
  

  

Abstract—In this work, we provide necessary and sufficient 
Lyapunov-like conditions for the existence of a stabilizing 
feedback law for uncertain control systems described by 
Retarded Functional Differential Equations. A methodology for 
the construction of Control Lyapunov Functionals for 
uncertain triangular nonlinear time-delay systems is provided. 
Moreover, the method leads to the explicit design of robust 
nonlinear controllers for the class of time-delay nonlinear 
systems with a triangular structure. 

I. INTRODUCTION 
HE purpose of this paper is to provide a methodology 
for the construction of Control Lyapunov Functionals 
for uncertain nonlinear systems described by Retarded 

Functional Differential Equations of the form: 
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where xtTr )(  we denote the “ r -history” of x  at time t , 
i.e., ]0,[;)(:)( rtxxtTr −∈+= θθ . Systems of the form (1) 
have been studied in [2,3,4,7,8,9,10]. More specifically, in 
[3,4] the global stabilization problem for autonomous and 
disturbance-free systems of the form (1) was studied using 
Control Lyapunov Razumikhin Functions, while in [8] 
stabilization with delayed feedbacks was studied under 
certain growth conditions using Lyapunov functions (see 
also [7]). In [9] the semiglobal stabilization problem for 
partially linear delay systems was studied and backstepping 
methods based on Lyapunov functionals under certain 
conditions were provided in [2,10] (see also [11]).  
 
   In the present work it is shown that the construction of a 
stabilizing feedback law for (1) proceeds in parallel with the 
construction of a State Robust Control Lyapunov Functional. 
Moreover, sufficient conditions for the existence and design 
of a stabilizing feedback law ))(()( txktu = , which is 
independent of the delay are given. 
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The notion of the State Robust Control Lyapunov Functional 
(SRCLF) used in the present work generalizes the notion of 
the Robust Control Lyapunov Function introduced in [1] for 
finite-dimensional systems. More specifically, the proposed 
notion of the SRCLF can be applied to uncertain systems 
described by RFDEs of the form: 
 

UtuDtdtx

tttuxtTtdtftx
n

r

∈∈ℜ∈

≥=

)(,)(,)(

,))(,)(),(,()( 0                    (2) 

 
where 0>r  is a constant, 

nn UrCDf ℜ→×ℜ−××ℜ+ );]0,([: 0  satisfies 

0)0,0,,( =dtf  for all Ddt ×ℜ∈ +),( , lD ℜ⊆  is a non-

empty compact set, mU ℜ⊆  is a closed convex set with 
U∈0  and ]0,[;)()( rtxxtTr −∈+= θθ . It is shown that the 

existence of a State Robust Control Lyapunov Functional is 
a necessary and sufficient condition for the existence of a 
stabilizing feedback for (2). 
  
Notations Throughout this paper we adopt the following 
notations:  
∗  Let nA ℜ⊆  be a set. By  );(0 ΩAC , we denote the class 

of continuous functions on A , which take values in Ω . 
By );( ΩAC k , where 1≥k  is an integer, we denote the 
class of differentiable functions on A  with continuous 
derivatives up to order k , which take values in Ω . By 

);( Ω∞ AC , we denote the class of differentiable functions 
on A  having continuous derivatives of all orders, which 
take values in Ω , i.e., );();(

1
Ω∩=Ω

≥

∞ ACAC k

k
. 

∗  A continuous mapping mxzkxzBA ℜ∈→∋× ),(),( , 
where X⊆B , Y⊆A  and YX,  are normed linear spaces, is 
called completely locally Lipschitz with respect to Bx ∈  
if for every closed and bounded set BAS ×⊆  it holds that 
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the normed linear spaces YX,  are finite-dimensional 
spaces then we simply say that the continuous mapping 

mxzkxzBA ℜ∈→∋× ),(),(  is locally Lipschitz with respect 
to Bx ∈  if for every compact set BAS ×⊆  it holds that 
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∗  For a vector nx ℜ∈  we denote by x  its usual Euclidean 

norm and by x′  its transpose. For )];0,([0 nrCx ℜ−∈  
we define )(max:

]0,[
θ

θ
xx

rr −∈
= . 

∗  +ℜ  denotes the set of non-negative real numbers. 
∗  E  denotes the class of non-negative 0C  functions 

++ ℜ→ℜ:μ , for which it holds: +∞<∫
+∞

0

)( dttμ  and 

0)(lim =
+∞→

t
t

μ . 

∗  We denote by +K  the class of positive 0C  functions 
defined on +ℜ . We say that a function ++ ℜ→ℜ:ρ  is 
positive definite if 0)0( =ρ  and 0)( >sρ  for all 0>s . 
We say that a positive definite, increasing and continuous 
function ++ ℜ→ℜ:ρ  is of class ∞K  if 

+∞=
+∞→

)(lim s
s

ρ .  

∗  Let lD ℜ⊆  be a non-empty set. By DM  we denote the 
class of all Lebesgue measurable and locally essentially 
bounded mappings Dd →ℜ+: . 

∗  Let nbrax ℜ→− ),[:  be a continuous mapping with 
−∞>> ab  and 0>r . By xtTr )(  we denote the “ r -

history” of x  at time ),[ bat ∈ , i.e., 
]0,[;)(:)( rtxxtTr −∈+= θθ . Notice that 

)];0,([)( 0 n
r rCxtT ℜ−∈ .  

 
 

II. CONTROL LYAPUNOV FUNCTIONALS 
 
We consider control systems of the form (2) under the 
following hypotheses: 
 
(S1) The mapping ),,,(),,( uxdtfdux →  is continuous 
for each fixed 0≥t  and such that for every bounded 

+ℜ⊆I  and for every bounded UrCS n ×ℜ−⊂ );]0,([0 , 
there exists a constant 0≥L  such that: 
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(S2) For every bounded UrCD n ×ℜ−××ℜ⊂Ω + );]0,([0  

the image set nf ℜ⊂Ω)(  is bounded. 
 
(S3) There exists a countable set +ℜ⊂A , which is either 
finite or },...,1;{ ∞== ktA k  with 01 >>+ kk tt  for all 

,...2,1=k  and +∞=ktlim , such that mapping 

),,,()];0,([)\(),,,( 0 uxdtfDUrCAduxt n →××ℜ−×ℜ∈ +

 is continuous. Moreover, for each fixed 
DUrCduxt n ××ℜ−×ℜ∈ + )];0,([),,,( 0

0 , we have 
),,,(),,,(lim 0

0

uxdtfuxdtf
tt

=
+→

. 

(S4) For every 0>ε , +ℜ∈t , there exists 0),(: >= tεδδ  
such that 
 

{ } εδτττ <<++−∈∈ℜ∈ + uxtUuDduxdf r,,,;),,,(sup
. 

 
(S5) The mapping ),,,( uxdtfu →  is Lipschitz on 

bounded sets, in the sense that for every bounded +ℜ⊆I  
and for every bounded UrCS n ×ℜ−⊂ );]0,([0 , there 
exists a constant 0≥UL  such that: 
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(S6) The set lD ℜ⊂  is compact and mU ℜ⊆  is a closed 
convex set. 
 
    Let ( )nrCx ℜ−∈ ;]0,[0  and 

( ) ℜ→ℜ−×ℜ+ nrCV ;]0,[: 0  be a locally bounded 

functional. By );( vxEh , where rh <≤0  and nv ℜ∈  we 
denote the following operator:  
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                                                  (4) 
 
An important class of functionals is presented next (see [5] 
for more details). 
 
Definition 2.1: We say that a continuous functional 

++ ℜ→ℜ−×ℜ )];0,([: 0 nrCV , is “almost Lipschitz on 
bounded sets”, if there exist non-decreasing functions 

++ ℜ→ℜ:VL , ++ ℜ→ℜ:P , ),1[: +∞→ℜ+G  such that 
for all 0≥R , the following properties hold:  
 
(P1) For every { }RxrCxyx r

n ≤ℜ−∈∈ ;)];0,([, 0 , it 
holds that: 

 

rV xyRLxtVytV −≤− )(),(),( , ],0[ Rt ∈∀  
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(i.e., the mapping 
++ ℜ∈→∋ℜ−×ℜ ),(),()];0,([0 xtVxtrC n  is completely 

locally Lipschitz with respect to )];0,([0 nrCx ℜ−∈ ) 
 
(P2) For every absolutely continuous function 

nrx ℜ→− ]0,[:  with Rx r ≤  and essentially bounded 
derivative, it holds that: 
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The reader should notice that for functionals 

++ ℜ→ℜ−×ℜ )];0,([: 0 nrCV , which are almost Lipschitz 
on bounded sets we obtain the following simplification for 
the derivative );,(0 vxtV  defined by (4) for all 

( ) nnrCvxt ℜ×ℜ−×ℜ∈ + ;]0,[),,( 0 : 
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   We next give the definition of the Output Robust Control 
Lyapunov Functional for system (2).  
 
Definition 2.2: We say that (2) admits a State Robust 
Control Lyapunov Functional (SRCLF) if there exists an 
almost Lipschitz on bounded sets functional 

++ ℜ→ℜ−×ℜ )];0,([: 0 nrCV  (called the Output Control 
Lyapunov Functional), which satisfies the following 
properties: 
 
(i) There exist functions ∞∈ Kaa 21, , +∈ Kβ  such that the 
following inequality holds for all 

( )nrCxt ℜ−×ℜ∈ + ;]0,[),( 0  
 

( ) ( )rr xtaxtVxa )(),( 21 β≤≤                  (5) 
 
(ii) There exists a function }{: +∞∪ℜ→×ℜ×ℜΨ + Uq  
with 0)0,0,( =Ψ t  for all 0≥t  such that for each Uu ∈  the 
mapping ),,(),( utt ϕϕ Ψ→  is upper semi-continuous, a 
function E∈q , a continuous mapping 

pn xtxtrC ℜ∈Φ→∋ℜ−×ℜ+ ),(),();]0,([0  being 
completely locally Lipschitz with respect to 

);]0,([0 nrCx ℜ−∈  with 0)0,( =Φ t  for all 0≥t  and a 0C  

positive definite function ++ ℜ→ℜ:ρ such that the 
following inequality holds:  
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p
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Moreover, for every finite set Uuuu N ⊂},...,,{ 21  and for 

every ]1,0[∈iλ  ( Ni ,...,1= ) with 1
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i
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If in addition to the above there exist ∞∈ Ka , +∈ Kγ  such 

that for every qt ℜ×ℜ∈ +),( ϕ  there exists Uu ∈  with 
( )ϕγ )(tau ≤  such that 

 
)(),,( tqut ≤Ψ ϕ                              (8) 

 
then we say that ++ ℜ→ℜ−×ℜ )];0,([: 0 nrCV   satisfies 
the “small-control” property.  
 
 
The feedback stabilization problem for (2) is the problem of 
existence/design of a continuous mapping  

UxtkxtrC n ∈→∋ℜ−×ℜ+ ),(),();]0,([0  being 
completely locally Lipschitz with respect to 

);]0,([0 nrCx ℜ−∈  with 0)0,( =tk  for all 0≥t , such that 

);]0,([0 0 nrC ℜ−∈  is Robustly Globally Asymptotically 
Stable (RGAS) for the closed-loop system (2) with  
 

))(,( xtTtku r=                               (9)  
 
in the sense that the following properties hold for the 
solution ),,,( 00 dxttx  of the closed-loop system (2) with (9) 

initiated from  );]0,([0
0

nrCx ℜ−∈  at  time 00 ≥t  and 
corresponding to input DMd ∈ : 
 
 
 
P1(Stability)  For every 0>ε , 0≥T  it holds that 
 

{ } +∞<∈∈≤≥ Drr MdTtxttdxttx ,],0[,,;),,,(sup 00000 ε

 
  
and there exists a ( ) 0,: >= Tεδδ  such that 
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00000 ,),,,(],0[, ttdxttxTtx rr ≥∀≤⇒∈≤ εδ , DMd ∈∀  
 
P2(Attractivity on bounded sets of initial data) For every 

0>ε , 0≥T  and 0≥R , there exists a ( ) 0,,: ≥= TRεττ , 
such that 

τε +≥∀≤⇒≥≤ 00000 ,),,,(0, ttdxttxtRx rr , DMd ∈∀  
 
Moreover, if δ  and τ  involved in properties P1 and P2 
above are independent of 0≥T  and  
 

{ } +∞<∈≥≤≥ Drr Mdtxttdxttx ,0,,;),,,(sup 00000 ε  
 
then we say that );]0,([0 0 nrC ℜ−∈  is Uniformly Robustly 
Globally Asymptotically Stable (URGAS) for the closed-
loop system (2) with (9). 
 
We next present results for systems of the form (2) (see [6]) 
which show that the existence of a SRCLF is a necessary 
and sufficient condition for the existence of a continuous 
mapping  UxtkxtrC n ∈→∋ℜ−×ℜ+ ),(),();]0,([0  being 
completely locally Lipschitz with respect to 

);]0,([0 nrCx ℜ−∈  with 0)0,( =tk  for all 0≥t , such that 

);]0,([0 0 nrC ℜ−∈  is (Uniformly) Robustly Globally 
Asymptotically Stable ((U)RGAS) for the closed-loop 
system (2) with (9).  
 
 
Theorem 2.3: Consider system (2) under hypotheses (S1-6). 
The following statements are equivalent: 
 
(a) There exists a continuous mapping  

UxtkxtrC n ∈→∋ℜ−×ℜ+ ),(),();]0,([0  being 
completely locally Lipschitz with respect to 

);]0,([0 nrCx ℜ−∈  with 0)0,( =tk  for all 0≥t , such 

that the );]0,([0 0 nrC ℜ−∈  is RGAS for closed-loop 
system (2) with ))(,( xtTtku r= .  

 
(b) System (2) admits a SRCLF, which satisfies the small 

control property with 0)( ≡tq . 
 
(c) System (2) admits a SRCLF. 
 
 
Theorem 2.4: Consider system (2) under hypotheses (S1-6). 
The following statements are equivalent: 
 
(a) System (2) admits a SRCLF, which satisfies the small-
control property and inequalities (5), (8) with 1)( ≡tβ , 

0)( ≡tq . Moreover, there exist continuous mappings 
+∈ Kη , UtKtA ∈→∋ ),(),( ϕϕ  where 

)}(4:{}{
0

ttA p

t
ηϕϕ <ℜ∈×∪=

≥
 being locally Lipschitz 

with respect to ϕ  with 0)0,( =tK  for all 0≥t  and such 
that  

0))),(,(),,(,( ≤ΦΦΨ xttKxtt , 

for all )];0,([),( 0 nrCxt ℜ−×ℜ∈ +  
with )(2),( txt η≤Φ                            (10) 

 
where pn

p rC ℜ→ℜ−×ℜ′ΦΦ=Φ + );]0,([:),...,( 0
1  and 

}{: +∞∪ℜ→×ℜ×ℜΨ + Up  are the mappings involved in 
property (ii) of Definition 2.2.  
 
(b) There exists a continuous mapping 

UxtkxtrC n ∈→∋ℜ−×ℜ+ ),(),();]0,([0  being completely 

locally Lipschitz with respect to );]0,([0 nrCx ℜ−∈  with 

0)0,( =tk  for all 0≥t , such that );]0,([0 0 nrC ℜ−∈  is 
URGAS for the closed-loop system (2) with ))(,( xtTtku r= .  
 
 

III. APPLICATIONS TO TRIANGULAR TIME-DELAY 
CONTROL SYSTEMS 

 
Our main result concerning triangular time-delay control 
systems of the form (1) is stated next. It must be compared 
to Theorem 5.1 in [1], which deals with the triangular finite-
dimensional case. 
 
Theorem 3.1: Consider system (1), where 0>r , lD ℜ⊂  
is a compact set, the mappings ℜ→ℜ−××ℜ+ )];0,([: 0 i

i rCDf , 

ℜ→ℜ−××ℜ+ )];0,([: 0 i
i rCDg  ( ni ,...,1= ) are continuous 

with 0)0,,( =dtf i  for all Ddt ×ℜ∈ +),(  and each 

ℜ→ℜ−××ℜ+ )];0,([: 0 i
i rCDg  ( ni ,...,1= ) is completely 

locally Lipschitz with respect to )];0,([0 irCx ℜ−∈ . 

Suppose that there exists a function )),0(;( +∞ℜ∈ +∞Cϕ  
being non-decreasing, such that for every ni ,...,1= , it holds 
that: 

( ) ( )ri
r

xxdtg
x

ϕ
ϕ

≤≤ ),,(1 , 

DrCdxt i ×ℜ−×ℜ∈∀ + )];0,([),,( 0             (11) 
 
Moreover, suppose that for every ni ,...,1= , it holds that 
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for every bounded )];0,([0 irCS ℜ−⊂            (12) 
 
Then for every 0>σ  there exist functions 

)),0(;( +∞ℜ∈ ∞ i
i Cμ , );( ℜℜ∈ ∞ i

i Ck  ( ni ,...,1= ) with 

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC07.6

5315



  

 
11111 )(:)( ξξμξ −=k                             (13) 

 
( )),...,(),...,(:),...,( 11111 −−−−= jjjjjjj kk ξξξξξμξξ , 

 nj ,...,2=                             (14) 
 
such that the following functional: 
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is a State Robust Control Lyapunov Functional (SRCLF) for 
(1), which satisfies the “small-control” property. Moreover, 
the closed-loop system (1) with ))(()( txktu n=  is URGAS. 

More specifically, the inequality )(2);(0 xVvxV σ−≤  holds 

for all DrCdxt n ×ℜ−×ℜ∈ + )];0,([),,( 0  with  
 

n
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Remark 3.2: The reader should notice that the feedback law 

))(()( txktu n=  is delay-independent. The proof of Theorem 

3.1 shows that the functions )),0(;( +∞ℜ∈ ∞ i
i Cμ  

( ni ,...,1= ) are obtained by a procedure similar to the 
backstepping procedure used for finite-dimensional 
triangular control systems. Consequently, as in the finite-
dimensional case, the feedback design and the construction 
of the State Robust Control Lyapunov Functional proceed in 
parallel.  
 
    The algorithm for the construction of the functions 

)),0(;( +∞ℜ∈ ∞ i
i Cμ , );( ℜℜ∈ ∞ i

i Ck  ( ni ,...,1= ) is 
described next. Notice that inequality (12) in conjunction 
with the fact that 0)0,,( =dtf i  for all Ddt ×ℜ∈ +),(  
( ni ,...,1= ) implies the existence of a non-decreasing 
function )),0(;( +∞ℜ∈ +∞CL  such that for every ni ,...,1= , 
it holds: 

( ) rri xxLxdtf ≤),,( , 

DrCdxt i ×ℜ−×ℜ∈∀ + )];0,([),,( 0          (16) 
 
Let 0>σ  be a given number. We define the functions 

)),0(;( +∞ℜ∈ ∞ i
i Cμ , )),0(;( +∞ℜ∈ +∞Ciγ , )),0(;( +∞ℜ∈ +∞Cbi  

( ni ,...,1= ) using the following algorithm: 
 
Step 1=i : We define: 
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where  
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Step 2≥i : Based on the knowledge of the functions 
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( 1,...,1 −= ij ) we will define the functions 

)),0(;( +∞ℜ∈ ∞ i
i Cμ , )),0(;( +∞ℜ∈ +∞Ciγ , )),0(;( +∞ℜ∈ +∞Cbi . 

First define  
 

( )),...,(...)(1),...,(

:),...,(

1111

1

ijjj

jj

k ξξμξμξξ

ξξδ

+++∇

=
, 

 1,...,1 −= ij                          (20) 
 
and 
 

( )( ) ( )
( )( ))exp()exp(

)exp()exp()exp()exp(:)(
risBris

risBrisBrisLris

i

iii

σσϕ
σσσσγ

+
=

 

      (21) 
 

( )( ))exp()exp(
1:)(

risBris
sb

i
i σσϕ

=                (22) 

 
where )),0(;( +∞ℜ∈ +∞CBi  is a non-decreasing function 
that satisfies: 
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for all 0≥s                           (23) 
 
Let functions )),0(;( +∞ℜ∈ +∞Cjρ  ( ij ,...,1= )  be such 

that the following inequalities hold for all 0≥′≥ ss : 
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for the case 2=i , where  
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for the case 2>i , where 
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The proof of Theorem 3.1 is based on the following lemma. 
Its proof is omitted due to space limitations. The reader 
should notice that Lemma 3.3 in conjunction with definition 
(15) of the SRCLF for system (1) indicate one complication 
frequently encountered in the study of infinite-dimensional 
systems: although the differential equations (1) are affine in 
the control input ℜ∈u , the derivative );(0 vxV , where 
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is not affine in the control input ℜ∈u . 
 
Lemma 3.3: Let );(1 +ℜℜ∈ nCQ , 0>σ  and consider the 

functional +ℜ→ℜ− )];0,([: 0 nrCV  defined by: 
 

( ) ))((2expmax:)(
]0,[

θθσ
θ

xQxV
r−∈

=                   (29) 

 
The functional +ℜ→ℜ− )];0,([: 0 nrCV  defined by (29), is 

Lipschitz on bounded sets of )];0,([0 nrC ℜ−  and satisfies:  
 

)(2);(0 xVvxV σ−≤  

for all nnrCvx ℜ×ℜ−∈ )];0,([),( 0  
with )())0(( xVxQ <                        (30) 

 
{ }vxQxVvxV ))0((,)(2max);(0 ∇−≤ σ  

for all nnrCvx ℜ×ℜ−∈ )];0,([),( 0  
with )())0(( xVxQ =                (31) 

 

IV. CONCLUSIONS 
 
The case of uncertain control systems described by RFDEs 
of the form (2) is studied. It is shown that the existence of a 
SRCLF is a necessary and sufficient condition for the 
existence of a stabilizing feedback law. Special results are 
developed for the triangular case (1) of control systems 
described by RFDEs. It is shown that the construction of a 
stabilizing feedback law for (1) proceeds in parallel with the 
construction of a State Robust Control Lyapunov Functional. 
Moreover, sufficient conditions for the existence and design 
of a delay-free stabilizing feedback law are given. 
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