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Abstract— While reduced rank time-series models go back
over 30 years, there is a renewed interest because of the now
commonplace occurrence of high dimensional time-series. Here,
for the first time, we characterize the two basic reduced rank
vector time-series models in state space terms in a surprisingly
simple way. This allows us to extend these models from vector
AR to vector ARMA and we develop two new associated
subspace fitting algorithms.

I. Introduction

With the advent of large time series data sets in areas such

as system identification, econometrics, neuroscience, there is

emerging interest in modeling high dimensional time series

e.g. [1],[2],[3]. And reduced rank models are thus of import

[4].

Methods in multivariate reduced rank regression (RRR) go

back to [5] (see [4]) and are closely related to canonical cor-

relation analysis [4]. The development of reduced rank time

series (RRTS) methods starts with [6], [7] and has gained a

big impetus from econometric work on cointegration [8].

The monograph [4] summarizes the important methods

in RRR and RRTS. It covers model formulation, model

fitting and asymptotics. Some of the work on RRR has been

rediscovered in the signal processing literature but there have

also been new algorithmic developments e.g. [9]. However

no connexion is made in [4] between RRTS and state space

methods and indeed there seems to have been no work in

this direction.

However connexions have been made between RRR and

subspace methods e.g. [10],[11]. These authors and others

show how subspace fitting methods can be viewed as RRR

with correlated noise and use this representation to formulate

various types of results. In these works it is a certain Hankel

matrix that is of reduced rank. This connexion is important

and fruitful but is totally different from what we do here.

Namely connect RRTS to SS where as will be seen, other

matrices will be of reduced rank.

In this work we provide a state space formulation of RRTS

for the first time. This allows an extension of RRTS models

from vector AR to vector ARMA and leads to new subspace

fitting algorithms .

In section 2 we review RRTS models. In section 3 we

develop the surprisingly simple state space characterizations

of the two main RRTS models. In section 4 we develop new

subspace algorithms to fit these models. Conclusions are in

section 5.
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A. Notation and Acronyms

DIM is dynamic index model; MFD is matrix fraction

description; MIL is matrix inversion lemma; RRR is reduced

rank regression; RRTS is reduced rank time series; RH is

right hand; LH is left hand; RHS is right hand side; SS

is state space; SVD is singular value decomposition; VAR

is vector autoregression; VARMA is vector autoregressive

moving average; WN is white noise.

II. Review of Reduced Rank Time Series Models

To date the development of RRTS models has focussed

on VARs. Consider a d-dimensional vector time series yt

described by a VAR

yt = Σp
1Huyt−u + ǫt, t = 1, · · · , T̄

where {ǫt} is a zero mean WN sequence of variance Σ.

If d is large e.g. d=50, then even with order p = 1 we

have of order 1 1

2
d2+ 1

2
d parameters ∼ 3700 parameters. The

McMillan degree may be much less than dp = 50 and this

would provide some dimension reduction; but more would

be useful. And this is what RRTS can potentially provide.

The two most significant RR-VAR models are

(i) RH model or WN model

Hu = FGT
u , 1 ≤ u ≤ p

(ii) LH model or DIM model

Hu = FuGT , 1 ≤ p

where F, G each have rank k < d. These representations are

not unique since if W is any k×k matrix of full rank we can

e.g. replace F by FW T and Gu by GuW−1. Any estimation

method resolves this by using some kind of normalization.

We now discuss each of these models in turn.

WN-model.

This model has the great attraction that model fitting is very

simple; it just involves forming some cross variance matrices

followed by a SVD [4][section 5.2]. In previous work [12]

we have pointed out a hitherto unremarked disadvantage of

the WN-model. If F⊥ is the d× (d−k) matrix of rank d−k

orthogonal to F , then F T
⊥

yt is a WN (this explains the name

we have given it). In the context of stationary processes this

does not seem likely to occur in practice.

However if we allow random walk components in yt

then this property becomes significant since it leads to

the cointegration property of econometrics (i.e. yt is not

stationary but there are linear combinations that are). For

this reason, although we do not discuss cointegration, we

continue to deal with this model.
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DIM-model.

This model is much more interesting, partly because it

requires nonlinear fitting. If we introduce the reduced di-

mension process yG,t = GT yt then the whole time series is

generated from the index time series yG,t.

The seminal work on the DIM is due to [13] who develops

model fitting and asymptotics. The model was rediscovered

by [9] who gave a new model fitting algorithm . Also as

discussed in [12] the model posesses a significant feature

not previously noted. Namely it induces a natural casual

structure; this is discussed further below.

III. State Space View of Reduced Rank Time Series

Models

In this section we begin by posing VARMA extensions of

the WN and DIM models and then develop the state space

versions which admit very simple characterizations.

The rank reduction condition will now be k < min(d, n)
where n is the minimal state space dimension.

A. WN Model

Formally the model is a natural VARMA extension of the

VAR model,

yt = FD−1(z−1)N(z−1)yt + ǫt

where, Fd×k is of rank k < min(d, n), n =McMillan

degree.;

Dk×k(z−1), Nk×d(z
−1) are left coprime matrix polynomi-

als; The MFD D−1(z−1)N(z−1) is required to be strictly

proper, which ensures the lead term on the RHS has a

time lag of 1; D(z−1) is stable i.e. if b is the maximum

degree of any polynomial in D(z−1) then |zbD(z−1)| has all

roots inside the unit circle. The stability ensures the filtering

process can be well defined. We say formally because the

process yt could have unbounded variance e.g. the random

walk yt = yt−1 + ǫt fits the definition. So the filtering on

the RHS has to be initiated at a finite time.

Of course the easiest way to do this is to specify the

model in SS terms. And since MFD/SS connexions are well

understood there seems little point in labouring through this

standard material. Hence we just redefine the WN model in

SS form from the start.

WN-SS Model

We say yt is generated by a WN-SS model with parameters

(A∗, B, C, F ) if firstly the parameters satisfy the following

conditions:

W∗: A∗ is a stability matrix.

W1: Fd×k is of rank k < min(d, n).
W2: A∗,n×n, Ck×n is observable; A∗, Bn×d is controllable.

Of course this means A∗, B, C is minimal.

Secondly we are given a white noise sequence {ǫt} i.e.

the sequence is uncorrelated, has zero mean and covari-

ance Σ. And are also given an initial condition ξ0 for a

n−dimensional state ξt. Then we generate (yt, ξt+1) recur-

sively as follows,

yt = FCξt + ǫt, t = 0, 1, · · ·

ξt+1 = A∗ξt + Byt, t = 0, 1, · · ·

Formally we then have

yt = FC(zI − A∗)
−1Byt + ǫt

Let us note here that the model has the WN property; i.e. if

F⊥ is a d× d− k matrix of rank d− k which is orthogonal

to F then F T
⊥

yt = FT
⊥

ǫt is a WN.

To establish our first result we introduce an innovations

SS model with reduced rank observation (RRO).

RRO Model

We say yt is generated by an RRO model with parameters

(A,B, C, F ) if firstly the parameters satisfy the conditions:

W0, W1, W3,

W0: A∗ = A − BFC is a stability matrix.

W3: (A,C) is observable; (A,B) is controllable .

Note that W0 is consistent with W3.

And secondly we are given a WN sequence ǫt of covariance

Σ and an initial condition ξ0 of a n− dimensional state ξt.

Then (yt, ξt) are generated recursively by the innovations

state space model

yt = FCξt + ǫt, t = 0, 1, · · ·

ξt+1 = Aξt + Bǫt, t = 0, 1, · · ·

Now we have,

Theorem 1. yt is generated by a WN-SS model with

parameters (A∗, B, C, F ) iff yt is generated by an RRO

model with parameters (A,B, C, F ).
Proof.

If the WN-SS model holds we have simply,

ξt+1 = A∗ξt + Byt

= A∗ξt + B(FCξt + ǫt)

= (A∗ + BFC)ξt + Bǫt

= Aξt + Bǫt

as required.

We now show (A,B, C) is minimal. Suppose (A,B) is not

controllable then there exists a left eigenvector q of A with

corresponding eigenvalue λ such that qT A = λq, qT B =
0. But then λqT = qT (A∗ + BFC) = qT A∗ which now

contradicts W2. Similarly we can establish that (A,C) is

observable .

For the converse we simply argue in reverse

ξt+1 = Aξt + Bǫt

= Aξt + B(yt − FCξt)

= (A − BFC)ξt + Byt

= A∗ξt + Bǫt

as required. Also we have W0 ⇒ W∗. And by the same

arguments in reverse (A∗, B, C) inherits minimality from

(A,B, C). And the result is established.

B. DIM Model

The natural extension of the DIM model to the VARMA

case is, formally,

yt = N(z−1)D−1(z−1)GT yt + ǫt
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where Gd×k is of rank k < min(d, n) and N(z−1), D(z−1)
are specified as before. Again we proceed immediately to

respecify this in SS terms.

DIM-SS Model.

We say yt is generated by a DIM-SS model with parameters

(A∗, B, C, G) if firstly the parameters satisfy the conditions:

D∗: A∗ is a stability matrix.

D1: Gd×k is of rank k < min(d, n).
D2: A∗,n×n, Cd×n is observable; A∗, Bn×k is controllable.

Again this means A∗, B, C is minimal.

Secondly we are given a WN sequence ǫt of covariance Σ
and an initial condition ξ0 of a n− dimensional state ξt.

Then (yt, ξt) are generated recursively by

yt = Cξt + ǫt, t = 0, 1, · · ·

ξt+1 = A∗ξt + BGT yt, t = 0, 1, · · ·

We now see that formally, the model posses the same kind

of causality structure pointed out in [12] for the VAR case.

If G⊥ is a d×d−k matrix of rank d−k which is orthogonal

to G then multiplying through the defining equation by G

and separately by G⊥ and reorganizing yields

(

I − GT C(zI − A∗)
−1B 0

−G⊥C(zI − A∗)
−1B I

)(

GT yt

GT
⊥

yt

)

=

(

GT ǫt

GT
⊥

ǫt

)

The stability of A∗ ensures the filtering on the LHS is well

defined. According to results of [14], from this structure,

and assuming stationarity, we can conclude that GT
⊥

yt does

not weakly Granger cause GT yt. This again points up an

important property of the model namely that it implicitly

finds Granger-causal structure if there is any.

To establish our next result we introduce an innovations

SS model with reduced rank gain (RRG).

RRG Model.

We say yt is generated by an RRG model with parameters

(A,B, C, G) if firstly the parameters satisfy the conditions:

D0, D1, D3,

D0: A∗ = A − BGT C is a stability matrix.

D3: (A,C) is observable; (A,B) is controllable .

Note that D0 is consistent with D3.

And secondly we are given a WN sequence ǫt of covariance

Σ and an initial condition ξ0 of a n− dimensional state ξt.

Then (yt, ξt) are generated recursively by the innovations

state space model

yt = Cξt + ǫt, t = 0, 1, · · ·

ξt+1 = Aξt + BGT ǫt, t = 0, 1, · · ·

Now we have,

Theorem 2. yt is generated by a DIM-SS model with

parameters (A∗, B, C, G) iff yt is generated by an RRG

model with parameters (A,B, C, G).
Proof.

The proof is similar to that of Theorem 1. If the DIM-SS

model holds then we have

ξt+1 = A∗ξt + BGT yt

= A∗ξt + BGT (Cξt + ǫt)

= (A∗ + BGT C)ξt + BGT ǫt

= Aξt + BGT ǫt

as required. We now show (A,B, C) inherits minimality. If

(A,B) is not controllable then there exists a left eigenvector

q and corresponding eigenvalue λ with qT A = λqT , qT B =
0. But then λqT = qT (A∗ + BGT C) = qT A∗ which now

contradicts D2. Similarly observability is inherited.

For the converse we just repeat the argument in reverse as

we did for Theorem 1.

Remarks.

(i) The stationarity alluded to in the causality discussion

above will hold if A is a stability matrix.

(ii) The pair of theorems are quite remarkable in providing

very simple and natural interpretations of the two kinds of

RRTS models in SS terms.

IV. Reduced Rank Subspace Algorithms

We now construct subspace estimators for the parameters

in the RRO,RRG models by modifying standard subspace

construction procedures. We use canonical correlations type

weighting.

A. Preliminaries

Since our procedures rely on some standard subspace

computations we recap some basic material briefly [15].

Given data yt, t = 1, · · · , T̄ choose a lag m and set N =
md, T = T̄ − 2m + 1. Then form the ’past’ and ’future’

matrices

Y−

N×T

=









ym ym+1 ·· yT̄−m

ym−1 · ·· ·
· · ·· ·
y1 · ·· yT̄−2m+1









Y+

N×T

=









ym+1 ym+2 ·· yT̄−m+1

ym+2 · ·· ·
· · ·· ·

y2m · ·· yT̄









Next introduce the near-Hankel matrix

HN×N = Y+Y T
−

1

T

and the near block Toeplitz matrices

Σ− =
1

T
Y−Y T

− , Σ+ =
1

T
Y+Y T

+

and carry out Cholesky factorizations

L+Σ+LT
+ = I, L−Σ−LT

− = I

Then carry out an SVD

L+HLT
− = UΛV T

and keep the first n columns, U∗ of U ; the corresponding

first n diagonal entries Λ∗ of the diagonal matrix of singular
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values Λ; the corresponding first n rows V T
∗ of V T .

Choice of n.

We propose the criterion of [16]

FVr = −(T − 1)ΣN
r+1ln(1− Λ2

j) − 2(N − r)2

The idea is simply to plot FVr for a minimum in r. We

denote the minimizer as n. This is an Akaike type criterion;

a Bayes type version is easily obtained by multiplying the

penalty term 2(N − r)2 by ln(T − 1).
Now set

K = Λ
1

2

∗ V T
∗ L−

Then we construct a state estimator as

ξ̂t = Ky−,t, t = m + 1, · · · , T + m

y−,t

N×1

=









yt−1

yt−2

·
yt−m









, t = m + 1, · · · , T − m + 1

In the appendix we show for completeness (the known result)

Soo =
1

T
ΣT

1 ξ̂tξ̂
T
t = Λ∗ (4.1)

B. RRO Model

Given the state estimator ξ̂t. we can estimate FC by a

RRR of yt on ξ̂t

minF,CΣT
1 ‖ yt − Fd×kCk×nξ̂t ‖

2

This is a classical RRR and we can read out the solution from

[4] except that we use a more compact SVD representation.

First we form the covariance matrices

Syy =
1

T
ΣT

1 yty
T
t

Syo =
1

T
ΣT

1 ytξ̂
T
t

Soo =
1

T
ΣT

1 ξ̂tξ̂
T
t

Next we carry out an SVD

M̄d×n = S
−

1

2

yy SyoS
−

1

2

oo = P̄d×dD̄d×nQ̄T
n×n

= P̄∗D̄∗Q̄
T
∗

+ P̄⊥D̄⊥Q̄T
⊥

Where Q̄, P̄ are orthogonal matrices and D̄ contains the

singular values. The number of these is p =min(d, n). If

d ≤ n, then the left d × d submatrix is diagonal with

the singular values in decreasing order down the diagonal;

elsewhere are zeros. If d > n then it is the upper n × n

submatrix that has the singular values down the diagonal.

By construction the singular values lie between 0 and 1.

We keep the first k columns P̄∗,d×k of P̄ ; the cor-

responding k largest singular values in D̄∗,k×k; and the

corresponding first k rows Q̄∗,k×n of Q̄. And P̄⊥, D̄⊥, Q̄⊥

denote the remaining singular quantities.

Choice of k.

We propose again the criterion of [16] which is now,

FVr = −(T − 1)Σp
r+1ln(1 − D̄2

j ) − 2(d − r)(n − r)

The idea again to plot FVr for a minimum in r. We denote

the minimizer as k. Again a Bayes type version is easily

obtained by multiplying the penalty term 2(d− r)(n− r) by

ln(T − 1).

F̂ , Ĉ .

Now we form the estimators

F̂ = S
1

2

yyP̄∗, Ĉ = D̄∗Q̄
T
∗
S
−

1

2

oo (4.2)

Note for future use that

F̂ Ĉ = S
1

2

yyP̄∗D̄∗Q̄
T
∗ S

−
1

2

oo (4.3)

⇒ F̂ ĈST
yo = S

1

2

yyP̄∗D̄∗Q̄
T
∗
M̄T S

1

2

yy

= S
1

2

yyP̄∗D̄∗Q̄
T
∗ Q̄∗D̄∗P̄

T
∗ S

1

2

yy

= S
1

2

yyP̄∗D̄
2
∗
P̄T
∗

S
1

2

yy (4.4)

Σ̂ .

Continuing we introduce the residual or error signal

et = yt − F̂ Ĉξ̂t

The error covariance is

Σ̂ = Se =
1

T
ΣT

1 ete
T
t

=
1

T
ΣT

1 (yt − F̂ Ĉξ̂t)(yt − F̂ Ĉξ̂t)
T

= Syy − SyoĈ
T F̂T − F̂ ĈST

yo + F̂ ĈSooĈ
T F̂T

= Syy − S
1

2

yyP̄∗D̄
2
∗P̄

T
∗ S

1

2

yy

= S
1

2

yy(I − P̄∗D̄
2
∗
P̄T
∗

)S
1

2

yy (4.5)

Note that since the singular values are less than one this

matrix has full rank.

Â, B̂ .

Now we estimate A,B by least squares

minA,BΣT
1 ‖ ξ̂t+1 − (A,B)

(

ξ̂t

et

)

‖2

A perturbation argument leads to the Euler equations

0 = ΣT
1 (ξ̂t+1 − (Â, B̂)

(

ξ̂t

et

)

)(ξ̂T
t , eT

t ) (4.6)

To solve this system in a compact way we recall the standard

subspace estimators. We denote them Âo, B̂o, Ĉo and also

introduce the standard error signal

eot = yt − Ĉoξ̂t

= yt − SyoS
−1
oo ξ̂t

Note that eot, ξ̂t have an orthogonality property

ΣT
1 eotξ̂

T
t = 0
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Further Âo, B̂o obey the Euler equations

0 = ΣT
1 (ξ̂t+1 − (Âo, B̂o)

(

ξ̂t

eot

)

)(ξ̂T
t , eT

ot) (4.7)

⇒ Âo = S1oS
−1
oo , B̂o = SyeS

−1
eeo (4.8)

S10 =
1

T
ΣT

1 ξ̂t+1ξ̂
T
t

Syeo =
1

T
ΣT

1 yte
T
ot

Seeo =
1

T
ΣT

1 eote
T
ot

Now observe that

eot = yt − SyoS
−1
oo ξ̂t

= yt − S
1

2

yyM̄S
−

1

2

oo ξ̂t

= yt − S
1

2

yy(P̄⊥D̄⊥Q̄T
⊥ + P̄∗D̄∗Q̄

T
∗ )S

−
1

2

oo ξ̂t

= yt − Hξ̂t − F̂ Ĉξ̂t, by (4.3)

= et − Hξ̂t

H = S
1

2

yyP̄⊥D̄⊥Q̄T
⊥
S
−

1

2

oo

= S
1

2

yy(M̄ − P̄∗D̄∗Q̄
T
∗ )S

−
1

2

oo

= SyoS
−1
oo − F̂ Ĉ

Thus we have
(

ξ̂t

eot

)

=

(

I 0
−H I

)(

ξ̂t

et

)

(4.9)

Multiplying (4.7) on the RHS by
(

I

0
HT

I

)

and substituting

(4.9) inside the bracket yields

0 = ΣT
1 (ξ̂t+1 − (Âo, B̂o)(

I

−H

0

I
)( ξ̂t

et

)(ξ̂T
t , eT

t )

⇒ 0 = ΣT
1 (ξ̂t+1 − (Âo − B̂oH, B̂o)( ξ̂t

et

)(ξ̂T
t , eT

t )

From (4.6) we can thus read off

Â = Âo − B̂oH, B̂ = B̂o (4.10)

So the RRO equations are: F̂ , Ĉ in (4.2),Σ̂ in (4.5), Â, B̂

in (4.10); with Âo, B̂o given in (4.8). For completeness we

quote the known result

B̂o = Λ
1

2

∗ V T
∗ L−









Id

0
·
0









(4.11)

A proof is omitted due to its length.

C. RRG Model

As before we start with the state estimator ξ̂t.

Ĉ, Σ̂ .

We estimate C, Σ in the standard way by minimising

ΣT
1 ‖ yt − Cξ̂t ‖

2 leading to the Euler equation

0 = ΣT
1 (yt − Ĉξ̂t)ξ̂

T
t

⇒ Ĉ = Ĉo = SyoS
−1
oo (4.12)

In the appendix we show for completeness the known result

Ĉo = Γd×NLT
−V∗Λ

−
1

2

∗ (4.13)

Γ = first d × N block row of H

Continuing, if we introduce the residual as before eot =
yt − Ĉoξ̂t we have as before an orthogonality condition

ΣT
1 eotξ̂

T
t = 0

From this we obtain the estimator of the noise variance as

Σ̂ = Σ̂o = Seeo =
1

T
ΣT

1 eote
T
ot

=
1

T
ΣT

1 eoty
T
t

= Syy − ĈoS
T
yo

= Syy − SyoS
−1
oo ST

yo (4.14)

Â, B̂, Ĝ .

Next we estimate A,B, G by a classical RRR by solving

minA,B,GΣT
1 ‖ ξ̂t+1 − Aξ̂t − BGT eot ‖

2

Because of the orthogonality between ξ̂t, eot we will be able

to do the optimization over A and B, G separately.

Optimizing over A leads to

ΣT
1 (ξ̂t+1 − Âξ̂t − B̂ĜT eot)ξ̂

T
t = 0

and orthogonality yields

0 = ΣT
1 (ξ̂t+1 − Âξ̂t)ξ̂

T
t

⇒ Â = Âo = S1oS
−1
oo (4.15)

So far our estimators agree with the classical subspace esti-

mators. With Âo in hand we can reformulate the remaining

RRR problem by introducing

ut = ξ̂t+1 − Âoξ̂t

So the problem becomes

minB,GΣT
1 ‖ ut − BGT eot ‖

2

Again this is a classical RRR problem and we express the

solution compactly as before in terms of SVD.

We first use ut, eot to form

Suu =
1

T
ΣT

1 utu
T
t

Sue =
1

T
ΣT

1 ute
T
ot

and together with Seeo carry out the SVD

MT
n×d = S

−
1

2

uu SueS
−

1

2

eeo = Qn×nDn×dP
T
d×d

As before P, Q are orthogonal matrices and D contains

the ordered singular values. The number of these is q =
min(d, n). We keep the first k columns Q∗,n×k of Q; the

corresponding diagonalized singular values D∗,k×k of D;

and the corresponding first k rows P T
∗,k×d of P T .
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Choice of k.

As before we propose to use the criterion of [16]

FVr = −(T − 1)Σq
r+1ln(1 − D2

j ) − 2(d − r)(n − r)

The idea again is simply to plot FVr for a minimum in r.

We denote the minimizer as k. Again a Bayes type version is

easily obtained by multiplying the penalty term 2(d−r)(n−
r) by ln(T − 1).
Then we may take

B̂ = S
1

2

uuQ∗, Ĝ
T = D∗P

T
∗ S

−
1

2

eeo (4.16)

So the estimators are Ĉo in (4.13), Âo in (4.15),B̂, Ĝ in

(4.16),Σ̂ in (4.14).

With a little further calculation we can simplify things as

follows. We have

Suu =
1

T
ΣT

1 (ξ̂t+1 − Âoξ̂t)ξ̂
T
t+1

= S11 − ÂoS
T
1o

= S11 − S1oS
−1
oo ST

1o

S11 =
1

T
ΣT

1 ξ̂t+1ξ̂
T
t+1

Continuing

Sue =
1

T
ΣT

1 (ξ̂t+1 − Âoξ̂t)e
T
ot

=
1

T
ΣT

1 ξ̂t+1e
T
ot

=
1

T
ΣT

1 ξ̂t+1(yt − Ĉoξ̂t)
T

= S1y − S1oS
−1
oo ST

yo

Remarks.

(i) We have indicated along the way some computational

simplifications in (4.1,4.13,4.11).

(ii) It is well known [15] that the Q-R algorithm provides a

numerically compact and reliable way to carry out many of

the computations associated with subspace methods. Details

of this kind will be provided elsewhere.

V. Conclusion

In this paper we have provided, for the first time, a

formulation of reduced rank time series models in state space

terms. This has allowed an extension of these models from

VAR to VARMA. The characterization turns out to be very

simple involving either a rank reduced observation matrix

(RRO) or a rank reduced gain matrix (RRG). We have devel-

oped two new asociated subpsace fitting algorithms including

methods for choice of minimal state space dimension n as

well as for reduction rank k.

VI. Appendix

Proof of (4.1).

Soo =
1

T
ΣT+m+1

m+1 ξ̂tξ̂
T
t

= Λ
1

2

∗ V T
∗

L−

1

T
ΣT+m+1

m+1
y−,ty

T
−,tL

T
−
V∗Λ

1

2

∗

= Λ
1

2

∗ V T
∗ L−

1

T
Y−Y T

− LT
−V∗Λ

1

2

∗

= Λ
1

2

∗ V T
∗

L−Σ−LT
−

V∗Λ
1

2

∗

= Λ
1

2

∗ V T
∗

V∗Λ
1

2

∗

⇒ Soo = Λ∗

Proof of (4.13).

Ĉo =
1

T
ΣT+m+1

m+1 ytξ̂
T
t S−1

oo

=
1

T
ΣT+m+1

m+1 yty
T
−,tK

T Λ−1
∗

=
1

T
ΣT+m+1

m+1 yty
T
−,tL

T
−
V∗Λ

−
1

2

∗

And we now observe that this is (4.13)
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