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Abstract— This paper presents the design and performance
evaluation of a continuous-time Kalman filter with discrete-time
delayed measurements for a class of time-varying kinematic
systems with application to the estimation of linear motion
quantities, in three dimensions, of mobile platforms. The design
is based on the Kalman filter solution for an equivalent linear
time invariant realization and allows for the natural use of
frequency weights to explicitly achieve adequate disturbance
rejection and measurement noise attenuation on the state
estimates. Moreover, the proposed solution is optimal with
respect to all signals assuming exact angular measurements.
Two applications in the field of ocean robotics are presented
and simulation results are included that illustrate the achievable
performance in the presence of both extreme environmental
disturbances and realistic measurements, with noise and delays.

I. INTRODUCTION

The design of Navigation and Positioning Systems plays
a key role in the development of a large variety of mobile
platforms. Indeed, the quality of the navigation data is a
fundamental requirement in many data acquisition applica-
tions and it is also necessary for control purposes, where
other quantities such as the attitude of the vehicle and/or the
linear and angular velocities are also often required. This
paper presents the design and performance evaluation of a
filter with discrete-time delayed measurements for a class
of kinematic systems with application to the estimation of
linear motion quantities in Integrated Navigation Systems for
mobile platforms and, in particular, underwater vehicles.

To tackle this class of problems several approaches have
been proposed in the literature. In [1] a GES nonlinear
control law is presented for ships, in two-dimensions, which
includes a nonlinear observer to provide the state of the
vehicle. This observer relies on the vehicle dynamics but, as
discussed in [2], it does not apply to unstable ships. In [2] a
solution to an extended class of ships is proposed requiring
only stable surge dynamics. In [3] a globally exponentially
stable (GES) observer for ships (in two-dimensions) that
includes features such as wave filtering and bias estimation
is presented and in [4] an extension to this result with
adaptive wave filtering is available. An alternative filter was
proposed in [5] where the problem of estimating the velocity
and position of an autonomous vehicle in three-dimensions
was solved by resorting to special bilinear time-varying
complementary filters. More recently, a pair of coworking
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tuto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
{pbatista,cjs,pjcro}@isr.ist.utl.pt

nonlinear Luenberger GES observers for autnomous under-
water vehicles (AUVs), in 3D, was proposed in [6], which
also elaborates on the destabilizing Coriolis and centripetal
forces and moments. However, this last approach assumes,
among others, limited pitch angles. A more complete survey
on the subject of underwater vehicle navigation can be found
in [7]. General drawbacks of the above-mentioned results
include the absence of systematic tuning procedures and the
inherent limitations of the vehicle dynamic models, which
are seldom known in full detail and may be subject to
variations over time. Additionally, it is often assumed to have
available continuous measurements, while that is not true for
all sensors, particularly positioning sensors.

The main contribution of this paper is the design of a
continuous-time Kalman filter with discrete-time delayed
measurements for a class of time-varying kinematic systems
with application to the estimation of linear motion quantities
(position, linear velocity, ocean current, and acceleration
of gravity), in three dimensions, in underwater robotics.
At the core of the proposed methodology there is a time-
varying orthogonal Lyapunov transformation that renders the
dynamics of the kinematic system linear time invariant (LTI).
This allows for the derivation of an equivalent continuous-
time Kalman filter with discrete-time delayed measurements
for the LTI realization, which is then converted back to the
original space, yielding the final optimal filtering solution for
the time-varying system. Frequency weights may be included
in the design to explicitly achieve adequate disturbance
rejection and measurement noise attenuation on the state
estimates. Moreover, a filtering limit solution is presented
which does not require the solution of a Lyapunov matrix
differential equation each time a new measurement arrives.
This is of great importance since it lessens the computational
cost and allows for a straightforward digital implementation
of the filter. Applications of the proposed filtering design
technique are presented to estimate linear motion quantities
in Integrated Navigation Systems for underwater vehicles.
The vehicle tri-dimensional motion is described by pure
kinematic models. This class of models, expressed in the
inertial coordinate system, has been widely used by the
Navigation community, see [8] and the references therein.
The present solution departs from previous approaches as it
considers the rigid-body kinematics expressed in body-fixed
coordinates, which allows for the derivations presented in
the paper. Moreover, the proposed solution is optimal with
respect to all signals assuming exact angular measurements.
This paper builds on previous work by the authors that can
be found in [9] and [10] where Kalman and H∞ filters
were derived for continuous-time kinematic systems with
continuous-time measurements.

The paper is organized as follows. The class of dynamic
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systems and the filter design are introduced in Section II,
where a filtering limit solution and practical considerations
are also refered. Two different applications are presented
in Sections III and IV and simulation results are included
that illustrate the achievable performance in the presence
of both extreme environmental disturbances and realistic
measurement noise. Finally, Section V summarizes the main
contributions and conclusions of the paper.

Throughout the paper the symbol 0n×m denotes an n×m
matrix of zeros, In an identity matrix with dimension n×n,
and diag(A1, . . . ,An) a block diagonal matrix. When the
dimensions are omitted the matrices are assumed of appro-
priate dimensions.

II. FILTER DESIGN

A. System Dynamics

Consider the class of dynamic systems


η̇p(t)=Apηp(t)−MS[ω(t)]ηp(t)+Bp(t)τ (t)+d(t)
ψ(t) = Cpηp(t) + n(t) , (1)

where ηp(t) =
[

ηT
1 (t) . . . ηT

N
(t)

]T
, with ηi(t) ∈ Xi ⊆

R
3, i = 1, . . . , N , is the system state, ψ(t) ∈ R

3 is
the system output, τ (t) is a deterministic system input,
d(t) denotes the system disturbances input, n(t) denotes
a disturbance that affects the output of the system, not
necessarily measurement noise, ω(t) ∈ R

3 is a continuous
bounded function of t, MS [ω(t)] is the block diagonal
matrix MS [ω(t)] := diag (S [ω(t)] , . . . , S [ω(t)]), where
S [ω(t)] is a skew-symmetric matrix that verifies S (a)b =
a × b, with × denoting the cross product, and that satisfies

Ṙ(t) = R(t)S [ω(t)], where R(t) ∈ SO(3), i.e., R(t) is a
proper rotation matrix,
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,

γi ∈ R, γi 6= 0, i = 1, . . . , N − 1, and Cp = [I3 0 . . . 0].
For design purposes consider that the disturbance input
d(t) is given by d(t) := TT (t)Lpd(t), where T(t) :=
diag (R(t), . . . ,R(t)) and d(t) is the output of a stable LTI
system Wd driven by zero-mean, unit intensity white noise.
Similarly, suppose that the disturbance that affects the output
of the system is given by n(t) := RT (t)Mpn(t), where n(t)
is the output of a stable LTI system Wn also driven by zero-
mean, unit intensity white noise. Further assume that Wn is a
stricly proper system. This is a mild assumption as in nature
there are no processes with infinite energy. Finally, suppose
that the output of the system is sampled at constant rate and
that the measurements arrive with time-varying delays, as
given by

ψ
d
k = ψ

d
“

t
d
k

”

= ψ (tk) + R
T (tk)nd (tk) , k ∈ N,

where nd is discrete-time zero-mean white noise with covari-
ance NdI, td

k
denotes the instant of arrival of the measure-

ment k, and tk denotes the sampling instant of measurement
k, given by tk = kT, k ∈ N, where T denotes the
sampling period. A temporal diagram that illustrates the
output sampling is depicted in Fig. 1. It is now clear why
Wn must be a strictly proper system, as if that was not the
case, ψ(t) would contain white noise components that would

t

TT

tk tk+1 tk+2td
k

td
k+1 td

k+2

ψd
k

ψd
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ψd
k+2
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Fig. 1. Temporal Diagram

Ap

Bp(t) Cp

Lp

Mp

MS(ω)

TT(t) RT(t)

RT (tk)

Wd

Wn

Time
Delay

ψτ ηp

wd

wn

nd

nd

ψd
k

System Dynamics

Sensor Model

Disturbance Model

∫ +

++

+

+

+

+
+

−

Fig. 2. Filter design setup

lead to a discrete sequence of measurements with infinite
variance. Notice that the signal ni

d (tk) := RT (tk)nd (tk) is
also zero-mean white noise and its covariance is the same of
nd (tk). Thus, from the practical point of view, the rotation
RT (tk) has no significant impact. However, it does simplify
the final filter equations. The overall design setup is depicted

in Fig. 2, where w =
[

wT
d wT

n

]T
is zero-mean, unit intensity

white noise.
Let xd(t) and xn(t) denote the internal states of state

space realizations (Ad,Bd,Cd,Dd) and (An,Bn,Cn,0)
of Wd and Wn, respectively. Then, the augmented system
dynamics can be written as



η̇(t) = AAA(t)η(t) +BBBp(t)τ (t) +BBB(t)w(t)
ψd

k = CCC (tk)η (tk) + RT (tk)nd (tk) , k ∈ N
, (2)

where η(t) :=
[

ηT
p(t)x

T
d xT

n

]T
,

AAA(t) =

"

Ap−MS(ω(t)) TT (t)LpCd 0
0 Ad 0
0 0 An

#

,

BBBp(t) =

"

Bp(t)
0
0

#

, BBB(t) =

"

TT (t)LpCd 0
Bd 0
0 Bn

#

,

and CCC(t) =
[

Cp |0 |RT (t)MpCn

]

.

B. Filter Equations

In order to derive the optimal Kalman filter, consider
the Lyapunov coordinate transformation proposed in [9] and
define

x(t) := Tc(t)η(t), (3)

where Tc(t) := diag (T(t), I, I). Define also an equivalent
output as

y
d
k = R (tk)ψd

k (4)

Then, the dynamics of the system expressed in this new
coordinate space can be written as



ẋ(t) = Ax(t) + Bw(t) + Tc(t)BBBp(t)τ (t)
yd

k = Cx(tk) + nd (tk) , k ∈ N
, (5)
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where

A :=

"

Ap LpCd 0
0 Ad 0
0 0 An

#

, B :=

"

LpDd 0
Bd 0
0 Bn

#

,

and C := R (tk)CCC (tk)T
T
c (tk) = [Cp |0 |MpCn]. The

advantage of using these coordinate transformations is that
the state dynamics become linear time invariant in what
concerns the dependence on the state and the noise. The
deterministic input is simply canceled out in the filter design.

The Kalman filter for the continuous-discrete system (5)
is given by

8

>

<

>

:

˙̂x(t) = Ax̂(t) + Tc(t)BBBp(t)τ (t), td
k ≤ t < td

k+1

x̂
`

td
k

´

= x̂
“

td
k

−

”

+ Φ
`

td
k, tk

´

K (tk)
ˆ

y
`

td
k

´

−Cx̂(tk)
˜

x̂ (t0) = x̂0 = Tc(t0) η̂0

,

where td0 = t0, η̂0 is the initial state estimate, Φ
(

td
k
, tk

)

=

eA(td

k
−tk) is the transition matrix, and K (tk) is the Kalman

gain matrix, given by

K (tk) =
1

Nd

Pc(tk)CT
,

where Pc(t) denotes the covariance of the error of the esti-
mate of the state at time t assuming there are no measurement
delays, whose dynamics are given by



Ṗc(t)=APc(t)+Pc(t)A
T +BBT , tk−1≤ t < tk, k∈N

Pc (t0)=Pc0 = Tc (t0)PPPc0T
T
c (t0)

,

where PPPc0 = PPP0 ≻ 0 is the initial covariance matrix and the
discrete update at time tk is given by

Pc (tk) = Pc

`

t
−

k

´

−Pc

`

t
−

k

´

C
T

h

CPc

`

t
−

k

´

C
T + NdI

i

−1

CPc

`

t
−

k

´

. (6)

The transition matrix simply propagates the discrete update
to compensate for the measurements delays.

The filter equations in the original coordinate space can
be recovered by inverting the coordinate transformations (3)
and (4), which gives

8

>

<

>

:

˙̂η(t) = AAA(t)η̂(t) +BBBp(t)τ (t), td
k−1 ≤ t < td

k, k∈ N

η̂
`

td
k

´

= η̂
“

td
k

−

”

+Φ
`

td
k, tk

´

KKK (tk)
ˆ

ψd
k−CCC (tk) η̂(tk)

˜

η̂ (t0) = η̂0

, (7)

where Φ
(

td
k
, tk

)

denotes the transition matrix associated with
AAA(t), that can be written as

Φ
“

t
d
k, tk

”

= T
T
c

“

t
d
k

”

Φ
“

t
d
k, tk

”

Tc (tk) ,

and KKK (tk) is the Kalman gain matrix, given by

KKK (tk) = PPPc (tk)CCCT (tk) , (8)

where PPPc (t) denotes the covariance matrix of the error of
the estimate of η at time t if there were no measurement
delays, which can be expressed as

PPPc (t) =
1

Nd

T
T
c (t)Pc(t)Tc (t) . (9)

The following theorem summarizes the main result of this
section.

Theorem 1: Consider the generalized system dynamics

as depicted in Fig. 2, where w =
[

wT
d wT

n

]T
is zero-

mean, unit intensity, continuous-time white noise and nd is
zero-mean, discrete-time white noise, with covariance matrix
NdI. Assume that η (t0), w(t) and nd (tk) are mutually

uncorrelated for all time. Let td0 = t0, η̂0 be the initial state
estimate and PPP0 the initial error covariance matrix. Then, the
optimal Kalman filter is given by (7) and the error covariance
matrix PPP(t) can be expressed as

PPP(t) = T
T
c (t)P(t)Tc(t) (10)

where P(t) satisfies


Ṗ(t)=AP(t)+P(t)AT +BBT, td
k−1 ≤ t < td

k, k∈N

P
`

td
0

´

=P0

, (11)

and the discrete update is given by the propagation of Pc (tk),
which can be written as

P
“

t
d
k

”

= P
“

t
d
k

−

”

−Φ
“

t
d
k, tk

”

P (tk)CT

h

CP (tk)CT+ I
i

−1

CP (tk)ΦT
“

t
d
k, tk

”

, k∈N.(12)

Proof: The Kalman filter dynamics (7) are standard,
where Φ

(

td
k
, tk

)

accounts for the correction due to the
measurement delays. To show that the Kalman gain is given
by (8) it remains to show that (9) is the solution of

ṖPPc(t)=AAA(t)PPPc(t)+PPPc(t)AAA
T(t)+BBB(t)BBBT(t), tk−1≤ t<tk, k∈N,

(13)
with PPPc (t0)= PPPc0 and

PPPc (tk) =PPPc

`

t
−

k

´

−PPPc

`

t
−

k

´

CCCT (tk)
h

CCC (tk)PPPc

`

t
−

k

´

CCCT(tk)+NdI
i

−1

CCC (tk)PPPc

`

t
−

k

´

. (14)

Substituting (6) in (9) immediately yields (14). After a few
algebraic manipulations, the time derivative of (9) gives (13).
The actual error covariance matrix does not coincide with
PPPc(t) due to the measurement delays. Thus, between arrivals
of the measurements, the covariance matrix is integrated in
open-loop according to (11) and at the time of arrival td

k
,

the covariance is updated so that it coincides with PPPc(t
d
k
),

i.e., PPP
(

td
k

)

= PPPc(t
d
k
). It is a simple matter to show that (10)

verifies these conditions.

C. Filtering Limit Solution

In the previous section the filter equations were derived
by means of appropriate Lyapunov transformations that ren-
dered the dynamics linear time invariant, as given by (5).
Under appropriate stabilizability and detectability hypothesis,
it is well known that the Kalman filter for the continuous-
discrete LTI system (5) converges to an asymptotically stable
steady-state solution. The existence of a special relationship
between (5) and (2) induces a limit filtering solution for the
system at hand.

Define Φ := Φ(T, 0),

Q :=

Z T

0

Φ(T, τ)BB
T
Φ

T (T, τ) dτ,

and suppose that the pairs
(

Φ,Q
)

and
(

Φ,C
)

are stabi-
lizable and detectable, respectively. Notice that this only
depends on the proper choice of the filters Wd and Wn,
as well as the matrices Lp and Mp. Under these conditions
the estimation error covariance matrix Pc (tk) converges to

lim
k→∞

Pc (tk) = P
∞

c , (15)

with P∞

c
:= Pr

c
− Pr

c
CT

(

CPr
c
CT +NdI

)

−1
CPr

c
, where

Pr
c

is the solution of the discrete-time algebraic Riccati
equation

P
r
c = ΦP

r
cΦ

T
+ Q − ΦP

r
cC

T [CP
r
cC + NdI]

−1
CP

r
cΦ

T
.
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From (8), (9), and (15) it follows that the Kalman gain
converges to the limit solution

lim
k→∞

KKK (tk) = T
T
c (tk)P∞

c Tc (tk)CCCT (tk) . (16)

The Kalman filter that results from using the limit solution
for the gain (16) is still time-varying due to the inherent
nature of the system dynamics. However, the gain is now
readily obtained and does not require the solution of a
Lyapunov matrix differential equation, which could be com-
putationally expensive.

D. Implementation

This section refers to some practical considerations re-
garding the implementation of the proposed filter. Figure 3
presents the block diagram implementation of the proposed
solution, where the dashed lines represent injection of initial
conditions on the various blocks each time a new measure-
ment is available. Although the system dynamics presented
in the paper are continuous, it turns out, in practice, that the
filter is implemented in a discrete-time framework. Thus,
the open-loop propagation of the system state estimate is
executed resorting to integration algorithms such as Runge-
Kutta methods. The signals ω, R, and τ are thus sampled
at high rates in order to allow accurate numerical integration
of the state estimate.

Ap
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τ η̂p

η̂
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+
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−

Fig. 3. Block Diagram of the Filter Implementation

III. POSITION AND OCEAN CURRENT VELOCITY

NAVIGATION FILTER

In [10] a filtering solution is presented to obtain an
estimate of the velocity of a constant unknown ocean current.
The filter is not only globally exponentially stable but also
optimal with respect to disturbances and measurement noise
assuming exact angular measurements. The drawback of the
solution is that it requires continuous-time measurements,
which are not available in practice. This section revisits
and successfully addresses this problem resorting to the
theoretical results proposed in Section II. The proposed
filtering framework is presented in Section III-A, whereas
simulation results are detailed in Section III-B.

A. Filtering Framework

Consider an autonomous underwater vehicle equipped
with a Doppler velocity log, which measures the velocity
of the vehicle relative to the water, expressed in body-fixed
coordinates, and an Attitude and Heading Reference System

(AHRS), which provides both the attitude and angular veloc-
ity of the vehicle, expressed in body-fixed coordinates. These
two sensors do not require any external devices and provide
high data rate signals. Moreover, in shallow waters, the
Doppler velocity log can also be used to measure the velocity
of the vehicle relative to the inertial frame and that would
allow the indirect measurement of the velocity of the ocean
current, since v(t) = vr(t) + vc(t), where vr and v denote
the relative and inertial velocity of the vehicle, respectively,
and vc represents the ocean current velocity, all expressed in
body-fixed coordinates. However, when the AUV is moving
far away from the seabed, the inertial velocity is unavailable.
Thus, an alternative strategy is required. The filter proposed
in this section requires an acoustic positioning system, like
an Ultra Short Baseline (USBL) sensor, that provides the
position relative to the vehicle of a buoy moored in the
mission scenario, where an acoustic transponder is installed.
It is assumed that the USBL samples the position of the buoy
with constant period and that the measure is available only
after a variable time delay due to processing requirements.

Let e(t) denote the position of the buoy relative to the
vehicle and expressed in body-fixed coordinates, as measured
by the USBL. Its time derivative is given by

ė(t) = −vr(t) − vc(t) − S [ω(t)] e(t). (17)

Since the ocean current is assumed constant in inertial
coordinates the time derivative of vc(t) can be written as

v̇c(t) = −S [ω(t)]vc(t). (18)

Clearly, the dynamics (17)-(18) fit in the class of systems
(1) proposed in the paper. The usefulness of the frequency
weights becomes more clear now. The buoy, moored in
the mission scenario, is naturally subject to the sea waves,
whose spectral density is approximately known. The effect
of the waves on the buoy may be considered as disturbances
in the output and thus modeled by the output frequency
weight Wn. Moreover, it turns out that these disturbances
are modeled in the correct space, in spite of the fact that the
filter works in body-fixed coordinates whereas the model for
the sea waves exists in inertial coordinates. This is due to
the inverse rotation matrix included for design purposes on
the disturbances affecting the system output, see Fig. 2.

B. Simulation Results

In order to evaluate the performance achieved with the
proposed filtering solution simulations were carried out with
a simplified model of the SIRENE underwater vehicle, see
[11]. The trajectory described by the vehicle is shown in Fig.
4, where the undisturbed position of the buoy is marked with
a red cross and the initial position of the vehicle coincides
with the origin of the inertial frame. The simulation lasts 10
minutes.
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Fig. 4. Trajectory described by the vehicle

The disturbances induced by the waves in the position
of the buoy are modeled using three second-order harmonic
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oscillators representing the disturbance models along the x,
y, and z directions,

H
i
w(s) =

σis

s2 + 2ξiω0is + ω2
0i

, i = 1, 2, 3,

where ω0i is the dominating wave frequency along each axis,
ξi is the relative damping ratio, and σi is a parameter related
to the wave intensity. In the simulation the dominating wave
frequency was set to ω0i = 0.8975rad/s and the relative
damping ratio to ξi = 0.1. The actual position of the buoy,
expressed in inertial frame coordinates, is depicted in Fig.
5. As it can be seen, the buoy wave induced random motion
is confined to an interval of about 10m of height, which
corresponds to extreme weather conditions.
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Fig. 5. Time evolution of the position of the buoy (expressed in inertial
coordinates)

In the simulation the USBL measurements were corrupted
by additive white Gaussian noise with standard deviation of
1m and the measurements of the vehicle velocity relative to
the water with additive Gaussian white noise with standard
deviation of 0.01 m/s. In addition, the vehicle angular veloc-
ity was assumed to be corrupted by additive Gaussian noise,
with standard deviation of 0.02 °/s, and the attitude of the
vehicle, assumed to be given by the roll, pitch, and yaw Euler
angles, corrupted by additive white Gaussian noises with
standard deviation of 0.03 ° for the roll and pitch and 0.3 °
for the yaw. Finally, the USBL was assumed to be operating
at a frequency of 1Hz with measurement delays modeled by
an exponential distribution, with parameter λ = 0.075, and
all the other sensors, which provide continuous-time signals,
were sampled, in order to allow for a digital implementation
of the filter, at 100Hz. The open-loop propagation of the
system state estimates was carried out with the Dormand-
Prince method. In order to properly tune the behavior of the
filter the frequency weights were chosen as Wd = 0.01I6

and
Wn(s) =

σ1s

s2 + 2ξ1ω01s + ω2
01

,

with Lp = I6, Mp = I3, and Nd = 1.
The time evolution of the filter estimates is presented in

Fig. 6. The position of the buoy if there were no ocean waves
is also shown, as well as the actual ocean current velocity,
all expressed in body-fixed coordinates. From these plots the
performance of the filter is evident - only the initial transients
are noticeable.

The evolution of the filter error variables is shown in
Fig. 7. The initial transients arise due to the mismatch of
the initial conditions of the states of the filter and can
be considered as a warming up time of 3 minutes of the
corresponding Integrated Navigation System. The filter error
variables are shown in greater detail in Fig. 8. From the
various plots it can be concluded that the disturbances
induced by the waves, as well as the noise of the sensors,
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Fig. 6. Actual (dash-dot lines) and estimated (solid lines) variables

are highly attenuated by the filter, producing very accurate
estimates of the velocity of the current and the position of
the buoy. The delays in the position measurements are also
dealt with successfully.
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Fig. 7. Time evolution of the Kalman filter error variables
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Fig. 8. Detailed evolution of the Kalman filter error variables

IV. POSITION, VELOCITY, AND ACCELERATION

NAVIGATION FILTER

The navigation filter presented in the previous section
addresses the specific problem of estimation of an unknown
constant ocean current and, on top of that, it also yields
estimates, in body-fixed coordinates, of the position of a fixed
transponder in the mission scenario and the vehicle velocity.
However, the latter estimate is obtained from the algebraic
relation v̂(t) = vr(t) + v̂c(t), where vr(t) is the relative
velocity of the vehicle as measured by the Doppler sensor.
Thus, the noise presented in this measure affects directly
the estimate of the velocity of the vehicle v̂(t). This section
addresses this problem and a navigation filter is proposed to
estimate, in body-fixed coordinates, both the velocity of the
vehicle and the position of a transponder fixed in the mission
scenario. Moreover, the filtering solution also accounts for
the acceleration of gravity, which is of major importance in
the design of navigation filters since, due to its magnitude,
any misalignment in the estimate of the gravity vector leads
to severe problems in the acceleration compensation. The
proposed filtering framework is presented in Section IV-A,
whereas simulation results are offered in Section IV-B.
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A. Filtering Framework

Consider a setup similar to the one presented in Section
III, where an AUV moves in a mission scenario equipped
with an AHRS, which provides the attitude and angular
velocity of the vehicle, an USBL sensor, which provides the
position of a fixed transponder in the mission scenario, and
an accelerometer, whose measurements satisfy

a = v̇ − g + S(ω)v, (19)

where a is the accelerometer measurement and g denotes the
gravity acceleration vector expressed in body-fixed coordi-
nates. In order to derive the filtering solution, the derivative
of the position (17) can be rewritten as

ė = −v − S (ω) e. (20)

On the other hand, from (19), it follows that

v̇ = a + g − S(ω)v. (21)

The time derivative of g is simply given by

ġ = −S(ω)g (22)

as it is constant in the inertial frame. Again, the dynamic
system (20)-(22) fits in the class of systems proposed in the
paper.

B. Simulation Results

To illustrate the performance of the solution proposed in
the previous section the simulation presented in Section III-B
was modified to fit the estimation setup presented in Section
IV-A. The environmental disturbances were kept, as well as
the noise on the attitude and angular velocity measurements.
The acceleration measurements were corrupted by additive
white Gaussian noise with standard deviation of 0.006 m/s2.
The frequency weight Wd was modified to Wd = 0.0025 I9

to properly tune the filter.
Due to the lack of space, only the evolution of the filter

error variables is shown, in Fig. 9 and, in greater detail, in
Fig. 10. In comparison with the results presented in Section
III-B, they are slightly worse. This is explained by the
higher order of the system and the difference in the sensor
suite. Nevertheless, it should be noticed that the performance
attained is quite good even in the presence of extreme
environmental disturbances and realistic measurements, with
noise and time delays.
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Fig. 9. Time evolution of the Kalman filter error variables

V. CONCLUSIONS

This paper presented the design and performance evalu-
ation of a continuous-time Kalman filter with discrete-time
delayed measurements for a class of time-varying kinematic
systems with application to the estimation of linear motion
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Fig. 10. Detailed evolution of the Kalman filter error variables

quantities (position, linear velocity, and acceleration of grav-
ity), in three dimensions, of mobile platforms. The proposed
technique is based on the linear time invariant Kalman filter
and employs frequency weights to explicitly achieve ade-
quate disturbance rejection and measurment noise attenuation
on the state estimates. The design is optimal assuming exact
angular measurements and a computationally-efficient limit
filtering solution was proposed. Two practical applications
were presented. In the first case study a Navigation filter
was designed for the estimation of unknown constant ocean
currents. In the second case the proposed solution addressed
the estimation of the velocity of an underwater vehicle,
as well as the acceleration of gravity. Simulation results
have shown that good performance is achieved even in the
presence of extreme environmental disturbances and realistic
measurements, including measurement noise and delays.
Other applications based on the proposed filtering design
methodology can be devised for other classes of systems
such as aerial, ground, and space platforms.
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