
  

  

Abstract� The asymptotic expansion of the solution of a  
linear-quadratic optimal control problem for a descriptor 
system with intermediate points and a small parameter in a 
performance index has been  constructed as series of non-
negative integer powers of a small parameter. The estimates 
have been obtained for the proximity of the asymptotic 
approximate solutions to the exact one. The nice property is 
proved, namely, the values of the minimized functional do not 
increase when higher-order approximations to the optimal 
control are used. The numerical example is given in order to 
illustrate the proposed method.  

I. INTRODUCTION 

 
N this paper, we study a linear�quadratic optimal control 
problem (1)-(3) from the second section.  The presence of 

a small parameter in the cost (1) indicates the different 
significances of the addends. We will assume that 
admissible controls )(⋅u  in the perturbed problem are 
piecewise continuous functions ensuring the solvability of a 
state equation with a given condition for the state variable, 
trajectories )(⋅x of a state equation are piecewise continuous 
functions satisfying the state equation almost everywhere 
such that )(⋅Ex  are continuous. 

We will construct the asymptotic expansion of the 
solution of the considered perturbed problem in the form of 
series of non-negative integer powers of a small parameter 
by substituting the postulated asymptotic expansions into the 
problem condition and then defining a series of optimal 
control problems in order to find the expansions terms. Such 
method for the construction of asymptotic solutions for 
optimal control problems was essentially developed in [1] 
for singularly perturbed continuous optimal control 
problems without restrictions for the values of the control. 
This method has been called the "direct scheme." Further 
applications of the direct scheme and the survey of the 
publications, devoted to optimal control problems with a 
small parameter, are presented in [2]. 
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The numerical example will be given in order to illustrate 
the proposed method.  

We indicate some works concerning the optimal control 
problems with intermediate points in the performance index.  
The paper [3] deals with the necessary control optimality 
condition for nonlinear optimal control problems consisting 
in the approaching of the object to fixed points in the given 
order, when resources are limited and a state equation is 
resolved with respect to the derivative. The integral part in 
the performance index is absent in this case. Some problems 
with intermediate points and with a state equation resolved 
with respect to the derivative, when the control is one-
dimensional, are considered in [4].  In the last paper, the 
problem for determining of the volume of water, containing 
in a lake, is described. This problem is reduced to a problem 
with intermediate points. The necessary and sufficient 
control optimality conditions in the Pontryagin�s maximum 
principle form are given in [5] for some linear-quadratic 
optimal control problems for descriptor systems with 
intermediate points. The methods for finding an optimal 
control, which are used in [5], are different from the 
methods in [4]. 

II. PROBLEM FORMULATION 
 

Let us consider the problem εP  of the following form 
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Here ⋅⋅ , denotes the inner product in appropriate spaces, 

]T,[t 0∈ , Tttt0 N <<<<= K10 , TtN =+1 , jt , 

,,, 1N1j += K are fixed, Xtx ∈)( , Utu ∈)( ; X , U are 
real finite-dimensional Euclidean spaces;  ,E  ),(tA  ,jG  

);()( XLtW ∈  );,()(),( XULtStB ∈  );()( ULtR ∈  the 
operators jG , ,1,,1 += Nj K  ),(tW  and )(tR  are 
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elements ImEx ∈0  and Xj ∈ξ , ,1,,1 += Nj K  are given, 

jG  and E  are independent of ,t  but the other operators 

and the function )(⋅f  with values in X  depend 
continuously on ;t  the superscript ∗  denotes an adjoint 
operator. For the definiteness, we will suppose that a small 
parameter ε  is positive and all functions are continuous to 
the right in the points of the discontinuity. When 0t =  and 

Tt =  we assume the continuity to the right and to the left, 
respectively. The co-ordinate representation is used nowhere 
in this paper. 

The argument t  is further dropped almost everywhere, 
and the given relations are meant pointwise for all ].,0[ Tt ∈   

The asymptotic expansion of the solution of the problem 
(1)-(3) will be constructed using the direct scheme. We will 
seek a solution of the perturbed problem (1)-(3) in the series 
form  
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We substitute the relations (4) into (1)-(3), expand the 
right-hand sides of (1) and (2) in series in powers of ε, and 
then equate the coefficients of like powers of ε in (2) and 
(3). Then the functional to be minimized may be written in 
the form 

,
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jJjxuJ εε  (5)  

and relations (2), (3) yield the equations for the terms of the 
decomposition (4).    
We will determine a series of optimal control problems in 
order to find the coefficients in (4).  

Further, P  and Q  denote the orthogonal projectors of the 

space X  onto KerE  and *KerE respectively.  
 

Assumption 10.  The operator 
*:)( KerEKerEPtQA →                  (6)  
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III. FORMALISM OF  ASYMPTOTIC EXPANSIONS 
CONSTRUCTION  

 
When ,0=ε  we obtain from (1)-(3) the degenerate 

problem

min,),2
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Here and further, we denote the operator EGE j
∗  by ,jF  

1N1j += ,,K . 
We can obtain the degenerate problem if we substitute the 

relations (4) into (1)-(3) and equate the coefficients of 0ε .  
The solution of the linear-quadratic optimal control 

problem 0P  can be found from (8), (9) and from the 
following relations   
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000 RuψBxS0 −+−= ∗∗                                               (12) 
(see e.g. [6]). 

Substituting the relations (4) into (2) and (3) then 
equating coefficients with jε , we obtain the initial values 

problems for jx   
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We write down the coefficient 1J  from (5). 
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We transform the last expression, substituting the relation 
for ,00 SuWx +  obtained from (10), and the relation for 

00 xSRu ∗+ , obtained from (12). Using (13), (11), we get 
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So, the coefficient 1J  is known after the problem 0P  has 
been solved. 

The coefficient 2J  from (5) has the following form: 
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We realize the transformations in the relation (14) for 2J , 
as for 1J . Taking into consideration (10)-(12) and (13) for 

,2=j  we obtain the different form for 2J , which will be 

denoted further by ),(~
111 xuJ . 

To determine the pair of functions ),( 11 xu , we consider 
the linear-quadratic control problem with intermediate 
points of the form 
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Further, in order to determine the pair of the functions 
),( kk xu  for 2≥k , we define the following problems  
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The solution of the problem kP  can be found from (15) 
and from the following relations  
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Theorem 1.  The coefficient 12 −kJ  from (5) is known 

after problem 1−kP  has been solved. The performance index 

),(
~

kkk xuJ  in the problem kP )1( ≥k  is the transformed 
expression for the coefficient kJ2 . 

 
Proof. The theorem statement has already been proved for 

.1=k  Let us suppose that it is true for nk <≤1 .  
The coefficient nJ 2  from (5) has the form 
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Using (10), (16), (12), (19), (13), we get the following 

equalities  
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From here, taking into account (17), (11), (18), we reduce 
the expression for nJ 2  to the following form  
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which is coincident with ).,(~
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We write down the coefficient 12 −nJ  from (5).   
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Realizing the transformations which are similar to the 
transformations for nJ 2 , we get 
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So, the coefficient 12 −nJ  is known after the problem 1−nP  
has been solved. 

The theorem 1 is proved. 
It should be noted that Theorem 1 is valid without the 

assumption on the invertibility of the operator (6). 

IV. ESTIMATES OF APPROXIMATE SOLUTION 
 

Let us assume that the solutions ),( jj xu  have been 

found for the problems jP , nj ,,0 K= . We shall estimate 

the approximate solution of the perturbed problem εP : 
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We will denote the solution of the problem εP  by 
).,( ∗∗ xu  It satisfies the following system 

),()()()()(
))((

tftutBtxtA
dt

tExd
++= ∗∗

∗                       (20) 

,)0( 0xEx =∗                                                                  (21) 

,),()()()()()(
)(

jtttutSttAtxtW
dt

td
E ≠+−= ∗

∗
∗

∗ ψ
ψ

(22) 

),)(())0()0(( jjjjj txFttE ξεψψ −−=+−− ∗
∗                 (23) 

,,,1 Nj K=  

),)(()( 11 +∗+
∗ −−= NN TxFTE ξψ                                     (24) 

).()()()()()(0 tutRttBtxtS ∗
∗

∗
∗ −+−= ψ                        (25) 

It should be noted that it is simpler to find the solutions of 
the problems jP  than the problem εP  solution. In 

particular, if  ,0=W  ,0=S and 01 =+NF , we have the 
problem for finding )(tjψ  and )(tu j  which does not 
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(see, for example, [7]). (The invertibility of the last operator 
means that the system following from the control optimality 
condition, has index one. The general conditions ensuring 
index one for this system, are given in [6].) In view of [7] 
(Theorem 5.1), the system (27), (29), (32) provides an 
explicit non-negative differential Hamiltonian system for the 
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The relations (30), (31) are equivalent to the following 
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Analogously to the theorem 2.3 proof from [5], we can 
establish the unique solvability of the boundary value 
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problem (33), (28), (34), (35) for all .0≥ε  From here and 
from (32), it follows that the estimates 
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So, we have proved  
 
Theorem 2. The following estimates   

,||)(~)(||||,)(~)(|| 1+
∗∗ ≤−− n

nn сtututxtx ε

,),()~,~( )1(2 +
∗∗ ≤− n

nn сxuJxuJ εεε   
where a constant с  does not depend on t  and ,ε  are true 
for all ],0[ Tt ∈  and sufficiently small .0>ε   
 

It follows from this theorem that )}(~{ tun  is a minimizing 
sequence for the considered functional  (1). 

Further, we will prove that the sequence  )}~,~({ ii xuJ ε  is 
decreasing for fixed ε . 

 
Theorem 3. For sufficiently small ,0>ε  we have 

.,,1),~,~()~,~( 11 nixuJxuJ iiii K=≤ −−εε                        (37)  
If 0≠iu  then (37) is a strict inequality. 
 

Proof. If ,0=iu  (37) is obvious. Let us consider the case 
when .0≠iu  Expanding ),1()~,~( iisxuJ ss −=ε  in series 
(5) and using Theorem 1, we obtain that the first 2i terms in 
expansions )~,~( 11 −− ii xuJε  and )~,~( ii xuJε  are identical. 
The pair ),( ii xu  is a solution of the linear-quadratic 
problem iP , the performance index of which is a 
transformed expression for .2iJ  Hence, the value of this 
coefficient ,2iJ  corresponding to the decomposition of  

),~,~( ii xuJε  is strictly less than the respective value for 
).~,~( 11 −− ii xuJε Therefore, (37) is true for sufficiently small 

.0>ε  

V. ILLUSTRATIVE EXAMPLE 
 

As the obtained results are new for problems with a state 
equation resolved with respect to the derivative, we consider 
the problem εP of minimizing the functional 

∫+

+++−+−+

+++−=
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2

2
2

2
2

2
1

2
1

2
1

2
1

))400)2(()200)1(()1000)2((

)1000)1(((
2

)30)3((
2
1),(

dtu

xxx

xxxuJ ε
ε

 

on trajectories of the system 

,10)0(,
,60)0(,

22

121
==
==

xux
xxx

&

&
                                                (38) 

when 1.0=ε . 
 

Taking into account the method developed in this paper 
we find the solutions of the problems 0P and 1P . 

Then we obtain the zero and first order approximations 
)x,u( 00  and )~,~( 11 xu  for the solution of the problem εP . 

The exact and approximate solutions are given in Fig.1 for 
,1x  in Fig.2 for 2x  and in Fig. 3 for .u  
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Using the solutions of the system (38) when 0uu =  and 

1
~uu = , we evaluate ),( 00 xuJε  and )~,~( 11 xuJε  

accordingly. The obtained results and the optimal value of 
the performance index are given in Table I.  

VI. CONCLUSION 
 

So, we have constructed the asymptotic solution for the 
problem (1)-(3) using the direct scheme method. 

The estimates have been obtained for the proximity of the 
asymptotic approximate solutions to the exact one in terms 
of the control, the trajectory and the functional. 

Using the direct scheme method we have proved the nice 
property, that the values of the minimized functional do not 
increase when higher-order approximations for the optimal 
control are utilized. The direct scheme method advantage is 
also the possibility to apply standard programs for solving 
optimal control problems in order to find the terms of 
asymptotic expansions. 
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PERFORMANCE  INDEX VALUE 

),( 00 xuJε  111058.45 

)~,~( 11 xuJε  110141.9986 

),( ∗∗ xuJε  110127.4015 

TABLE I 
VALUES OF PERFORMANCE INDEX 

Fig.1. The graphs of exact and approximate solutions for 
).(11 txx =  

Fig.3. The graphs of exact and approximate solutions for ).(tuu =  

Fig.2. The graphs of exact and approximate solutions for 
).(22 txx =  
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