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Abstract— Trailing stops are often used in stock trading to
limit a maximum-possible loss and to lock in a profit. In this
venue, it is important to identify the optimal trailing stop
percentage, which is difficult to find and no apparent analytic
technique can be applied directly. This work develops stochastic
approximation algorithms to estimate the optimal trailing stop
percentage. A modification using projection is also proposed
to ensure the approximation sequence constructed to stay in
a bounded region. Convergence of the algorithm is obtained.
Moreover, interval estimates are constructed. Simulation exam-
ples are presented to compare our algorithm with Monte Carlo
methods. Finally, real market data are used to demonstrate the
algorithms.

Index Terms— Trailing stop, stochastic approximation,
stochastic optimization.

I. INTRODUCTION

Decision in selling a stock is crucial in successful investing
in equity markets. The selling strategy can be determined
by either a target level or a stop-loss limit. In this paper,
we focus on the stop-loss side of the equation. In equity
trading, a stop-loss order is an order placed with a broker
to sell the equity when the stock price drops to a certain
level. A stop loss is designed to limit the investor’s loss on
a security position. The advantage of a stop-loss order is
that one need not monitor the market constantly on how the
a stock is performing. A disadvantage is that the stop-loss
order cannot help the investor to lock in his profits after a
substantial rise in price. A key in successful trading is to
“cut the losses and let the profit run.” Such needs give rise
to the so-called trailing stop. Before proceeding further, let
describe the idea of trailing stop briefly. We set the stop price
at a trailing stop percentage h as [(1 − h)× maximal price
of the stock up to time t], where 0 < h < 1 is known as
the stop percentage. The first time the stock price reaches
the stop price, we sale the stock. The trailing stop maintains
a stop-loss order at a precise percentage below the market
price. The stop-loss order is adjusted continually based on
fluctuations of the market price, which always maintains the
same percentage below the market price. The trader is then
“guaranteed” to know the exact minimum profit that his or
her position will garner.

As the market price advances, the stop price also rises.
Should the price decline, the stop price does not change,
and the position is closed whenever the stop price is reached.
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For example, assume an investor buy the Coca Cola (KO)
on January 2, 1998 at the price of $57.31. If he/she sets the
trailing stop at 15% below the market price, then the initial
stop price is $48.71 (15% below the market price). When the
stock price advances from $57.31, the trailing stop (marked
in Fig. 1 by dashed line) rises accordingly and stays 15% off
the highest price. On August 27, 1998, the price drops from
the peak back to $64.24 (the first time below the trailing
stop price). The investor should close his/her position at this
point, resulting in a raw return of 12.09%. The closing price
of KO and the corresponding trailing stop levels are given
in Figure 1. Clearly, trailing stop is an effective tool helping

Fig. 1. The Prices of Coca Cola from Jan 12, 1998, to October 15, 1998

the investor to lock in the profit when the market moves
against his or her position. Traditionally, a trailing stop
percentage is determined based on the trader’s predilection
toward aggressive or conservative trading. In stock investing,
deciding what constitutes appropriate profits (or acceptable
losses) is perhaps the most difficult aspect of establishing a
trailing-stop system.

Research using mathematical models on trailing stops
is scarce in the literature. Glynn and Iglehart [4] studied
the problem in both discrete and continuous time. In the
continuous-time case, they considered a diffusion model and
showed that the optimal strategy is not to sell at all, i.e.,
h∗ = 100%, which corresponds to the so-called buy and
hold strategy. The stock price can become negative in their
model. It also appears difficult to extend their results to a
reasonable market model such as the geometric Brownian
motion model.

It is the purpose of this paper to study optimal trailing
stops. Here, the main issue is to determine the optimal
stop percentage h∗. We develop a stochastic optimization
approach. It provides a systematic way to compute the
optimal trailing stop percentage h∗. The SA approach is
effective in real time because of its recursive form. A main
advantage of the SA approach is that there is no price model
needed and one only needs the stock prices to come up with
desired percentage.
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To some extent, the iterates obtained using the recursive
algorithm can be thought of as a point estimator of the
true optimal trailing percentage. It would be nice if we
also provided the quality of the estimation sequence. We
do this by considering a confidence interval estimate. For
related work on stopping rules for Robbins-Monro type
stochastic approximation algorithms for root finding, we
refer the reader to [8]. Here the purposes of our interval
estimates are two folds. (i) They provide a practically useful
range of estimations, and ensures that the limit confidence
level is the desired one. (ii) They give an implementable
stopping criterion for the iterates; with large probability,
the iterates will be terminated when the criterion is met.
Crucial to the development of the confidence estimate is
asymptotic distribution of a scaled sequence of estimation
errors. Furthermore, instead of examining the discrete it-
erates directly, we focus on continuous-time interpolations
leading to diffusion limits. Among other things, a random
time change argument is used to deduce the result when
the deterministic iteration number is replaced by a random
variable. For comparison purposes, we use a Monte Carlo
method to obtain optimal percentage rates. In addition, we
demonstrate our results using real market data.

The rest of this paper is arranged as follows. Section 2
begins with the precise formulation of the problem. Also
provided are the recursive algorithm and its variations. Sec-
tion 3 studies the convergence of the underlying algorithm.
Section 4 concentrates on interval estimates. To demonstrate
the feasibility and efficiency of the algorithms, numerical
experiments using simulations and real market data are given
in Section 5. These algorithms provide sound estimates of
optimal trailing stop percentage; they can be easily imple-
mented in real time. Finally we conclude this paper with
some further remarks in Section 6.

II. FORMULATION

Normally, when one treats stock market models, one
always proposes some models for the stock prices, for
example, the well-known geometric Brownian motion model,
the mean-reversion model, and the jump-diffusion model etc.
Compared with the traditional approach, in our formulation,
we shall not require the stock price S(t) to be any of
the models above. In fact, we treat model free case and
only assume the stock price being observable. Based on the
observed stock price, for a given time t, we define the stop
price at a trailing stop percentage h with 0 < h < 1 as

Th(t) = (1 − h)Smax(t), (II.1)

where Smax(t) = max{S(u) : 0 ≤ u ≤ t}. Let

τ = inf{t > 0 : S(t) ≤ Th(t)}. (II.2)

Then τ is the first time the stock price reaches the stop price.
We aim to find the optimal trailing stop percentage h∗ ∈
[a, 1] with a > 0 that maximize a suitable objective function.
Thus the problem is

Find argmax J(h) = E[Φ(S(τ)) exp(−ρτ)], h ∈ [a, 1].
(II.3)

Here a > 0 is a reasonable lower bound for the trailing
stop percentage, ρ > 0 is an appropriate discount rate,
and the reward function Φ(S) = S−S0

S0

. In general, an
analytic solution is difficult to obtain even if S(t) follows a
particular model, for example, a geometric Brownian motion.
Our contribution is to devise a numerical approximation
procedure that estimates the optimal trailing stop percentage
h. We will use a stochastic approximation procedure to
resolve the problem by constructing a sequence of estimates
of the optimal trailing stop percentage h, using hn+1 =
hn + {step size}{gradient estimate of J(h)}. Moreover, in
accordance with (II.3), we need to make sure the iterate
hn ∈ [a, 1].

A. Recursive Algorithm

Let us begin with a simple noisy finite difference scheme.
The only provision is that S(t) can be observed. Associ-
ated with the iteration number n, denote the trailing stop
percentage by hn. Beginning at an arbitrary initial guess,
we construct a sequence of estimates {hn} recursively as
follows. We figure out τn, the first time when the stock price
declines under the stop price as

τn = inf{t > 0 : S(t) ≤ Thn
(t)}. (II.4)

Define a process ξn that includes the random effect from
observed S(t), or the random effect from a simulation,
and the stopping time τn, ξn = (S(τn), τn)′, where S(τn)
denotes the stock price process S(t) stopped at stopping
time τn. We loosely call {ξn} the sequence of noise. Let
J̃(h, ξ) be the observed value of the objective function
J(h) with noise ξ. With the values h ± δn, define Y ±

n as
Y ±

n (h, ξ±n ) = J̃(h ± δn, ξ±n ). ξ±n being the two different
collective noises taken at the trailing stop percentages h±δn,
where δn is the finite difference sequence satisfying δn → 0
as n → ∞. We shall write Y ±

n = Y ±
n (h, ξ±n ). For simplicity,

in what follows, we often use ξn to represent both ξ+
n and

ξ−n if there is no confusion. The gradient estimate at iteration
n is given by

DĴ(hn, ξn)
def
= (Y +

n − Y −
n )/(2δn). (II.5)

Then the recursive algorithm is

hn+1 = hn + εnDĴ(hn, ξn), (II.6)

where εn is a sequence of real numbers known as step sizes.
A frequently used choice of step size and finite difference
sequences is εn = O(1/n) and δn = O(1/n1/6). Throughout
this paper, this is our default choice of step size and finite
difference sequences.

To proceed, define

ρn = (Y +
n − Y −

n ) − En(Y +
n − Y −

n ),

ηn = [EnY +
n − J(hn + δn)] − [EnY −

n − J(hn − δn)],

βn =
J(hn + δn) − J(hn − δn)

2δn
− Jh(hn),

(II.7)
where En denotes the conditional expectation with respect
to Fn, the σ-algebra generated by {h1, ξ

±
j : j < n},
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Jh(hn) = (∂/∂h)J(hn). In the above, ηn and βn represent
the noise and bias, and {ρn} is a martingale difference
sequence. We separate the noise into two parts, uncorrelated
noise ρn and correlated noise ηn. It is reasonable to assume
that after taking the conditional expectations, the resulting
function is smooth. With the above definitions, algorithm
(II.6) can be rewritten as

hn+1 = hn + εnJh(hn) + εn
ρn

2δn
+ εnβn + εn

ηn(hn, ξn)

2δn
.

(II.8)

B. Projection Algorithms

The use of projections in the algorithms stems from two
reasons. First, for the purpose of computations, it is more
convenient if one uses projections to force the iterates to
remain in a bounded region. In addition, the problems under
consideration may well be constrained so that the iterates
will be in a given set. Current problem under consideration
is such an example (the iterates need to stay in the interval
[a, 1]). For example, one might choose a lowest trailing stop
percentage of 10% to ensure the holding position will not
be closed due to the normal fluctuations of daily stock price.
Obviously, there is a upper bound for the optimal trailing
stop percentage, 100%. To solve the Problem (II.3) with con-
strains, we construct the following stochastic approximation
algorithm with a projection

hn+1 = Π[hn + εnDJ̃(hn, ξn)], (II.9)

where εn = 1/n, δn = δ/(n1/6) and Π[x] is a projection

given by Π[h] =

{
a, if h < a,
1, if h > 1,
h, otherwise.

As explained in Kushner

and Yin [6], The projection algorithm (II.9) can be rewritten
as

hn+1 = hn + εnDĴ(hn, ξn) + εnrn. (II.10)

where εnrn = hn+1−hn−εnDĴ(hn, ξn) is the real number
with the shortest distance needed to bring hn+εnDĴ(hn, ξn)
back to the constraint set [a, 1] if it is outside this set.

III. CONVERGENCE

This section is devoted to the study of convergence of
the recursive algorithm. We will show that hn defined in
(II.9) is closely related to an ordinary differential equation
(ODE). The stationary points of ODE are the optimal trailing
stop percentage that we are seeking. The details asymptotic
analysis can be worked out by virtue of the approach given
in [9]; see also [6, Chapters 5 and 8]. Thus we shall be brief
and only summarize the results via the following proposition.

To carry out the study of convergence, we define the
following: tn =

∑n−1
i=1 εi, m(t) = max{n : tn ≤ t},

h0(t) = hn for t ∈ [tn, tn+1), hn(t) = h0(t + tn),
r̃0(t) =

∑m(t)−1
j εjrj and r̃n(t) = r̃0(t + tn) − r̃0(tn).

Note that h0(·) is a piecewise constant process and hn(·) is
its shift. To proceed, we use the following conditions.

(A1) The second derivative Jhh(·) is continuous.

(A2) For each h belongs to a bounded set, E|Y ±
n |2 <

∞, and the sequence {ηj(h, ξj)} is a bounded φ-mixing
sequence with mixing rate φ̃k such that

∑
k φ̃

1/2
k < ∞.

The following theorem and its corollary can be proved as
in [9]. We thus omit the details.

Theorem 3.1:. Assume (A1)–(A2). Suppose the differen-
tial equation

ḣ = Jh(h) + r(t) (III.11)

has a unique solution for each initial condition. Then
(hn(·), r̃n(·)) converges weakly to (h(·), r̃(·)), the solution
to (III.11) with r̃(t) =

∫ t

0
r(s)ds, and r(t) = 0 when

h(t) ∈ [a, 1].
Corollary 3.2:. Suppose that (III.11) has a unique station-

ary point h∗ ∈ (a, 1) being globally asymptotically stable
in the sense of Liapunov, and that {sn} is a sequence of
real numbers such that sn → ∞. Then the weak limit of
hn(sn + ·) is h∗.

Combining the estimates obtained thus far and using the
results in [6, Chapter 6], we obtain the w.p.1 convergence of
the algorithm. We state the result below.

Theorem 3.3: Under the conditions of Theorem 3.1, hn(·)
converges w.p.1 to h(·) that is the solution of (III.11).
Moreover, if (III.11) has a unique stationary point h∗ ∈ (a, 1)
being globally asymptotically stable in the sense of Liapunov,
and that {sn} is a sequence of real numbers such that
sn → ∞. Then hn(sn + ·) → h∗ w.p.1.

IV. INTERVAL ESTIMATES

This section is devoted to obtaining interval estimates as
well as a piratically useful stopping rule for the recursive
computation. Roughly, with prescribed confidence level, we
wish to show that with large probability (probability close to
1), a sequence of scaled and centered estimates and a stopped
sequence converge weakly to a diffusion process. Based on
this result, we will then be able to build confidence interval
for the iterates. To proceed, for simplicity of notation, we
take εn = 1/n and δn = δ0/n

1/6. In the analysis to
follow, for simplicity and without loss of generality, we take
δ0 = 1. To carry out the subsequent study, in addition to the
conditions of Theorem 3.1, we also assume an additional
condition.

(A3) Jh(h) = Jhh(h∗)(h − h∗) + o(|h − h∗|
2), where

Jhh(h∗)− (1/2) < 0. In addition, k2/3E(hk −h∗)
2 = O(1)

and the bound holds uniformly in k.
Define ρ∗n = [Y (h∗, ξ

+
n ) − Y (h∗, ξ

−
n )] − En[Y (h∗, ξ

+
n ) −

Y (h∗, ξ
−
n )]. That is, ρ∗n is ρn with the argument hn replaced

by h∗. The detailed development of the interval estimates
can be outlined as follows. Suppose that we can show that
n1/3(hn −h∗) is asymptotically normal with mean zero and
asymptotic variance σ2. Choose α, such that 0 < α < 1 and
1−α is the desired confidence coefficient. Given ε > 0, then
the asymptotic normality implies that

P
(n1/3|hn − h∗|

σ
≤ zα/2

)
→ 1 − α as n → ∞. (IV.12)

This will lead to the desired confidence interval estimator.
Then we require the length of the interval |hn−h∗| be small
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enough in that for any ε > 0, for sufficiently large n, we
can make σzα/2/n

1/3 < ε or equivalently n > bσzα/2/εc.
Define

Mn
ε,α = b

σzα/2

ε
c, µε,α = inf{n : Mn

ε,α ≤ n}, (IV.13)

where bzc denotes the greatest integer that is less than or
equal to z. Then µε,α is a stopping rule for the iterating
sequence {hn}. Denote Iµε,α

=
[
hµε,α

− σ
zα/2

n2/3
, hµε,α

+

σ
zα/2

n2/3

]
. We shall show that as the length of the interval

shrinks, i.e., ε → 0, P{h ∈ Iµε,α
and |Iµε,α

| ≤ ε} → 1−α,
where |Iµε,α

| denotes the length of the interval Iµε,α
.

Remark 4.1: In view of definition (IV.13), we obtain the
following result. Note that as ε → 0, Mε,α → ∞ and µε,α →
∞ w.p.1. Moreover, the definitions of Mε,α and µε,α implies
that as ε → 0, µε,α/Mε,α → 1 w.p.1. This will be used in
what follows.

Since h∗ ∈ (a, 1), h∗ is not on the boundary of the
projection. Thus we drop the projection part or the reflection
term εnrn in what follows for simplicity. We simply assume
that hn ∈ (a, 1) for all n large enough. To obtain the
desired result, our plan is as follows. We first establish
an asymptotic equivalence. Then we define a sequence of
interpolated processes, show that the limit of the interpolation
is a diffusion process, and further obtain the diffusion limit
for a sequence involving the µε,α defined above. To proceed,
let vn = n1/3(hn − h∗). We derive the following result.

Lemma 4.2: Assume (A1)–(A3).

vn+1 =

n∑

k=1

1

2k1/2
An,k(ρ∗k + ηj(h∗)) + o(1), (IV.14)

vµε,α+1 =

µε,α∑

k=m

1

2k1/2
Aµε,α,k(ρ∗k + ηj(h∗))+ o(1), (IV.15)

where o(1) → 0 in probability as ε → 0, and Ajk ={ ∏j
l=k+1(I + Jhh(h∗)

l ), if j > k;
I, if j = k.
By virtue of the above lemma, instead of working with

the discrete expression directly, we shall first examine inter-
polations of appropriate sequences. Let W̃n(·) and Wn(·) be
defined by

W̃n(t) =

bntc∑

k=1

1

2k1/2
Abntck[ρ∗k + ηk(h∗)], for t ∈ [0, 1],

Wn(t) =
1

2
W̃n(t),

(IV.16)
where bzc denotes the greatest integer which is less than
or equal to z. Note that W̃n(·) ∈ D[0, 1] and so is Wn(·),
where the D[0, 1] is the space of functions that are right
continuous and have left hand limits endowed with the
Skorohod topology. For definitions and general notion of
weak convergence, see [3], [6].

We complete the proof by employing the idea of random
change of time. As a result, Wµε,α

(·) converges weakly

to W (·) is established. Define Bn(t) =
∑bntc

j=1
1

j1/2
[ρ∗j +

ηj(h∗)]. In view of (IV.16), a summation by parts yields

W̃n(t) = Bn(t)+ jhh(h∗)

bntc−1∑

k=1

1

(k + 1)
Abntc,(k+1)Bn(

k

n
).

(IV.17)
(A4) Bn(·) converges weakly to B(·), a Brownian motion

with covariance tσ2
B

Theorem 4.3: Under assumptions (A1)–(A4), Wn(·) con-
verges weakly to W (·), a diffusion process given by W (t) =
1
2

∫ t

0
exp (−Jhh(h∗)(log u − log t)) dB(u), where B(·) is

the Brownian motion with covariance tσ2
B .

Remark 4.4: Note that Theorem 4.3 allows us to have a
handle on the estimation errors. Note that it follows from
Theorem 4.3, setting t = 1, we have (n+1)1/3(hn+1−h∗) ∼

N(0, σ2), where σ2 is given by σ2 = E[W (1)]2
σ2

B

8H , where
H = 1

2 −Jhh(h∗). The asymptotic variance σ2 together with
the scaling factor n1/3 provides us with a rate of convergence
result. We shall show that the weak convergence result still
holds if n is replaced by µε,α.

Theorem 4.5: If the conditions of Theorem 4.3 are satis-
fied, then

Wµε,α
(t) =

1

4

[µε,αt]∑

k=1

1

k1/2
A[µε,αt]k[ρ∗k + ηk(h∗)] (IV.18)

converges weakly to W (t).
Thus, Wµε,α

(1) converges in distribution to N(0, σ2) as
ε → 0, and hence, (µε,α)1/3(hµε,α+1 − h∗) converges
in distribution to N(0, σ2), as ε → 0, where σ2 is the
asymptotic variance.

Remark 4.6: In the process of constructing the desired
confidence interval, we used a sequence {σn}, and we
assumed that σ2

n → σ2, the asymptotic variance. Here, we
illustrate how a sequence of consistent estimates {σ2

n} can be
constructed. In view of the form of the asymptotic variance,
to obtain a sequence of consistent estimates {σ2

n}, we need
only construct two consistent sequences, one for estimating
Jhh(h∗), the other one for estimating σ2

B .
A consistent sequence of estimates for Jhh(h∗) can be

constructed by means of two-sided finite difference scheme
similar to the estimate for DĴ(hn, ξn). That is, we construct
a finite difference estimate of the derivative of DĴ(h, ξ) with
respect to h. Let assumptions (A1)–(A4) be satisfied. Then,
a sequence of estimate {Dn} can be constructed, and it is a
sequence of consistent estimates of Jhh(h∗).

In view of the form of σ2
B , define ζn,i = 1

n

∑n
k=1 YkYk+i

i ≥ 0 and ζn = ζn,0 + 2
∑n

i=1 ζn,i. Recall that if a process
is φ-mixing, then it is ergodic. By this ergodicity, noting
the noise involves a martingale difference sequence and a
mixing sequence, it can be shown that ζn → σ2

B as n →
∞. Moreover, the implementation can be made recursive.
Finally, let An = 1

2 −Dn, with the constructions of Dn and
ζn, we can define σ2

n as σ2
n = ζn

8An
.

V. NUMERICAL RESULTS

In this section, we report our simulation and numerical
experiment results. We first compare our algorithm with the
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Monte Carlo simulations. Then we test our algorithm using
real market data and compare our results to those using a
moving average crossing method, which is well studied in
the literature.

A. Simulation study

Due to the absence of an analytic solution to Problem
(II.3), we use Monte Carlo method to generate optimal
trailing stop percentage h. By comparing the results of
stochastic approximation algorithm, we demonstrate that the
algorithm constructed indeed provides good approximation
results. Assume that the stock price follows a geometric
Brownian motion given by dS(t)

S(t) = µdt + σdw(t) with
S(0) = S0 being the initial price, where µ and σ represent
the expected rate of return and volatility, respectively. We
generate random samples of S(t) for given values of µ,
σ, and S0. Then we compute the optimal trailing stop
percentage h. We take S0 = 100. As shown in Table 1, one
can see the optimal values of h increase in σ. For example,
when µ is fixed at 10%, h rises from 8.00% to 16.75% as
σ increases from 10% to 20%. Intuitively, one should set a
higher h to avoid being stopped out (or forced to sell) from
a position due to normal price fluctuations when σ is larger.
On the other hand, the dependence of h on µ is not obvious.
For instance, with a fixed σ at 20%, h varies in the range
from 16.00% to 16.75%. These relations are also shown in
Figures 2 and 3.

σ \ µ 10.00 11.00 12.00 13.00 14.00 15.00 16.00

10.00 8.00 7.75 7.50 7.50 7.00 7.00 6.75

15.00 12.25 12.00 12.25 12.00 11.75 11.75 11.50

20.00 16.75 17.25 16.75 16.50 16.00 15.75 16.25

30.00 25.25 25.00 24.75 24.50 24.50 25.25 25.00

Table 1: Optimal trailing stop percentage using Monte Carlo Method for
given expected rate of return µ and volatility σ.

We now can draw the graph of objective function J(h)
for fixed µ and σ. For example, the graph of J(h) with
µ = 20% and σ = 35% is shown in Figure 4. Figure 5 is
the graph of J(h) with µ = 12% and σ = 25%. From these
two figures, one can see the smoothness of J(h) and hence
our assumption of A1 is reasonable.

Fig. 2. Optimal trailing stop percentage using Monte Carlo Method against
stock price volatility given different expected rate of return µ.

We use the stochastic approximation to compute the op-
timal values of h. In the following approach, the sequences
{εn} and {δn} are chosen to be εn = 1/(n + k0) and

Fig. 3. Optimal trailing stop percentage using Monte Carlo Method against
expected rate of return given different stock price volatilities σ.

δn = 1/(n1/6 + k1), respectively, where k0 and k1 are some
positive integers. We choose k0 = 1, k1 = 10, ρ = 0.04, and
the lower bound a = 5%. When the trailing stop percentage
is set at h, instead of the finite difference approximation of
the gradient given in the algorithm, we may take random
samples of size n0 with random noise sequence {ξ±n,l}

n0

l=1

such that Ĵ(h, ξ±n )
def
=

J̃(h,ξ±

n,1)+···+J̃(h,ξ±
n,n0

)

n0

. We assume
that EĴ(h, ξ±n ) = J(h) for each h. Then for each h,
Ĵ(h, ξ±n ) is an estimate of J(h). In the simulation study,
we can use independent random samples to estimate the
expected value of Φ(S(τn)) exp(−ρτn). The law of large
numbers implies that Ĵ(h, ξ±n ) converges to J(h) w.p.1 as
n0 → ∞. Recall that n0 is the number of random samples
used in each iteration. The iterates stop whenever |hn+1 −
hn| < 0.0005. Several different initial guesses are used. We
take n0 = 1000. Table 2 shows the results for µ = 10% and
σ = 20%. The optimal trailing stop percentage calculated by
Monte Carlo method is MC = 16.75%. In Table 2, SA1 is
the optimal trailing stop percentage calculated by stochastic
approximation with averages of samples.

Fig. 4. The objective function J(h) against the trailing stop percentage h
for fixed expected rate of return and volatility at µ = 20% and σ = 35%.

Fig. 5. The objective function J(h) against the trailing stop percentage h
for fixed expected rate of return and volatility at µ = 12% and σ = 25%.

It can be seen from Table 2 that the estimates are insen-
sitive to the initial guesses, the algorithm leads to accurate
estimation of the optimal value. Indeed, for σ ∈ [10%, 70%]
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Initial guess 5.00% 17.00% 28.00% 40.00% 50.00%

SA1 16.82% 16.95% 16.94% 16.94% 16.94%

|MC-SA1| 0.07% 0.20% 0.19% 0.19% 0.19%

Table 2: Estimates using stochastic approximation with averages of samples
(SA1) for fixed expected rate of return and volatility at µ = 10% and
σ = 20%, where MC is the optimal trailing stop percentage calculated by
Monte Carlo Method.

and µ ∈ [5%, 40%], the average value of |MC − SA1| is
only 1.34%.

Next we use the similar method without averages of
samples. In this case, n0 = 1, all other parameters re-
main unchanged. The results are shown in Table 3, where
SA2 denotes the optimal trailing stop percentage calculated
by stochastic approximation without averages of samples.
Again, the estimates are insensitive to the initial guesses.
However, the bias |MC-SA2| is larger. For σ ∈ [10%, 70%]
and µ ∈ [5%, 40%], the average value of |MC-SA2| is 3.10%.

Initial guess 5.00% 17.00% 28.00% 40.00% 50.00%

SA2 18.02% 18.02% 18.02% 18.02% 18.02%

|MC-SA2| 1.27% 1.27% 1.27% 1.27% 1.27%

Table 3: Estimates using stochastic approximation without averages of
samples (SA2) for fixed expected rate of return and volatility at µ = 10%
and σ = 20%, where MC is the optimal trailing stop percentage calculated
by Monte Carlo Method.

Compared to the Monte Carlo method, the SA methods
take much less time to calculate the optimal trailing stop
percentage. We run this algorithm on a Sun Fire 880 serve
with 8GB memory, generally, it takes about 30 to 60 seconds
to obtain the estimated optimal trailing stop percentage. With
the Monte Carlo method, it takes at least 20 minutes for the
corresponding computation.

B. Using real market data

In what follows, we use the SA to compute the trailing
stops. We use NASDAQ-100 components during the period
from January 2,1995 - December 31, 2001. Here we consider
two trading strategies. Since we need the 50-day moving
averages of prices, we start our trading strategies on the
fiftieth trading day after January 2, 1995.

Strategy 1. If the stock price on the fiftieth trading day
after January 2, 1995 is below the 50-day moving average,
buy the stock. Otherwise, buy the stock when price is
up-crossing 50-day moving averages. And sell stock when
price is down-crossing 50-day moving averages. If the latter
doesn’t happen, then sell the stock on the last day of the
period, December 31, 2001.

Strategy 2. The entry point is exactly the same as described
in Strategy 1. Then use trailing stop technique with the per-
centage calculated via the stochastic approximation method.
If price doesn’t hit the stop price before December 31, 2001,
sell stock on that day.

For example, let us assume we started collecting stock
prices for Cadence Design Systems Inc (CDNS) on January
2, 1995. Then March 15, 1995 is the first day we have the

50-day moving average. It happens the closing price on that
day is greater than the 50-day moving average, therefore we
buy the CDNS for the price $5.75. On June 2, 1995, the
closing price of CDNS is $7.33, which is less than the 50-
day moving average. Therefore, Strategy 1 suggests to sell
CDNS at $7.33, resulting a raw return of 27.48%. However,
using the trailing stop technique, Strategy 2 suggest to hold
till July 10, 1996. The closing price on that day is $15.69,
resulting a raw return of 172.88%. The daily close prices,
their 50 day moving average, and the trailing stop curve are
plotted in Figure 6.

Fig. 6. The prices of Cadence Design Systems Inc from March 15, 1995,
to December 2, 1996

We perform the same experiments for NASDAQ-100 com-
ponents if prices are available. Table 3 reports the average
rate of returns from Strategies 1 and 2. The average rate of
return from Strategy 1 is 11.45% while the The average rate
of return from Strategy 2 is 71.45%. It is easy to see that
the Strategy 2 outperforms the Strategy 1 on average.

Moving average Trailing stop

11.45% 71.45%

Table 4: Average Rate of Returns from Different Trading Strategies
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