 has been used (recall that q = q̄ + qd(t)
and q̇ = ˙̄q + q̇d(t)). Let us define the scalar function

V2(t, q̄, ˙̄q) =
1

2
˙̄qT D(q̄ + qd(t)) ˙̄q +

∫ q̄

0

sT
0 (K2r)dr

+ε2s
T
0 (K2q̄)D(q̄ + qd(t)) ˙̄q

(18)

where
∫ q̄

0
sT
0 (K2r)dr =

∑n
i=1

∫ q̄i

0
σ0i(k2iri)dri and ε2 is a

positive constant satisfying3

ε2 < min

{

fm−kcBdv

kcB0M+dM k2M σ′

0M
+

(

kcBdv+
σ′

0M
k1M +fM

2

)

2 ,

√

dm

2d2
M

k2M σ′

0M

}

(19)

3Observe that —by the same arguments furnished in Footnote 2— the
satisfaction of Assumption 2 ensures positivity of the first term within the
braces in (19), guaranteeing the existence of a positive ε2 fulfilling (19).
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where σ′
0M , maxi{σ′

0iM}, kjM , maxi{kji}, j = 1, 2,

and B0M ,
[
∑n

i=1 M2
0i

]1/2
. Notice that V2(t, q̄, ˙̄q) in (18)

adopts the same form of V1(t, q̄, ˙̄q) in (15) (by simply

replacing s2 in V1 by s0). Thus, following a procedure

analog to the one developed for V1(t, q̄, ˙̄q) in the proof of

Proposition 1, we get

1

2

∫ q̄

0

sT
0 (K2r)dr+

1

2

(

‖s0(K2q̄)‖
‖ ˙̄q‖

)T

P21

(

‖s0(K2q̄)‖
‖ ˙̄q‖

)

≤ V2(t, q̄, ˙̄q) ≤ 1

2

(

‖q̄‖
‖ ˙̄q‖

)T

P22

(

‖q̄‖
‖ ˙̄q‖

)

where

P21 =

(

1
2k2M σ′

0M

−ε2dM

−ε2dM dm

)

and

P22 =

(

k2Mσ′
0M ε2dMk2Mσ′

0M

ε2dMk2Mσ′
0M dM

)

Further, since ε2 <
√

dm

2d2
M

k2M σ′

0M

(see (19)), one can verify

(after several basic developments) that P21 and P22 are

positive definite symmetric matrices. From this and items

6 and 7 of Lemma 1, one sees that V2(t, q̄, ˙̄q) is positive

definite, radially unbounded, and decrescent. Its derivative

along the system trajectories is given by

V̇2(t, q̄, ˙̄q) = − ˙̄qT C(q̄ + qd(t), q̇d(t)) ˙̄q − ˙̄qT F ˙̄q

− ˙̄qT
[

s0(K1 ˙̄q + K2q̄) − s0(K2q̄)
]

− ε2s
T
0 (K2q̄)C(q̄ + qd(t), q̇d(t)) ˙̄q

− ε2s
T
0 (K2q̄)F ˙̄q − ε2s

T
0 (K2q̄)s0(K2q̄)

− ε2s
T
0 (K2q̄)

[

s0(K1 ˙̄q + K2q̄) − s0(K2q̄)
]

+ ε2 ˙̄qT C(q̄ + qd(t), ˙̄q)s0(K2q̄)

+ ε2 ˙̄qT C(q̄ + qd(t), q̇d(t))s0(K2q̄)

+ ε2 ˙̄qT D(q̄ + qd(t))s
′
0(K2q̄)K2 ˙̄q

with s′0(K2q̄) = diag[σ′
01(k21q̄1), . . . , σ

′
0n(k2nq̄n)], where

D(q̄+qd(t))q̈ has been replaced by its equivalent expression

from the closed-loop dynamics (17), and Properties 2.1–2.3

have been used. From Properties 1, 2.5 and 4, item 8 of

Lemma 1, and the satisfaction of inequilities (4), one gets,

after several basic developments, that

V̇2(t, q̄, ˙̄q) ≤ − ˙̄qT
[

s0(K1 ˙̄q + K2q̄) − s0(K2q̄)
]

−
(

‖s0(K2q̄)‖
‖ ˙̄q‖

)T

Q2

(

‖s0(K2q̄)‖
‖ ˙̄q‖

)

with

Q2 =

(

ε2 Q212

Q212 Q222

)

where

Q212 = −ε2

(

kcBdv +
σ′

0Mk1M + fM

2

)

Q222 = fm − kcBdv − ε2(kcB0M + dMk2Mσ′
0M )

and the facts that ‖s0(K2q̄)‖ ≤
[
∑n

i=1 M2
0i

]1/2
,

B0M and ‖s′0(K2q̄)‖ ≤ maxi{σ′
0iM} , σ′

0M ,

∀q̄ ∈ R
n, have been considered. Further, since ε2 <

fm−kcBdv

kcB0M+dM k2M σ′

0M
+

(

kcBdv+
σ′

0M
k1M +fM

2

)

2 (see (19)), one

can verify (after several basic developments) that Q2 is a

positive definite symmetric matrix. From this and item 1 of

Lemma 1, one sees that V̇2(t, q̄, ˙̄q) is negative definite. Thus,

from Lyapunov’s stability theory (see for instance [3, Th.

4.9]), the proposition follows.

V. EXPERIMENTAL RESULTS

Both proposed algorithms, the SP-SD+ controller in (10)

and the SPD+ scheme in (11), were implemented on a well-

identified direct-drive robot arm. The experimental manipu-

lator is a two-axis robot with the same mechanical structure

of that in [7], but with different dynamic parameters. The

entries of the corresponding terms in (1) are given by

D(q) =

[

3.511 + 0.191 cos q2 0.072 + 0.096 cos q2

0.072 + 0.096 cos q2 0.072

]

C(q, q̇) =

[

−0.096q̇2 sin q2 −0.096(q̇1 + q̇2) sin q2

0.096q̇1 sin q2 0

]

g(q) =

[

40.888 sin q1 + 2.079 sin(q1 + q2)

2.079 sin(q1 + q2)

]

F =

[

0.764 0

0 0.328

]

Thus, Properties 1, 2.5, 3, and 4 are satisfied with dm =
0.0638 kg·m2, dM = 3.71 kg·m2, kc = 0.3816 kg·m2, γ1 =
42.97 N·m, γ2 = 2.08 N·m, fm = 0.3279 kg·m2/sec, and

fM = 0.7639 kg·m2/sec. The maximum torques allowed are

T1 = 150 N·m and T2 = 15 N·m for the first and second

links respectively. Observe that Assumption 1 is fulfilled.

Additionally, simulations were run considering the PD+

controller of [6] in an unbounded input context, i.e. τ ≡
u = −K2q̄ − K1 ˙̄q + D(q)q̈d + C(q, q̇)q̇d + g(q). The

desired trajectory vector, for all the controllers, was defined

as qd(t) = (qd1(t), qd2(t)) = (π + 0.5 sin t , 0.5 cos t) [rad].

For such a desired trajectory, inequalities (4) are satisfied

with Bdv = 0.5 rad/sec and Bda = 0.5 rad/sec2. The initial

conditions at every (experimental and simulation) test were

qi(0) = q̇i(0) = 0, i = 1, 2. The generalized saturation

functions were defined as

σji(ς) =



















−Lji +
(Mji−Lji)(ς+Lji)√

(Mji−Lji)2+(ς+Lji)2
∀ς < −Lji

ς ∀|ς| ≤ Lji

Lji +
(Mji−Lji)(ς−Lji)√

(Mji−Lji)2+(ς−Lji)2
∀ς > Lji

(20)

with Lji < Mji, ∀(i, j) ∈ {1, 2} × {0, 1, 2}. The control

gains were adjusted as follows: k11 = 229.2, k12 = 12,

k21 = 3437.7, and k22 = 171.9 (with k1i in N·m·sec and

k2i in N·m, i = 1, 2), for all the controllers. The bounds of

the saturation functions were defined as: M11 = 40, M21 =
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Fig. 2. Position response of link 2: q2(t)

60, M12 = 2.5, and M22 = 5, for the SP-SD+ controller;

M01 = 100 and M02 = 7.5, for the SPD+ scheme; and Lji =
0.9Mji, ∀(i, j) ∈ {1, 2}×{0, 1, 2}, for both algorithms (with

Mji and Lji in N·m, i = 1, 2, j = 0, 1, 2). One can easily

verify that Assumption 2 as well as inequalities (12) and (13)

are satisfied.

Figs. 1 and 2 respectively show the shoulder and el-

bow joint position responses, i.e. q1(t) and q2(t), for all

the controllers. Observe that the stabilization objective is

achieved in every case. It is worth to note the closed-loop

performance differences resulting from the implementation

of the proposed schemes: while the system trajectories due to

the SPD+ algorithm are closer to those obtained in simulation

with the PD+ unbounded controller, the responses due to

the SP-SD+ scheme are slower.4 Furthermore, Figs. 3 and

4Recall that the same control gains are used at every tested scheme.
This way, it is the different controller structures that are responsible for the
resulting closed-loop performance differences.
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4 show the applied inputs τ1 and τ2, for all the tested

schemes. Observe that the control signals generated through

the SP-SD+ and SPD+ algorithms are clearly within the

input bounds considered at every link. On the contrary, the

control signal generated in simulation through the unbounded

PD+ algorithm reach maximum absolute values (not shown

in the graphs) that are larger than 10000 N·m for the first

link and around 300 N·m for the second link. Hence, with

this controller, the control inputs would undergo saturation in

the actual bounded input context considered for the schemes

proposed in this work.

VI. CONCLUSIONS

In this work, two globally stabilizing bounded controllers

for the trajectory tracking of robot manipulators with sat-

urating inputs were proposed. With respect to previously

proposed algorithms, our approaches gave a global solution

to the problem through static feedback. Moreover, they were

not defined using a specific sigmoidal function, but any one

on a set of saturating functions. This permitted the proposed

controllers to adopt a suitable structure where the control

gains were able to take any positive value, which may be

considered beneficial for performance-adjustment purposes.

The efficiency of the proposed schemes was corroborated

through experimental results.
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[8] V. Santibáñez and R. Kelly, “Global asymptotic stability of bounded
output feedback tracking control for robot manipulators,” in 40th IEEE

Conf. on Decision and Control, Orlando, FL, 2001, pp. 1378-1379.
[9] L. Sciavicco and B. Siciliano, Modelling and Control of Robot

Manipulators, 2nd ed., Springer, London; 2000.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC11.6

3522


