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Abstract— This paper discusses the problem of transforming
the single-input single-output nonlinear control system into
the nonlinear observer (input-output injection) form using the
notion of adjoint polynomials. Such a polynomial approach to
the sysnthesis of observers results in the transparent and elegant
way for the computation of the one-forms needed to solve the
problem.

I. INTRODUCTION

The paper addresses and revisits the problem of transform-
ing the single-input single-output nonlinear control system
into the nonlinear observer (input-output injection) form
using the state coordinate transformation. This problem has
been addressed within different approaches, see for example
[7], [8], [12], [13], [14], [15], [16] and [19]. Our results
are related to the solution in terms of the differential one-
forms. In the continuous- and discrete-time settings the
necessary and sufficient solvability conditions were given
in [7] and [12], [13] respectively. Note that [12] considers
only autonomous systems without input. Remark that in
both cases certain one-forms, defined by the corresponding
algorithms, have to be exact or closed for the problem to be
solvable. The novelty of our approach lies in two aspects.
First, the results are stated for nonlinear control systems de-
scribed by the pseudo-linear operator and results are obtained
using the pseudo-linear algebra [1], [5], [11]. Such system
description unifies the study of discrete- and continuous-time
cases into a single framework and moreover, provides an
extension. For the pseudo-linear operator covers not just the
classical continuous- and discrete-time cases, but accommo-
dates also difference, q-shift and q-difference operators [11].
Second, using the notion of adjoint polynomials [1], we
suggest a very easy, transparent and mathematically ele-
gant way to compute the necessary one-forms. Note that
our approach simplifies the computations especially in the
continuous-time case, for the procedures for handling Ore
rings and skew polynomials, including adjoint polynomials
as well, are already implemented for instance in the computer
algebra system Maple. Finally, the paper demonstrates the
applicability of pseudo-linear algebra to solve the problem
of transforming the state equations into a special form. In
a similar manner a pseudo-linear algebra may be applied
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to many different control problems like system reduction,
feedback linearization, accessibility and realization of the
input-output equations in the state space form, to name a
few possibilities.

II. ALGEBRAIC BACKGROUND

The algebraic framework which allows us to handle vari-
ous nonlinear control systems from a unique standpoint was
recently suggested in [11]. This formalism introduces the
notion of a σ-differential field which represents a general-
ization of the notions of differential and difference fields
usually employed to analyze the properties of continuous-
and, respectively, discrete-time nonlinear systems.

A. Pseudo-linear algebra

Pseudo-linear algebra [1], [5] is the study of common
properties of linear differential, shift, difference, q-shift, q-
difference and other types of operators. Such operators are
expressed in terms of the so-called skew polynomials. Note
that while mainly the differential and shift operators play a
key role in the control theory also applications employing
other types of operators can be found [3], [9], [10]. For
instance, the q-shift operator can be in some cases used
to model discrete-time systems with the varying sampling
period. The sampling period may be changed based on the
resources availabilty [2].
We begin with introducing the notion of a pseudo-derivation.

Definition 1: Let K be a field and σ : K → K an
automorphism of K. A map δ : K → K which satisfies

δ(a + b) = δ(a) + δ(b)
δ(ab) = σ(a)δ(b) + δ(a)b (1)

is called a pseudo-derivation (or a σ-derivation).
The notion of a pseudo-derivation unifies the notion of a
standard derivation and various difference operators [1], [5].
Clearly, if σ = 1K then (1) is just the rule for a derivation
on K. Or, for any σ the map δα = α(σ−1K) with α ∈ K is
a pseudo-derivation as well and has a sense of a difference
operator on K.

Remark 1: In studing the nonlinear control systems we
have to assume that α ∈ R. For it is necessary to satisfy the
commutativity of a pseudo-derivation with the differential
operator d, see [11] for details.

Definition 2: A σ-differential field is a triple (K, σ, δ)
where K is a field, σ is an automorphism of K and δ is
a pseudo-derivation.
Any automorphism σ and pseudo-derivation δ induce a non-
commutative skew polynomial ring.
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Definition 3: The left skew polynomial ring given by σ
and δ is the ring K[p;σ, δ] of polynomials in p over K with
the usual addition, and the (non-commutative) multiplication
given by the commutation rule

pa = σ(a)p + δ(a) (2)

for any a ∈ K.
Elements of such a ring are called skew polynomials or non-
commutative polynomials or Ore polynomials [17], [18]. The
commutation rule (2) actually represents the action of the
corresponding operator on polynomials.

Example 1: If K with a derivation d
dt is a differential

field, then K[D; 1K , d
dt ] is the ring of linear ordinary

differential operators and we interpret (2) as a rule for
differentiation: Da = aD + ȧ for any a ∈ K.
If K is a difference field and σ over K is the automorphism
which takes t to t + 1, then K[E;σ, 0] is the ring of
linear ordinary shift operators, while K[E;σ,∆], where ∆ =
σ − 1K , is the ring of linear ordinary difference operators
[1], [5].

Definition 4: Let V be a vector space over a field K. A
map θ : V → V is called pseudo-linear if

θ(u + v) = θ(u) + θ(v)
θ(au) = σ(a)θ(u) + δ(a)u (3)

for any a ∈ K, u, v ∈ V .
Pseudo-linear maps, in comparison to pseudo-derivations, al-
low to handle differential, difference and also shift structures
from a unique standpoint. Note that any field K is a vector
space itself. Hence, we can consider pseudo-linear maps over
K assuming that (3) holds for any a, u, v ∈ K.
Obviously, any pseudo-derivation δ over K is a pseudo-linear
map, simply by letting θ = δ.
If δ = 0 then θ = σ and (3) is clearly satisfied or we can
equivalently associate a difference operator ∆ = σ − 1K .
Then θ = ∆ and (3) is again satisfied, ∆(au) = σ(a)∆(u)+
∆(a)u = σ(a)(σ(u) − u) + (σ(a) − a)u = σ(au) − au.
This represents two alternative ways of describing ”shift”
structures.

Any pseudo-linear map θ : V → V induces the action
denoted by ∗

∗ : K[p;σ, δ]×V → V ;

(
n∑

i=0

aip
i

)
∗ u =

n∑
i=0

aiθ
i(u)

for any u ∈ V . For the sake of simplicity, the symbol * is
often dropped. So the elements of K[p;σ, δ] can be viewed
as operators acting on a vector space V .
Note also that multiplication in K[p;σ, δ] corresponds to the
composition of operators and (rs)u = r(su) for any r, s ∈
K[p;σ, δ] and u ∈ V .

B. Control systems

The nonlinear control systems considered in this paper are
objects of the form

x〈1〉 = f(x, u)
y = g(x, u) (4)

where the entries of f and g are meromorphic functions,
which we think of as elements of the quotient field of the ring
of analytic functions. The symbol x〈1〉 stands for a pseudo-
linear operator: x〈1〉 = θ(x). It can be a derivation, θ(x) = ẋ,
that corresponds to the continuous-time case, a shift, θ(x) =
σ(x), or a difference, θ(x) = α(σ(x)− x) with α ∈ R, that
correspond to two alternative discrete-time cases.
In (4), x ∈ Rn, u ∈ R and y ∈ R denote respectively the
state, the input and the output of the system.
Let K denote now the field of meromorphic functions of
variables {x, u〈k〉; k ≥ 0}.
We assume that system (4) is generically submersive, i.e.

rankK
∂σ(x)
∂(x, u)

= n (5)

Under (5), σ is an automorphism of K and there exists, up
to an isomorphism, a unique difference field K∗ called the
inversive closure of K [6]. Here we assume that the inversive
closure is given and by abuse of notation we use the same
symbol K for both. An explicit construction of the inversive
closure follows the same line as in [4].
Next, define the vector space E of one-forms spanned over
K by differentials of elements of K, that is

E = spanK{dξ; ξ ∈ K}

The pseudo-linear operator θ acts on K and E as follows

θ(ξ) =
{

δ(ξ) if δ 6= 0
σ(ξ) if δ = 0

θ(cdξ) = σ(c)d(θ(ξ)) + δ(c)dξ

where ξ ∈ K and cdξ ∈ E . For more details, see [11].

C. Polynomial system description

The behaviour of nonlinear control systems of the form
(4) can be now described by two skew polynomials over
the σ-differential field K that act on differentials of system
inputs and outputs, see [11].
Let

y〈n〉 = F
(
y, . . . , y〈n−1〉, u, . . . , u〈s〉

)
(6)

where F ∈ K, be the corresponding input-output equation
of the control system (4). After differentiating (6) we get

dy〈n〉 −
n−1∑
i=1

∂F

∂y〈i〉
dy〈i〉 =

s∑
i=0

∂F

∂u〈i〉
du〈i〉

or, alternatively

a(p)dy = b(p)du (7)

where

a(p) = pn −
n−1∑
i=1

∂F

∂y〈i〉
pi

b(p) =
s∑

i=0

∂F

∂u〈i〉
pi

and a(p), b(p) ∈ K[p;σ, δ].
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Example 2: Consider the system ÿ = ẏu. After differen-
tiating dÿ = udẏ + ẏdu we get

(s2 − us)dy = ẏdu

where a(s) = s2 − us and b(s) = ẏ are polynomials in
K[s; 1K, d

dt ].
Example 3: Consider the discrete-time system y++ = u+

y+u+ where y stands for y(t), y+ for y(t + 1) etc. Now,
after differentiating dy++ = du + u+dy+ + y+du+ we get

(δ2 − u+δ)dy = (y+δ + 1)du

where a(δ) = δ2−u+δ and b(δ) = y+δ+1 are polynomials
in K[δ;σ, 0] with σ taking t to t+1 (forward shift operator).

III. ADJOINT POLYNOMIALS

Adjoint polynomials [1] represent in some sense dual
objects to skew polynomials. We can get them by moving
the indeterminate on the left of each summand. Formally,
they are defined as follows.

Definition 5: The adjoint of a skew polynomial ring
K[p;σ, δ] is defined as the skew polynomial ring
K[p∗;σ∗, δ∗] where

σ∗ = σ−1, δ∗ = −δσ−1

Let a(p) = anpn + . . . + a1p + a0 be a polynomial in
K[p;σ, δ]. The adjoint polynomial a∗ is then defined by the
formula

a∗(p∗) = p∗nan + . . . + p∗a1 + a0 ∈ K[p∗;σ∗, δ∗] (8)

Note that products p∗iai must be computed in the skew
polynomial ring K[p∗;σ∗, δ∗], following the commutation
rule

p∗a = σ∗(a)p∗ + δ∗(a)

Example 4: Consider the polynomials from Example 3

a(δ) = δ2 − u+δ

b(δ) = y+δ + 1

The adjoint of K[δ;σ, 0] is the ring K[δ∗;σ∗, 0] where σ∗ =
σ−1; that is, the backward shift operator. So, the comutation
rule in K[δ∗;σ−1, 0] reads

δ∗a = a−δ∗

Thus, in according to the formula (8), the adjoint polynomials
can be found by computing

a∗(δ∗) = δ∗2 − δ∗u+ =
= δ∗2 − uδ∗

b∗(δ∗) = δ∗y+ + 1 =
= yδ∗ + 1

This is, in fact, the formalization of the idea of moving
the indeterminate on the left of each summand in original
polynomials

a(δ) = δ2 − δu

b(δ) = δy + 1

Notice that we get the coefficients of adjoint polynomials.
Example 5: Similarly, we can find adjoint polynomials in

continuous-time case. Consider, for instance, the polynomial
a(s) from Example 2

a(s) = s2 − us

The adjoint of K[s; 1K, d
dt ] is the ring K[s∗; 1K,− d

dt ] with
the comutation rule s∗a = as∗ − ȧ. Thus, the adjoint
polynomial can be found as

a∗(s∗) = s∗2 − s∗u

= s∗2 − us∗ + u̇

Or, again, by moving s on the left of each summand in a(s)

a(s) = s2 − su + u̇
Remark that in commutative case; that is, the case of linear

systems when all coefficients are in R, a polynomial and its
adjoint are identical objects.
Finally, remark also that the adjoint is a bijective mapping
and

(σ∗)∗ = σ, (δ∗)∗ = δ

Moreover
(a∗)∗ = a, (ab)∗ = b∗a∗

for any a, b ∈ K[p;σ, δ]. For more details see [1].

IV. SYNTHESIS OF OBSERVER

The use of an obsever is necessary whenever the state
employed in a feedback loop is not directly measurable.
Here, we recall some well known basic results on the obsever
design for system (4). The solution is based on the system
linearization by the state coordinate transformation up to
the input-output injection and on the standard Luenberger
observer design for the linearized system.

A. Linearization and input-output injection

Consider the system (4) and suppose it to be observable.
The aim is to find, if possible, a state transformation ξ =
φ(x) such that in the new coordinates the system (4) is in
the observer form

ξ
〈1〉
1 = ξ2 + ϕ1(y, u)

...
ξ
〈1〉
n−1 = ξn + ϕn−1(y, u) (9)

ξ〈1〉n = ϕn(y, u)
y = ξ1

where ϕi ∈ K are the so-called input-output injections.
From such a form the synthesis of the observer is quite
straightforward. Note that the system (9) is, in fact, of the
form

ξ〈1〉 = Aξ + ϕ(y, u)
y = Cξ
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with constant matrices (C,A) in canonical observer form.
An estimate ξ̂ of the state ξ can be now obtained as

ξ̂〈1〉 = Aξ̂ + ϕ(y, u) + K(Cξ̂ − y)

provided that K is chosen such that the estimation error
e = ξ̂ − ξ goes asymptotically to zero. Note that e〈1〉 =
(A + KC)e is linear, which is, in fact, the purpose of the
transformation of the system equations (4) to the form (9).
See for instance [7].
The solution to the problem thus reduces to finding, if
possible, input-output injections ϕi’s such that the input-
output equation of the system (4)

y〈n〉 = F
(
y, . . . , y〈n−1〉, u, . . . , u〈s〉

)
(10)

can be rewritten as

y〈n〉 = ϕ
〈n−1〉
1 (y, u) + . . . + ϕ

〈1〉
n−1(y, u) + ϕn(y, u) (11)

which is clearly the input-output equation of the transformed
system (9).

B. Transformation to the observer form

Classical approach to the transformation of the system
into the observer form consists in examining the exactness
of certain one-forms derived stepwise from the input-output
mapping F , see for instance [7] for the continuous-time case
and [12], [13] for the discrete-time case.
Alternatively, as we will demonstrate below, such one-forms
can be directly found from polynomial system description
(7) by employing the notion of adjoint polynomials, forming
the main ingredient of this paper.
After differentiating (10) we get a(p)dy = b(p)du where

a(p) = pn + an−1p
n−1 + . . . + a1p + a0

b(p) = bn−1p
n−1 + . . . + bsp

s + . . . + b1p + b0

with bs+1, . . . , bn−1 = 0, are polynomials in K[p;σ, δ]. So

pndy = − an−1p
n−1dy − . . .− a1pdy − a0dy +

+ bn−1p
n−1du + . . . + b1pdu + b0du

Now let

a∗(p∗) = p∗n + a∗n−1p
∗n−1 + . . . + a∗1p

∗ + a∗0

b∗(p∗) = b∗n−1p
∗n−1 + . . . + b∗1p

∗ + b∗0

in K[p∗;σ∗, δ∗] be the adjoints of a(p), b(p) respectively.
Then clearly

pndy = − pn−1a∗n−1dy − . . .− pa∗1dy − a∗0dy +
+ pn−1b∗n−1du + . . . + pb∗1du + b∗0du

which can be rewritten as

pndy = pn−1ω1 + . . . + pωn−1 + ωn

with
ωi = b∗n−idu− a∗n−idy (12)

for i = 1, . . . , n.
Finally, the polynomial description of (11) reads as

pndy = pn−1dϕ1 + . . . + pdϕn−1 + dϕn

We have thus proved
Proposition 1: The nonlinear system (4) is locally equiv-

alent to the system (9) under a state transformation ξ = φ(x)
if and only if

dωi = 0

for i = 1, . . . , n, where the one-forms ωi are defined by (12).
Remark 2: One can easily prove that for continuous- and,

respectively, discrete-time cases the list {ωi; i = 1, . . . , n}
coincides with the one derived within the classical approach,
see [7] and [13]. Note, however, that the list of one-forms
ω̃i in [12] differs with the relationship ωi−1 = ω̃i− ω̃i−1, as
proved in [13].

Example 6: Consider the system from Example 2 where

s2dy = usdy + ẏdu

Coefficients of adjoint polynomials can be found by moving
the indeterminate on the left of each summand

s2dy = (su− u̇)dy + ẏdu

s2dy = sω1 + ω2

and ω1 = udy, ω2 = ẏdu− u̇dy. Or, alternatively, following
the formal definition

a(s) = s2 − us

b(s) = ẏ

and the adjoint polynomials are

a∗(s∗) = s∗2 − us∗ + u̇

b∗(s∗) = ẏ

The one-forms can be stated as ω1 = b∗1du − a∗1dy = udy,
ω2 = b∗0du − a∗0dy = ẏdu − u̇dy. Note that neither ω1 nor
ω2 are exact.

Example 7: Consider the system from Example 3 where

(δ2 − u+δ)dy = (y+δ + 1)du

We have now

δ2dy = u+δdy + y+δdu + du

δ2dy = δ(udy + ydu) + du

Both ω1 = udy+ydu and ω2 = du are exact. Thus ϕ1 = yu,
ϕ2 = u and the system can be transformed into the input-
output injection form

ξ+
1 = ξ2 + yu

ξ+
2 = u

y = ξ1

Note that the approach given here covers directly also
difference, q-shift or q-difference operators. Hence, it is
possible to design observers also for those types of control
systems. For instance, some discrete-time systems with the
varying sampling period can be in some cases modeled using
q-shift operators, as depicted in the following example.
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Example 8: Consider the system

x1(2t) = x2(t)
x2(2t) = x1(t)u(t) + x2

1(t)
y(t) = x1(t)

with the input-output equation y(4t) = y(t)u(t) + y2(2t)
which can be modeled over the σ-differential field (K, σ, 0)
where σ takes t to 2t as

x
〈1〉
1 = x2

x
〈1〉
2 = x1u + x2

1

y = x1

with the input-output equation

y〈2〉 = yu + (y〈1〉)2

The related polynomial description can be found as

dy〈2〉 = udy + ydu + 2y〈1〉dy〈1〉

(p2 − 2y〈1〉p− u)dy = ydu

where a(p) = p2−2y〈1〉p−u and b(p) = y are polynomials
in K[p;σ, 0]. The adjoint polynomials can be computed as

a∗(p∗) = p∗2 − 2yp∗ − u

b∗(p∗) = y

from which ω1 = b∗1du−a∗1dy = 2ydy and ω2 = ydu+udy,
both exact ϕ1 = y2 and yu. Finally, the transformed system
is

ξ1(2t) = ξ2(t) + y2(t)
ξ2(2t) = y(t)u(t)

y(t) = ξ1(t)

C. Implementation in Maple

Described procedure for synthesis of observer can be
easily implemented in computer algebra system Maple, since
it supports directly many procedures for handling Ore rings
and skew polynomials, including adjoints.

Example 9: The following system representing a DC mo-
tor was considered in [7]

ẋ1 = −Kmx1x2 −
Ra + Rf

K
x1 + u

ẋ2 = −B

J
x2 − x3 +

Km

J
Kx2

1

ẋ3 = 0
y = ln x1

Input-output equation can be found as

y(3) = −2
K2

mK

J
e2y ẏ − B

J
e−yuẏ − 2e−y ẏu̇ +

+ e−y ẏ2u− B

J
ÿ + e−yü− e−y ÿu +

B

J
e−yu̇

and the related polynomial description as a(s)dy = b(s)du
with

a(s) = s3 + (e−yu +
B

J
)s2 +

+ (2
K2

mK

J
e2y + 2e−yu̇− 2e−yuẏ +

B

J
e−yu)s +

+ e−yü + 4
K2

mK

J
e2y ẏ − 2e−y ẏu̇ + e−y ÿ2u +

+
B

J
e−yu̇− e−y ÿu− B

J
e−yuẏ

and

b(s) = e−ys2 + (
B

J
e−y − 2e−y ẏ)s +

+ e−y ẏ2 − e−y ÿ − B

J
e−y ẏ

The adjoint polynomials can be found by Maple procedure
AdjointOrePoly as

a∗(s∗) = s∗3 + (e−yu +
B

J
)s∗2 + (2

K2
mK

J
e2y +

+
B

J
e−yu)s∗

b∗(s∗) = e−ys∗2 +
B

J
e−ys∗

from which ωi = b∗n−idu − a∗n−idy for i = 1, 2, 3 are as
follows

ω1 = e−ydu− (e−yu +
B

J
)dy

ω2 =
B

J
e−ydu− (2

K2
mK

J
e2y +

B

J
e−yu)dy

ω3 = 0

all of them exact. That is

ϕ1 = e−yu− B

J
y

ϕ2 =
B

J
e−yu− K2

mK

J
e2y

ϕ3 = 0

Thus, the system can be transformed into the following input-
output injection form

ξ̇1 = ξ2 + e−yu− B

J
y

ξ̇2 = ξ3 +
B

J
e−yu− K2

mK

J
e2y

ξ̇3 = 0
y = ξ1

like in [7].

V. CONCLUSIONS

In this paper the problem of transforming the single-input
single-output nonlinear control system into the nonlinear
observer (input-output injection) form using the notion of
adjoint polynomials was discussed. Such an approach re-
sulted in the transparent and mathematically elegant way for
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the computation of the one-forms one needs to solve the
problem.

Our future task is to extend the results of transformability
the state equations into the observer form using both the
state and output coordinate transformations. Note that in the
discrete-time case necessary and sufficient transformabilty
conditions exist [13], but in the continuous-time case the cor-
responding conditions are missing. Though the necessary and
sufficient solvability conditions exist also in the continuous-
time case [16], these conditions are not directly computable
from the system description like in the discrete-time case;
they depend on the existence of a unknown function. The
same holds for the necessary solvability conditions in [8].
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