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Abstract— We provide for the first time a formulation of non-
linear, nonstationary causality in terms of mutual information.
We provide two fundamental mutual information identities; the
first relating Granger type causality to Sims type causality.
The second providing a decomposition of mutual information
into a sum of Granger and Sims type terms. We also develop
asymptotic relations that emerge under strict stationarity and
generalise earlier work of Geweke. We relate our work in
general with earlier developments.

I. Introduction

Following Granger’s development of an operational defini-

tion of temporal causality [1],[2], the attempt at empirically

unraveling complex driving relations amongst macroeco-

nomic variables from observational time series has played an

important role in Econometrics. Granger causality has also

been applied in bioengineering (aided by early work of [3])

e.g. [4],[5],[6],[7]. and more recently neuroimaging.

The theory underwent major development in the 1970s and

80s in Econometrics [8],[9],[10],[11],[12] and Systems and

Control e.g.[13],[14],[15],[16]. But a number of significant

issues remained and important work followed on nonlinearity

and non-stationarity [17],and omitted variables [18]. More

recently some new issues have arisen which have motivated

the current work.

For completeness we mention the large statistical literature

on empirical testing of causality in a static setting. The

important recent book [19] has a guide to earlier literature.

From that large literature we draw attention to the insightful

article of [20].

In this work we are concerned to develop the basis of

a theory of non-linear observational causality using mutual

information. Based on the linear theory, there are several

things such a nonlinear theory must accomplish;

(i) Provide definitions extending Granger and Sims

causality and a result showing their equivalence.

(ii) Provide a means of measuring strength of causality by

extending the linear measures provided by [10].

(ii) Provide a framework sufficient to support system iden-

tification.

While the connexion to mutual information has not previ-

ously been made in this generality, sub-pieces of this agenda

have otherwise been previously accomplished. For (i) [12]

Granger gave a definition of nonlinear Granger causality

(GC).[17] gave a different defintion of nonlinear Granger

causality as well as an extension of Sims causality and

proved equivalence. For (ii) [21] and independently [22],[23]
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have given definitions of so-called directed information

which are closely related to measures of strength of causality.

Also [24] (see also [25][p631]) drew attention to a mutual

information interpretation of the linear results of [10]. Finally

as this paper was about to be submitted the author became

aware of important work of [26] who develop a nonlinear

causality theory in a Markov context that covers (i),(ii),(iii)

to some extent.

In this work we formulate a theory of nonstationary

nonlinear causality properties in terms of mutual information

apparently for the first time. We then develop new results

covering (i),(ii),(iii) and show how our work includes and

extends the previous contributions.

The remainder of the paper is organized as follows. In

section 2 we give a brief review of mutual information from

a slightly unusual viewpoint. In section 3 we review previous

work on nonlinear causality . In section 4 we develop our

mutual information framework. In section 5 we obtain some

asymptotics under a strict stationarity assumption. Conclu-

sions are in section 6.

A. Notation and Acronyms

For n > a, Xn
a denotes (xa, xa+1, · · · , xn); and then

Xn
n ≡ xn. We also use a shorthand notation: X0 = current

value =xn+1; X− = past values = Xn
1 ; X+ = future values

= X∞

n+2. However we will need to define this last notation

more carefully below.

AOD denotes analysis of deviation; AOI denotes analy-

sis of information; ARMA denotes autoregressive moving

average; ChRu denotes chain rule; GC denotes Granger

causality; HMM denotes hidden Markov model; LR denotes

likelihood ratio; LRT denotes likelihood ratio test; LHS

denotes left hand side; MI denotes mutual information; MP

denotes Markov process; RHS denots right hand side; VAR

denotes vector autoregression; SC denotes Sims cauality;

SSY denotes strict stationarity.

II. Mutual Information Review

We first review some basic aspects of mutual information

and then assemble some properties that are crucial for

our subsequent discussion. We refer to [27] for complete

definitions and some proofs.

For a continuous valued random vector X with prob-

ability density function p(x) the (differential) entropy is

h(X)=-E(lnp(X)) and the conditional entropy is h(Y |X) =
−E[lnp(Y |X)]. A fundamental property is the (conditional)

entropy chain rule (ChRu)

h(X,Y |Z) = h(X |Z) + h(Y |X,Z)

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

ThB15.3

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 4939



Continuing we define the mutual information (MI)

I(X ;Y ) = E[ln
p(X,Y )

p(X)q(Y )
]

= h(X) + h(Y ) − h(X,Y )

and similarly the conditional MI

I(X ;Y |Z) = E[ln
p(X,Y |Z)

p(X |Z)q(Y |Z)
]

= h(X |Z) + h(Y |Z) − h(X,Y |Z)

By the entropy chain rule this is

= h(X |Z) − h(X |Y, Z)

= h(Y |Z) − h(Y |X,Z)

Note the symmetry

I(Y ;X |Z) = I(X ;Y |Z)

And importantly MI inherits,

Property: ChRu. Chain Rule

I(X ; (W,Y )|Z) = I(X ;Y |Z) + I(X ;W |Y, Z)

Finally Jensen’s inequality shows (conditional )MI is non-

negative

I(X ;Y |Z) ≥ 0

This leads immediately to a fundamental property of entropy:

Property CRE Conditioning reduces entropy.

h(X |Z) ≥ h(X |Y, Z)

Now we can deduce some special properties of (conditional

) MI needed in our subsequent discussion.

Property: RED Redundancy

I(Y ; (X,Z)|Z) = I(Y ;X |Z)

Property: DRI Discard reduces information

I(X ; (Y,W )|Z) ≥ I(X ;Y |Z)

Property: DCRI Discard Conditioning reduces infor-

mation

I(X ; (Y,W )|Z) ≥ I(X ;W |Y, Z)

RED follows by substitution into the definition, while DRI

,DCRI follow from the chain rule .

It proves useful for our subsequent development to re-

express MI in terms of LRs,

I(X ;Y ) = E[ln
q(Y |X)

q(Y )
]

= E[ln
p(X |Y )

p(X)
]

This exhibits MI in two different ways as an expected LR.

The expressions are interesting since at first sight the sym-

metry is not apparent. Similarly we can express conditional

MI

I(X ;Y |Z) = E[ln
q(Y |X,Z)

q(Y |Z)
]

= E[ln
p(X |Y, Z)

p(X |Z)
]

We now use these alternative expressions for MI to derive

the chain rule from an elementary nested decomposition of

LR. We have

ln
p(X |W,Y,Z)

p(X |Z)

= ln
p(X |W,Y,Z)

p(X |Y, Z)
+ ln

p(X |Y, Z)

p(X |Z)

and taking expectations delivers the conditional chain rule .

If we introduce the sample MI

i(X ;Y ) = ln
p(X,Y )

p(X)q(Y )

= ln
q(Y |X)

q(Y )
= ln

p(X |Y )

p(X)

and then the correspondingly defined sample conditional MI

i(X ;Y |Z) then the nested LR decomposition is in fact a

sample conditional ChRu.

i(X ; (W,Y )|Z) = i(X ;Y |Z) + i(X ;W |Y, Z)

We note that sample conditional MI is not new, having been

defined in [28].

III. Nonlinear Causality

In [12] Granger extended his notion of causality to the

nonlinear case.

Definition GC. Y does not cause X , if

p(xn+1|X
n
1 , Y

n
1 ) = p(xn+1|X

n
1 ), n ≥ 1

In the Gaussian case this is equivalent to the standard linear

definition

var(xn+1|X
n
1 , Y

n
1 ) = var(xn+1|X

n
1 ), n ≥ 1.

Actually this is what [9],[29] call weak causality.

Strong causality entials additional conditioning on yn+1 on

the LHS. We develop results here for weak causality only due

to lack of space. However corresponding results for strong

causality can be developed in a straightforward way.

[17] provided a significant development of nonlinear

causality via the framework of conditional independence.

Definition. Given random vectors X,Y, Z we say X,Y
are conditionally independent given Z and written

X ⊥ Y |Z if p(X,Y |Z) = p(X |Z)q(Y |Z).
[17] establish some basic properties of conditional ind-

pendence and then define nonlinear versions of GC and SC.

Their definitions involve infinite sequences. We modify them

to apply to finite sequences as follows.

Definition GC
′

.

Y does not cause X if xn+1 ⊥ Y n
1 |Xn

1 , n ≥ 1.

Definition SFMC. Y does not cause X if

Xn+m
n+1 ⊥ yn|X

n
1 , Y

n−1

1 , n ≥ 1,m ≥ 1.

It is straightforward to see that GC agrees with GC
′

.

Indeed by GC
′

, p(xn+1, Y
n
1 |Xn

1 ) = p(xn+1|X
n
1 )p(Y n

1 |Xn
1 )

But the LHS is also p(xn+1|Y
n
1 , X

n
1 )p(Y n

1 |Xn
1 ) and so

p(xn+1|Y
n
1 , X

n
1 ) = p(xn+1|X

n
1 ) which is just GC.

In a similar way we find that SFMC is equivalent to

p(yn+1|X
n+m
n+1

, Xn
1 , Y

n−1

1
) = p(yn+1|X

n
1 , Y

n−1

1
)

Compared to the linear case [8] this has extra conditioning

on Y n−1

1 . The significance of this will be clear shortly but
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it explains why we have added the initials of [17] to the

acronym.

Using an intermediate result of Bahadur [30], [17] estab-

lish the fundamental equivalence result.

Theorem 1. GC
′

≡SFMC.

This result again involves infinite sequences. Below we

will prove a finite sequence version. Some comments on an

infinite sequence version are made in section 5.

The situation with measures of strength of causality is

somewhat tangled and we postpone a discussion until later.

IV. Mutual Information and Causality

To develop our theory and relate it to earlier work we

begin with a well known result which expresses conditional

independence in terms of MI,

Theorem 2. X ⊥ Y |Z iff I(X ;Y |Z) = 0
Proof. The result is well known and in any case easily

proved by using elementary properties of Kullback-Liebler

information [27].

The result is closely associated with the so-called data

processing inequality which says that if X ⊥ Y |Z then

I(X ;Y ) ≥ I(X ;Z). This result follows from Theorem 2

and the chain rule .

With Theorem 2 we can re-express the earlier definitions

as follows,

Definition GC
′

. Y does not cause X iff

I(xn+1;Y
n
1 |Xn

1 ) = 0, n ≥ 1.

Definition SFMC. Y does not cause X iff

I(yn;Xn+m
n+1 |Xn

1 , Y
n−1

1 ) = 0, n ≥ 1,m ≥ 1
To provide a MI proof of Theorem 1 we develop a new

and fundamental identity.

Theorem 3. GSFM Identity.

ΣN−1

1 I(yn;XN
n+1|X

n
1 , Y

n−1

1 ) = ΣN−1

1 I(xn+1;Y
n
1 |Xn

1 )

for N ≥ 2, and where Y 0
1 is omitted from the term where it

appears.

Proof. Denote zn = (xn, yn) etc. We expand h(ZN
1 ) in two

different ways. By the chain rule

h(ZN
1 ) = ΣN

2 h(zn|Z
n−1

1 ) + h(z1)

= ΣN
2 h(xn, yn|X

n−1

1 , Y n−1

1 ) + h(x1, y1)

Now apply the chain rule again to find

h(ZN
1 ) = ΣN

2 h(xn|X
n−1

1
, Y n−1

1
) + h(x1)

+ ΣN
2 h(yn|X

n
1 , Y

n−1

1 ) + h(y1|x1)

On the other hand we can also use the ChRu to write

h(ZN
1 ) = h(XN

1 ) + h(Y N
1 |XN

1 )

Applying the ChRu yet again gives

h(ZN
1 ) = ΣN

2 h(xn|X
n−1

1 ) + h(x1)

+ ΣN
2 h(yn|Y

n−1

1 , XN
1 ) + h(y1|X

N
1 )

Now rewrite the third term to get

h(ZN
1 ) = ΣN

2 h(xn|X
n−1

1 ) + h(x1)

+ ΣN−1

2
h(yn|Y

n−1

1
, Xn

1 , X
N
n+1) + h(yN |Y N−1

1
, XN

1 )

+ h(y1|X
N
1 )

Now equate the two expressions for h(ZN
1 ) and reorganize

to obtain

ΣN
2 I(xn;Y n−1

1 |Xn−1

1 )

= ΣN
2 (h(xn|X

n−1

1 ) − h(xn|X
n−1

1 , Y n−1

1 ))

= ΣN−1

2 h(yn|Y
n−1

1 , Xn
1 , X

N
n+1) + h(yN |Y N1

1 , XN
1 )

− ΣN
2 h(yn|X

n
1 , Y

n−1

1 ) + h(y1|X
N
1 ) − h(y1|x1)

= ΣN−1

2 (h(yn|Y
n−1

1 , Xn
1 , X

N
n+1) − h(yn|X

n
1 , Y

n−1

1 )

+ h(y1|X
N
1 ) − h(y1|x1)

= ΣN−1

2 I(yn;XN
n+1|Y

n−1

1 , Xn
1 ) + I(y1;X

N
2 |x1)

= ΣN−1

1 I(yn;XN
n+1|Y

n−1

1 , Xn
1 )

and a change of summation variables on the LHS delivers

the result.

Remark. Naturally the identity can be written with y, x
interchanged.

Using the GSFM identity we can now establish a finite

sequence version of Theorem 1 with a MI proof,

Theorem 1
′

. GC
′

≡SFMC.

Proof. Given N ≥ 1, if GC
′

holds then each term in the sum

on the RHS of the GSFM identity vanishes. Then the LHS

vanishes but again since MI is non-negative each term in the

LHS sum vanishes. Since N is arbitary this means SFMC

holds. The reverse argument is the same.

With this result in hand it is natural to introduce measures

of strength of causality.

Definition. Strength of causality measures.

FG
Y →X,N =

1

N
ΣN−1

1 I(xn+1;Y
n
1 |Xn

1 ), N ≥ 2

FSFM
Y →X,N =

1

N
ΣN−1

1 I(yn;XN
n+1|X

n
1 Y

n−1

1 ), N ≥ 2

Of course the GSFM identity ensures they are equal but

the separate definitions will prove useful below. There are

analagous definitions of FG
X→Y,N , F

SFM
X→Y,N .

To develop system identification methods we now develop

a fundamental nested decomposition of LR.

Theorem 4. Analysis of Deviance (AOD).

ln
p(Y N

1 , XN
1 )

q(Y N
1 )p(XN

1 )
= ln

p(Y N
1 |XN

1 )

p(Y N
1 )

= ΣN−1

1 ln
p(yn|X

n
1 , X

N
n+1, Y

n−1

1 )

p(yn|Xn
1
, Y n−1

1
)

+ ΣN
1 ln

p(yn|X
n
1 , Y

n−1

1
)

p(yn|X
n−1

1
, Y n−1

1
)

+ ΣN
2 ln

p(yn|X
n−1

1
, Y n−1

1
)

p(yn|Y
n−1

1
)

where, on the RHS Y 0
1 is omitted where it occurs so e.g.

p(y1|Y
0
1 ) ≡ p(y1).
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Proof. By iterated conditional probability we have

ln
p(Y N

1 , XN
1 )

q(Y N
1 )p(XN

1 )
= ln

p(Y N
1 |XN

1 )

p(Y N
1 )

= ΣN
1 ln

p(yn|X
N
1 , Y

n−1

1 )

p(yn|Y
n−1

1 )

= ΣN
1 ln

p(yn|X
n
1 , X

N
n+1, Y

n−1

1
)

p(yn|X
n−1

1 , Y n−1

1 )

+ ΣN
1 ln

p(yn|X
n−1

1 , Y n−1

1 )

p(yn|Y
n−1

1 )

= ΣN−1

1 ln
p(yn|X

n
1 , X

N
n+1, Y

n−1

1 )

p(yn|Xn
1 , Y

n−1

1 )

+ ΣN
1 ln

p(yn|X
n
1 , Y

n−1

1 )

p(yn|X
n−1

1 , Y n−1

1 )

+ ΣN
2 ln

p(yn|X
n−1

1 , Y n−1

1 )

p(yn|Y
n−1

1 )

where in the first term the Nth term vanishes and in the third

term the first term vanishes. The result is thus established.

Remarks. We can interpret the LHS as a LRT for testing

the hypothesis: Y N
1 depends on XN

1 , versus the alternative

that it does not. The AOD gives a decomposition of this LRT

into a sum of LRTs corresponding to a decomposition of the

overall hypotheses into a sequence of nested hypotheses:

Y 0 depends on past y and current x, past x and future x

versus Y 0 depends on past y and past x and current x.

Y 0 depends on past y and past x and current x versus Y 0

depends on past y and past x.

Y 0 depends on past y and past x versus Y 0 depends on

past y.

We have given the decomposition in terms of y regressed

on x. We can of course write it the other way round.

Each of the LRs is called a deviance in the statistics

literature e.g. [31]. And this kind of nested decomposition

is well known in statistics as a generalization of analysis of

variance; hence the name [31]. However, the particular AOD

in Theorem 4 appears to be new. It is this kind of nested

decomposition that is required for a system identification

procedure for testing causality. This is made clear by the

next result.

Theorem 5. Analysis of Information (AOI).

I(Y N
1 ;XN

1 ) = ΣN−1

1 I(yn;XN
n+1|Y

n−1

1 , Xn
1 )

+ ΣN
1 I(yn;xn|X

n−1

1
, Y n−1

1
)

+ ΣN−1

1 I(yn+1;X
n
1 |Y

n
1 )

Proof. Take expectations in the AOD and then change the

summation index in the third term.

If we now introduce a mesure of instantaneous causality.

Definition. Instantaneous Causality Measure.

FXoY,N =
1

N
ΣN

1 I(yn;xn|X
n−1

1 , Y n−1

1 )

Then we have the following result.

Corollary. Decomposition of Measures of Causality.

1

N
I(Y N

1 ;XN
1 ) = FSFM

Y →X,N + FXoY,N + FG
X→Y,N

= FG
Y →X,N + FXoY,N + FSFM

X→Y,N

= FG
Y →X,N + FXoY,N + FG

X→Y,N

= FSFM
Y →X,N + FXoY,N + FSFM

X→Y,N

Proof. The first line is just AOI. The second line is the AOI

written with X,Y interchanged. The subsequent lines (and

also line 2) follow by using the GSFM identity.

Remarks. We can now make connexions with previous

work.

(i) In [21] there is a result which we may interpret as being

line 4 of the corollary. [21] do not discuss causality, do not

obtain the GSFM identity and do not obtain the AOD. No

derivation of their result is given and there is some vagueness

in the notation (their basic result has a sum over n on the

RHS but n also appears unsummed on the LHS!). However

it seems clear that it is line 4 that is being discussed.

(ii) In [22] there is a definition of directed information

(DMI) that equals our FG
Y →X,N + FXoY,N . And in [23]

is a result (the conservation law) which gives essentially

line 3 but with the first two terms amalgamated as above.

Neither reference discusses causality, nor obtains the GSFM

identity nor obtains the AOD. However [22] does have a

result showing that DMI equals the LHS iff ’there is no

feedback from Y to X’. This is very close to a strong version

of GC.

(iii) The important results of [26] are closest to ours. As

noted earlier we came on this paper after a draft of our paper

was completed. Our AOD was inspired by comments of [32]

following the paper [10]. Once one has the AOD then the

AOI is trivial. [26] obtain a GSFM identity, an AOD and

an AOI (not under these names). However their results are

under a Markov process assumption on zn = (xn, yn)T . This

is not a good assumption because even if xn, yn are jointly

Markov then neither xn nor yn are marginally Markov. This

is true even in the linear case. e.g. if zn is VAR(1) then

xn, yn are each ARMA(1,1) which is not Markov. This

fact makes the results ungainly. Thus the GSFM identity

does not have the nice form of our result; rather there

is a Markov term that must be added to FG
Y →X,N to get

FSFM
Y →X,N . Also [26] are unaware of MI and so all results are

in terms of Kullback-Liebler information. This means that the

underlying simplicity of the expressions is lost. Also they do

not obtain Theorem 1 as we have.

V. Stationarity

In this section we discuss an asymptotic version of the

above results that occurs under strict stationarity (SSY). This

allows a precise connexion to the results of [10].

But first we need a preliminary result. Below we will be in-

troducing various variations of entropy rates [27]. Such rates

are well defined for discrete valued SSY processes, since

proofs rely heavily on the fact that entropy is non-negative.

But the situation for analog processes is much harder since
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(differential) entropy is no longer necessarily positive (e.g.

for a Gaussian white noise just take the noise variance to

be arbitarily small) and there is no other elementary lower

bound 1. For analog Gaussian processes results are well

known [27] but we need to guarantee something beyond that

to justify our discussion. Since there do not seem to be any

general results we develop the following result applicable

under hidden Markov assumptions.

Theorem 6. If zn obeys a SSY hidden Markov model

(HMM) i.e. zn = φ(ξn) where φ(·) is continuous and ξn is

a SSY Markov process (MP) then h(zn|Z
n−1

1 ) converges to

a finite limit which we denote h(Z0|Z−).
Remarks.

(i) This result establishes the existence of an analog entropy

rate for a reasonably general class of nonlinear processes.

(ii) A simple and well known example of such a HMM is

given by the SS model; zn = ψ(ζn)+ vn; ζn+1 = χ(ζn, wn)
with given initial condition ζo and where wn, vn are

independent identically distributed sequences and ψ, χ are

continuous functions and where all appropriate finite order

conditional entropies exist.

Proof. We adapt a standard argument developed for dif-

ferent purposes in [27](section 4.4). Firstly consider that

hn+1 = h(zn+1|Z
n
1 )

≤ h(zn+1|Z
n
2 ), by CRE

= h(zn|Z
n−1

1 ), by SSY

So hn is a non-increasing sequence. Also by CRE hn ≤
h(zn) = h(Z0). So hn is upper bounded. We now need to

develop a lower bound. But we now just repeat a standard

argument outlined clearly in [27](p69) to find that for any

fixed n > 3 and any k > 0

h(zn|Z
n−1

2 , ξ1) ≤ hn+k

Thus as a sequence in k, hn+k is bounded below. Thus since

it is non-increasing and bounded below and above it must

have a limit which we denote as h(Z0|Z−). The result is

thus established.

Further Remark.

If we partition zn = (xn, yn) then by reworking the argument

of [27](p69) we can similarly establish the existence of limits

for quantities such as h(yn|X
n
1 , Y

n−1

1 ), h(xn|X
n−1

1 ) needed

below.

Let us return to the GSFM identity and note the four

entropy terms.

AN = h(XN
1 ) = ΣN

1 h(xn|X
n−1

1 )

BN = h(Y N
1 |XN

1 ) = ΣN
1 h(yn|Y

n−1

1
, Xn

1 , X
N
n+1)

= ΣN
1 h(yn|Y

n−1

1 , XN
1 )

CN = ΣN
1 h(xn|X

n−1

1 , Y n−1

1 )

DN = ΣN
1 h(yn|X

n
1 , Y

n−1

1 )

AN +BN = CN +DN

1There is an erroneous claim in [27](section 11.5) suggesting the discrete
valued theory carries over.

Consider the fourth term DN . Then by CRE

h(yn|X
n
1 , Y

n−1

1 ) ≤ h(yn|X
n
2 , Y

n−1

2 )

= h(yn−1|X
n−1

1 , Y n−2

1 )

by SSY. So h(yn|X
n
1 , Y

n−1

1 ) is a non-increasing sequence. It

is bounded above by h(yn) = h(Y 0). So it either converges

or diverges to −∞. In view of theorem 6 we assume the

limit is finite. We denote the limit h(Y 0|X−, X0, Y −). Thus
1

N
DN → h(Y 0|X−, X0, Y −).
Similarly 1

N
CN → h(X0|X−, Y −) and 1

N
AN →

h(X0|X−). The BN term needs more careful treatment. We

show BN is subadditive i.e. BN+J ≤ BN +BJ . It then fol-

lows by the subadditive limit theorem [33],[34] that 1

N
BN →

infn(Bn/n) which we denote as h(Y 0|Y −, X−, X0, X+).
With these results we obtain.

Theorem 7. Under the assumptions of Theorem 6 we have

the: Stationary GSFM identity

lim
1

N
FG

Y →X,N = FG
Y →X

= I(X0;Y −|X−)

= I(Y 0;X+|X−, X0, Y −)

= FSFM
Y →X = lim

1

N
FSFM

Y →X,N

Proof. Since AN +BN = CN +DN we have of course the

GSFM identity,

FG
Y →X,N =

1

N
(AN − CN ) =

1

N
(DN −BN ) = FSFM

Y →X,N

from which it follows on taking limits as above, that

FG
Y →X = I(X0;Y −|X−)

= h(X0|X−) − h(X0|X−, Y −)

= h(Y 0|X−, X0, Y −) − h(Y 0|Y −, X−, X0, X+)

= I(Y 0;X+|X−, X0, Y −) = FSFM
Y →X

We have only now to prove subbadditivity of BN . We have

BN+J = ΣN+J
1 h(yn|Y

n−1

1 , XN+J
1 )

= ΣN
1 h(yn|Y

n−1

1 , XN+J
1 )

+ ΣN+J
N+1

h(yn|Y
n−1

1
, XN+J

1
)

Using CRE on the first term shows it is bounded by

ΣN
1 h(yn|Y

n−1

1 , XN
1 ) = BN

For the second term change summation indices to l = n−N
to obtain

= ΣJ
1h(yl+N |Y l+N−1

1 , XN+J
1 )

Now use CRE to see this is

≤ ΣJ
1h(yl+N |Y l+N−1

N+1
, XN+J

N+1
)

and by SSY this is

= ΣJ
1h(yl|Y

l−1

1 , XJ
1 ) = BJ

and subbaditivity is established and so the result.

Using these results we have.
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Theorem 8. Stationary AOI Asymptotics.

lim
1

N
I(Y N

1 ;XN
1 ) = I(Y ;X)

= FSFM
Y →X + F 0

X→Y + FG
X→Y

F 0
Y →X = I(X0;Y 0|X−, Y −)

Proof. Following the same argument as used in the first part

of Theorem 6 we find FXoY,N converges to a limit which

we denote I(X0;Y 0|X−, Y −) = F 0
Y →X . This establishes

that 1

N
RHS of the finite data AOI in Theorem 5 converges

to the RHS quoted here. Thus the 1

N
LHS also converges and

we have denoted the limit I(Y ;X). One can also establish

that the limit exists directly by a subbadditivity argument.

Remarks.

(i) In the Gaussian case the limiting MI expressions are

given by well known formulae e.g.[27]. Using these formulae

in Theorems 6,7 give the results of [10]. This gives a MI

interpretation of [10] results which is already implicit from

[24],[25].

(ii) In [26], their Theorem 5, provides some stationarity

asymptotics (under a Markov assumption on zn) related to

our Theorem 8. But their result is incomplete because they

have an assumption A which essentially assumes a certain

entropy rate limit exists. Such a result cannot be obtained

without a result such as our Theorem 6 which they do not

have. We note also their proof does not use subadditivity.

(iii) The infinite sequence version of Theorem 1 established

by [17] can be established under SSY using the results of

the last two sections. Space limits preclude the details which

will be developed elsewhere.

VI. Conclusion

In this paper we have provided, for the first time, a

formulation of nonlinear, nonstationary causality in terms of

mutual information.

We have provided a fundamental finite data identity relat-

ing SFMC to GC thereby providing a new proof of earlier

results of [17].

We have also provided a fundamental AOD and its cor-

responding AOI. Earlier workers had special cases of these

results. The AOD is important for system identification.

Finally we proved asymptotic versions of these results

valid under strict stationarity. This reproduces results of [10]

as well as providing a nonlinear generalization of them.

Our formulation in terms of mutual information is also

important since it provides an operational definition suitable

for empirical use e.g. system identification.

Acknowledgement. To the referees for useful comments.
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