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Abstract— This contribution examines the performance of
a two-degrees-of-freedom controller with limited adaptive fea-
tures when applied to a benchmark problem for robust control.
A general design procedure is explained and exemplified before
simulations are carried out. Simulations indicate that the
controller has potential to perform well if applied on the real-
world system. However, if the reference-response bandwidth
is increased, sudden load changes may lead to unacceptable
transients.

I. BACKGROUND AND PURPOSE

Design for traditional adaptive controllers makes little use

of a priori knowledge about the plant to be controlled. Often,

the only a priori knowledge assumed for control design

is the plant’s high-frequency gain, pole excess, order, and

that the plant is minimum phase [6]. As a result, much

“responsibility” is put on the adaptive controller and this may

lead to presumptuous objectives. Also, it is well known from

the intense research on robustness for adaptive controllers

during the 1980s that traditional adaptive controllers can face

serious problems if they are applied without care to real-

world systems.

Observations like the above have made some research

within adaptive control shift to an approach where the adap-

tive features are more restricted. This contribution adopts

that idea by restricting adaptation to the feedforward part of

a two-degrees-of-freedom (2DOF) controller. This is not a

novel idea; contributions with this approach can be found

scattered throughout the literature. A possible limitation for

most such schemes, however, is that they rely on a strictly-

positive-real (SPR) condition for the closed-loop system. The

authors have recently developed an alternative scheme in [4]

where no such SPR condition appears. This paper can be

seen as a continued investigation of that scheme within a

discrete-time framework.

The purpose of this contribution is to examine how the

2DOF adaptive control scheme developed in [4] performs

when applied to the benchmark problem for robust control

found in [3]. Less effort is put into theoretical investigation to

emphazise pragmatic ideas of the design procedure and show

simulation results. The investigated 2DOF control structure

may be useful in applications where a precise reference-

response is desired but hard to achieve due to uncertainty

and nonminimum phase properties.

The control structure from [4] is described briefly in

Sec. III before the benchmark problem is described in

Sec. IV. A general design procedure is outlined in Sec. V

before it is exemplified in Sec. VI when being applied to

the benchmark problem. Simulation results are displayed

in Sec. VII before the design procedure is repeated for a

case with higher bandwidth in Sec. VIII. Conclusions are

mentioned in Sec. IX.

II. NOTATION

The symbol z is used for the forward-shift operator and s
is used for the Laplace operator. Arguments are often omitted

for convenience (e.g., we write Pr instead of P (z)r(k)).
Also for convenience, only two significant digits are shown

in most formulas and equations. In actual simulations, higher

numerical precision was used.

III. CONTROL STRUCTURE

The control scheme developed in [4] is depicted in Fig. 1.

The plant P (s) with input u(t) and output y(t) is a linear

and time-invariant system controlled by a 2DOF controller

consisting of a robust fixed feedback controller C(s) and an

adaptive feedforward controller Q(θ). The filter Wm(s) with

input r(t) and output ym(t) acts as a reference model for the

closed-loop system. The desired feedforward filter is Q(s) =
Wm(s)/P (s), but because the feedforward path is essentially

open loop, adaptation is needed when plant knowlegde is

uncertain. This idea for modest adaptation is natural since a

fixed feedback loop can guarantee robustness to instability,

while an adaptive feedforward part still allows for perfect

model following in a disturbance-free environment.

The original scheme suggests to identify parameters in

the plant based on the signals u and y; this contribution will

later present an alternative idea. While the control scheme

described in this section was developed for a continuous-

time framework, it will here be modified to fit a discrete-

time formulation. Adjustments for the estimation algorithm

and changes to handle nonminimum phase zeros (that often

occur in sampled systems) are discussed in Secs. V and VI.
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Fig. 1. Block structure of the adaptive controller in [4]
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IV. BENCHMARK PROBLEM

The benchmark problem used to exemplify a design pro-

cedure and test the performance of the adaptive controller

is described in [3]. For the reader’s convenience, a brief

description of the system and the problem specification now

follows.

A schematic picture of the plant is shown in Fig. 2. It is

a transmission system consisting of three horizontal pulleys

connected by elastic belts. The first pulley is controlled by

an electric motor with local feedback, using the reference for

the first pulley as its input. The goal is to control the position

of the third pulley. A PC is used to control the system.

Small weights can be applied to the third pulley to realize

different load cases. In the original problem formulation,

three different load cases are considered.

The plant for the three modes of operation is described in

discrete time as

P noload =
0.28(z + 1.8)

(z2 + 0.18z + 0.93)(z2
− 1.6z + 0.95)

(1)

P halfload =
0.1(z + 1.8)

(z2
− 0.17z + 0.92)(z2

− 1.8z + 0.97)
(2)

P fullload =
0.064(z + 1.6)

(z2
− 0.24z + 0.92)(z2

− 1.9z + 0.95)
(3)

using the sampling time Ts = 1/20 s. These transfer func-

tions will here be assumed to describe the true behaviour of

the plant. The plant has a pure time delay of 2 samples. The

bode magnitude plots of the three cases are shown in Fig. 3.

Fig. 2. Schematic picture of the transmission system.

The original specifications in [3] require the controller to

be on RST form. This is not taken into consideration. Other

than that, the specifications are

1) Rise time (0–90% of final value) of less than 1 s for

all loads for a reference step response.

2) Overshoot less than 10% for a reference step response.

3)–8) Disturbance response specifications, not here explained

in detail due to space limitations (see[3] for more

details).
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Fig. 3. Bode magnitude plots for the three plant cases. (The higher load,
the “lower” amplitude plots.) .

With the 2DOF structure used in this paper, the feedback

design can focus completely on the disturbance-response

specifications 3)–8), while the design of the adaptive feedfor-

ward part focuses on specifications 1)–2). We remark that the

adaptive controller will not be able to fulfil all specifications

at initial stages of adaptation, such as after sudden load

changes.

V. DESIGN PROCEDURE

A proposed control-design procedure is now outlined.

It assumes that an offline estimate of the plant P with

uncertainty is available a priori (e.g., as in the benchmark

problem considered here) in contrast to assumptions used in

many traditional adaptive control design methods.

1) Design a robust feedback controller C based on

disturbance-response specifications and a priori plant

knowledge.

2) Determine a desired bandwidth from reference to

output, and choose thereafter a suitable preliminary

reference model Wm.

3) Model the plant into the slow part PLF (to be esti-

mated online) and the fast part P̂HF based on offline

estimates and the desired bandwidth.

4) Estimate PLF online by using the signals P̂HF u or

P̂HF uff and y.

5) Implement the feedforward controller uff =

Wm/(P̂LF P̂HF ) r.

6) If necessary, augment the preliminary reference model

to include nonminimum-phase zeros and the time-

delay of the plant.1

VI. DESIGN PROCEDURE APPLIED TO THE

BENCHMARK PROBLEM

The steps of the procedure in Sec. V will now be explained

in more detail by applying them to the benchmark problem

in Sec. IV.

A. Step 1. Feedback design

The feedback may be designed using any appropriate

design method, taking only the disturbance-response spec-

ifications into consideration. While this step is an important

part of the procedure, it is not the main focus of this message.

1The last two steps of the design procedure may be suitably modified as
Sec. VI and VIII will show.
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Therefore, we use the feedback part from the controller in

[5], which was the winning contribution to the benchmark

problem. Its design was based on Quantitative Feedback

Theory.

B. Step 2. The reference model

From specifications 1)–2) a preliminary continuous-time

reference model that seems suitable is

Wm(s) =
ω2

s2 + 2ζωs + ω2
(4)

with ω = 3 rad/s and ζ = 0.66. Discretizing this with

zero-order hold and getting rid of time-delays lead to the

preliminary reference model

Wm(z) =
0.011z(z + 0.94)

(z2
− 1.8z + 0.82)

. (5)

Its step response can be seen in the upper plot of Fig. 8

(dotted line) and its bode magnitude plot is seen in Fig. 4.

C. Step 3. Divide the plant P into PLF and PHF

The main idea of this frequency separation is to only

estimate parameters that are sensitive with respect to the

servo performance. As mentioned in Sec. III, the ideal feed-

forward filter is Q = Wm/P . However, if P is estimated

with model error, the response from reference to output

will not be affected much if this model error is small and

only is present for frequencies significantly higher than the

bandwidth of Wm. This motivates the separation of P into a

low-frequency part PLF that needs to be estimated online and

a high-frequency part PHF that only needs an approximate

offline estimate.

In Fig. 4 the bode magnitude plot of the reference model

is shown together with one plant case. When the plant case

is filtered through the reference model, the peak magnitude

of the higher resonance becomes approximately −30 dB ≈

0.03. Small errors in the estimate of position and magni-

tude of the higher resonance will therefore not affect the

reference-response significantly. A suggested separation of

the plant into PLF and PHF is displayed by the dotted line

in Fig. 4. This separation is viewed in the complex plane

together with a pole-zero map in Fig. 5. From this pole-zero

map it is proposed to model PLF with one pair of complex

poles, while PHF includes the higher pair of complex poles

and the nonminimum-phase zero.

The low-order a priori estimates for the three cases (1)–(3)

become

P noload
LF

=
0.37z2

(z2
− 1.6z + 0.95)

(6)

P halfload
LF

=
0.16z2

(z2
− 1.8z + 0.97)

(7)

P fullload
LF

=
0.1z2

(z2
− 1.9z + 0.95)

(8)

while the high-order estimates become

P noload
HF

=
0.76(z + 1.8)

z2(z2 + 0.18z + 0.93)
(9)

P halfload
HF

=
0.63(z + 1.8)

z2(z2
− 0.17z + 0.92)

(10)

P fullload
HF

=
0.64(z + 1.6)

z2(z2
− 0.24z + 0.92)

. (11)
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Fig. 4. Bode magnitude plot of preliminary reference model and one of
the plant cases. It is sufficient to only estimate the slower resonance online.

PLFPHF

Pole-Zero Map
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Fig. 5. By inspecting the pole-zero map it is made clear what zeros and
poles should be included in PLF and PHF . The dotted line corresponds
to the dotted line in Fig. 4 that separates lower and higer frequencies.

D. Step 4. Estimate PLF online

As for any adaptive controller, the choice of estimator

structure is important for successful performance of the

feedforward controller. Due to the discrete-time formulation,

it is natural to apply a simple recursive least squares (RLS) or

extended RLS algorithm to estimate the parameters in PLF .

It is then important to choose reasonable values for the initial

parameter estimates θ(0), forgetting factor λ, and initial

covariance matrix C(0). These values were in simulations

chosen as λ = 0.99, C(0) = I , and θ(0) was chosen as the

mean values of the parameter intervals in Table I. Covariance

resetting in the RLS algorithm was not used in simulations.

The offline estimate of the faster dynamics was chosen as

P̂HF = P halfload
HF

. Note that all delay in the original plant is

modeled in P̂HF (to be used in the final reference model).

a) Input signals for the estimator: The control structure

depicted in Fig. 1 suggests that the estimator should estimate

a model of the plant based on the input u. Due to the

frequency separation in Step 2, this suggests that P̂HF u
should be used. However, this does not work well if a

persistent step disturbance acts on the system output. The
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reason for this is that the estimator tries to identify PLF

based on the model

y = PLF P̂HF u (12)

when the output in fact is governed by

y = PLF PHF u + v , (13)

where v is the disturbance signal. The estimator will thus

identify a static gain which is different from the plant’s static

gain. The performance of the estimator based on (12) is not

acceptable since the resulting controller does not fulfil the

problem specifications even after adaptation.

One way to modify the estimator that greatly improves

control performance under persistent step disturbances is

based on the idea that the feedback suppresses the distur-

bance. Expanding (13) leads to

y = Puff + Pufb + v
︸ ︷︷ ︸

≈0

=
PC + P̂LF P̂HF

P

PC + 1
Puff + Sv (14)

where S is the output sensitivity function. If Sv is small—

which it should be if the feedback is well designed—it can

be seen that an estimator for PLF based on the model

y = PLF P̂HF uff (15)

is reasonable to try. It can be interpreted as a way to estimate

and eliminate the disturbance from the measured output.2

Such an estimator was used in simulations in Sec. VII and

VIII-G.

b) Applying projection based on a priori information: A

priori information about parameters may be used in the RLS

algorithm to keep the estimate within reasonable bounds.

Projection like this can serve as an important guarantee for

boundedness of signals in the system. The projection may

be implemented by “backtracking” to take a shorter update

step in the RLS algorithm when a violation of the bounds

is detected. Table I displays the known bounds from (6)–

(8) for the parameters in PLF that are to be estimated for a

simple RLS algorithm. In simulations it was noted that the

convergence rate for the RLS algorithm with this simple way

to project parameters could get significantly slowed down

when projection became active.

The a priori interval for the parameters may depend on

what parameterization that is used. For example, the static

gain is determined differently in the δ domain compared to

the forward-shift domain. A projection scheme based on the

δ domain was implemented. It did not, however, lead to any

significant differences in signal properties compared to the

projection scheme based on the shift domain.

E. Step 5. The feedforward controller

The feedforward controller should implement a delay-free

approximate inverse of the true plant; a natural choice is

Q = Wm/(P̂LF P̂HF ). Because PHF is nonminimum phase

2Ways to eliminate constant disturbances in traditional adaptive control
structures are briefly discussed in [6].

B A

[0.1004, 0.3733]z2 z2 + [−1.8525,−1.6017]z + [0.9484, 0.9722]

TABLE I

THE LOWER AND UPPER VALUES USED AS A BASIS FOR PARAMETER

PROJECTION IN THE RLS ESTIMATOR.

for this example (see Sec. VI-D), the feedforward is instead

implemented as a realization of uff = Wm/P̂LF r, where

P̂LF is time varying. One could let the poles of P̂HF be

included as zeros in the feedforward function, but for this

example this does not make much difference to the end result.

F. Step 6. The final reference model

The reason why we include P̂HF in the reference model

is that we simply do not want the feedback to do perform

any unnecessary control action. One could as well include

P̂HF in the feedforward controller if it were not for the

nonminimum phase zero and time-delay in this example.

The final reference model becomes WmP̂HF . Its step

response can be seen in Fig. 8. Note that this choice of

reference model does not give much room for error if the

specifications should be met. The control scheme is depicted

in Fig. 6

WmP̂HF
PLF PHFC

Wm/P̂LF Estim.

r ym e ufb

uff

v
y

θ

+
−

+

+

Fig. 6. The final scheme for this particular design.

VII. SIMULATION EXAMPLES

Simulations were carried out in Simulink for the three

load cases controlled by the 2DOF controller. The reference

was a square wave that changed value between 0 and 1 every

10 s. At t = 50 s, a unit output step-disturbance was added to

the system and remained constant throughout the simulation.

The estimator was based on (15). The output was subject to

band-limited white noise with noise power 3 · 10−6. The

simulation started with the full-load case, and then switched

to the half-load and no-load cases at t = 100 s and t = 200 s

respectively.

Fig. 7 shows the output for the whole time period. It can

be seen that the transients at load changes are reasonably

small. Fig. 8 shows step responses at t = 40 s, t = 140 s, and

t = 240 s. The output follows the reference model closely

and the specifications are fulfilled for steps made at these

points in time. A typical input signal at a step change is

shown in Fig. 9.
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Control error

t [s]

t [s]

Output

0 100 200 300

0 100 200 300

-0.5

1.5

-0.2

0.2

Fig. 7. Output (upper) and control error (lower plot) throughout the
simulation. The controller has trouble keeping the error small for a few
periods after the step disturbance is introduced. Note that the control error
is larger than what the plot can display at some periods of time.

t [s]

Step-reference responses for the three cases
t [s]

Step-reference response for reference model

-0.5 0 1 2

-0.5 0 1 2

0

1

0

1

Fig. 8. The upper plot shows step responses for the preliminary reference

model Wm (dotted) and final reference model P̂HF Wm (solid). The only
significant difference between the responses is a time delay of two samples.
The lower plot shows step responses from t = 40 s, t = 140 s, and t =
240 s for the three loads for the examined structure. The specifications for
rise time and overshoot are outlined by dotted lines. Compare this figure
with Fig. 7.

input signal u

t [s]

139.5 140 141 142

-1

0

Fig. 9. The input for a typical step change. The reason why the input is so
noisy is because the additive output noise is amplified much by the feedback
controller taken from [5]. The level of the input starts near −1 since the
output step disturbance is acting on the system for this time period.

t [s]

0 100 200 300

0 100 200 300

0 100 200 300

-2

-1.6

0.8

1.1

0

0.4

Fig. 10. Parameter estimates and their true values throughout the simu-
lation. The parameters were in this case allowed much freedom to reward
parameter convergence; see Sec. VI-D.0.b.

VIII. CONTROLLER REDESIGN FOR HIGHER

BANDWIDTH

Adapting the feedforward part may be of interest in

applications where high bandwidth from the reference is

desired but hard to achieve by feedback only. Since the

plant has a pure time-delay Td = 0.1 s, the rough estimate

ωb < 1/Td (see e.g. [1]) gives ωb ≈ 10 rad/s as an upper limit

of the highest bandwidth that can be achieved using feedback

only. To make things more challenging for the 2DOF control

structure, the bandwidth of the reference model was therefore

changed to ωb = 10 rad/s, which corresponds to a rise time

of 0.4 s including the time delay. The design procedure will

now be repeated for this case.

A. Step 1. Feedback design

The feedback used in simulations is the same as in Sec. VI-

A.

B. Step 2. Reference model

A second order model on the same form as (4) with ω =
10 rad/s and ζ = 0.66 translated to discrete time leads to

W fast
m

= 0.099z(z+0.8)
(z2

−1.3z+0.52) . It has a step response corresponding

to the dotted line in the upper plot in Fig. 12.

C. Step 3. Divide the plant P into PLF and PHF

The higher peak resonance of P noload when filtered

through the fast reference model W fast
m

becomes approx-

imately −10 dB ≈ 0.3. Therefore, both resonances needs

to be modeled in the feedforward path for acceptable per-

formance. Modeling of the nonminimum phase zero could

be omitted but is included for the purpose of showing that

the final reference model can include time-varying elements.

This means that P̂HF = 1/z2 for this case.

D. Step 4. Estimate PLF online

This step is similar to the previous case, only more pa-

rameters needs to be estimated for the faster case. Projection

can be used based on information from (1)–(3).
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E. Step 5. Feedforward controller

The online estimate is divided into P̂LF = B̂+/Â, where

B̂+ denotes the non-Hurwitz denominator. The feedforward

function is thereafter implemented as a realization of uff =
W fast

m
Â/b̂+0

r, where b̂+0
is the static coefficient of B̂+.

F. Step 6. Final reference model.

The final reference model becomes B̂+Wm/b̂+0
P̂HF .

Dividing by b̂+0
is necessary to maintain unity static gain for

the reference model. Since projection is used, the location of

the estimated nonminimum-phase zero is guaranteed to stay

within an interval that does not affect the reference-response

significantly. The step response of the final reference model

is seen in Fig. 12.

G. Simulation results

The same simulation setup as for the previous case in

Sec. VII was used. Again, the estimator was based on the

model (15) to achieve better performance under disturbances.

The simulated output signal is shown in Fig. 11. It should

be noted that the scheme now exhibits transients at load

changes that the real-world system may not be able to handle.

However, after only a few steps the controller adapts to a nice

response very close to the reference output, as indicated in

Fig. 12. The input signal during a step change is seen in

Fig. 13.

When a high bandwidth is desired and significant time de-

lays are present, there may not be any way to handle sudden

load changes well. This can be understood by realizing that

after a sudden load change, it will take time before this can

be noted at the output. During this time delay the feedforward

controller may induce large transients in the system. In fact,

when a constant feedforward controller adjusted for one of

the plant cases was used in simulations, the error at other

load cases was in the same order of magnitude as transient

errors experienced by the adaptive controller.

t [s]

Output

0 100 200 300

0 100 200 300

-0.5

1.5

-0.2

0.2

Fig. 11. Output signal (upper plot) and control error (lower plot) for the
system with higher bandwidth. Note that the control error is larger than the
plot diplays at some periods of time.

t [s]

Step-reference responses for the three cases

Step-reference response for reference model

t [s]

-0.5 0 0.4 2

-0.5 0 0.4 2

0

1

0

1

Fig. 12. Step responses for the reference model (upper plot) and the output
(lower plot) at t = 40 s, t = 140 s, and t = 240 s. See also Fig. 11.

input signal u

t [s]

139.5 140 140.4 142

-1

0

Fig. 13. The input for a typical step change for the high-bandwidth case.
Compare with Fig. 9

IX. CONCLUSIONS

A design procedure for adaptive tracking control has been

outlined and exemplified. As most adaptive schemes, the

controller faces difficulties to handle sudden load changes,

but performs well after adaptation. The adaptive controller

also performs well under output disturbances when the

estimator is based on the feedforward input signal uff . To try

the scheme with a high bandwidth on the real-world system

likely requires a more elaborate scheme to handle sudden

load changes. Ideas from [2] may be of interest if this would

be pursued.
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