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Abstract— In this paper, we consider the implementation
of a static H∞ output feedback controller to a quarter
vehicle suspension system with a semi-active magnetorhe-
ological fluid (MRF) damper. Unlike most of the existing
literature, all the states in the equation of motion are rela-
tive displacements and velocities between sprung, unsprung
masses and road disturbance instead, in addition the input
to the system is the acceleration of road disturbance. The
measurements of the system are the relative displacement
and velocity between sprung and unsprung masses only,
which makes the practical implementation feasible. The
controller of the system is composed of the H∞-PD con-
troller, which serves as a system controller to provide the
desired damping force with the necessary robustness, and a
modified version of the clip-optimal controller, which serves
as a damper controller to track the the desired damping
force. Satisfactory results are obtained through numerical
simulations. To obtain the damper controller adopted in
this work, an assumption regarding the dynamics of the
MR damping force is verified through several numerical
experiments. This dynamic equation indeed can also be
served as an estimator of the magnetorheological damping
force.

keywords: Magnetorheological fluid (MRF) damper, sus-
pension system, semi-active control, H∞-PD controller

I. INTRODUCTION

For years, vibration attenuation of various dynamic

systems has received broad attentions from both aca-

demic and industry. In the automobile industry the

perceived comfort level and ride stability of a vehicle

are two of the most important factors in a subjective

evaluation of a vehicle. If a primary suspension is

designed to optimize the handling and stability of the

vehicle, the operator often perceives the ride to be rough

and uncomfortable. On the other hand, if the suspension

is designed for ride comfort alone, the vehicle may not

be stable during maneuvers. As a result, the performance

of primary suspensions is always defined by the com-

promise between ride and handling.

A semiactive suspension consists of a spring and a

damper but, unlike a passive suspension, the value of

the damper coefficient “c” can be controlled and up-

dated. Various semi-active devices have been proposed
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to dissipate vibration energy in a structural or vehicle

suspension system (see [1] and the references therein).

The magneto-rheological (MR) dampers are new devices

that use MR fluid to alter the damping coefficient. These

fluids demonstrate dramatic changes in their rheological

behaviors in response to a magnetic field.

To control the MR dampers, various control strategies

have been proposed, just name a few, sliding mode

control [2, 3] (needs a reference model), H∞ control [4]

(needs an inverse model of MR damper), clipped-

optimal control [5] (on-off type). In this paper, an H∞

output feedback controller, an extension of the work

given by Gadewadikar [6], is proposed. The proposed

controller which serves as a system controller keeps the

robustness feature of a H∞ controller and provides the

desired damping force FH , then it is integrated with a

damper controller which generates the command voltage

to change the viscosity of the MR damper, so that the

MR damping force would be able to suppress the vehicle

vibration semi-actively.

This paper is organized as follows. At first a quarter

vehicle with a Bouc-Wen MR damper model is described

in section II. Then the controller synthesis for the H∞

output feedback controller and a modified clip-optimal

damper controller are discussed in section III. Finally the

effectiveness of the proposed controller and assumption

are verified through numerical examples.

II. QUARTER VEHICLE MODEL WITH MR DAMPER

A. Quarter Vehicle Model

In this work we investigate only the vertical oscillating

behavior of a vehicle. The response can be mathemat-

ically described by a relatively simple set of dynamic

equations known as a quarter-car simulation.The reason

favoring the quarter car is the fact that it covers the

appropriate frequency range responsible for exciting ve-

hicle vibrations and emphasizes those that excite modal

resonances. The frequency response of the quarter car

extends from approximately 0.5 to 20 Hz with some

emphasis on roughness at the body bounce frequency

and the axle resonance frequency.

The equations of motion of the quarter-car model
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Fig. 1. Quarter Vehicle Suspension model

depicted in Fig. 1 can be written as

M

[

ẍs

ẍu

]

+C

[

ẋs

ẋu

]

+K

[

xs

xu

]

=

[

−m1

−m2

]

g+

[

0

ktxg + ct ẋg

]

+

[

−1

1

]

Frh,

(1)

where the system matrices are defined as

M ,

[

m1 0
0 m2

]

,C ,

[

cs −cs

−cs cs + ct

]

,K ,

[

ks −ks

−ks ks + kt

]

,

and the quantities

m1,m2 are the masses of vehicle body and axle,

xs,xu denote vertical displacements of m1 and m2,

xg is the road disturbance,

ks,cs represent the stiffness and damping of the

uncontrolled suspension,

kt ,ct denote the stiffness, damping of the tyre.

To remove the gravitational force from the equations

of motion, let’s define the shifted state variables

x =

[

x1

x2

]

,

[

xs

xu

]

− xr,

where the the reference point, xr, is the static equilibrium

position

xr =

[

xr1

xr2

]

, K−1

[

−m1

−m2

]

g =

[

−m1+m2
kt

− m1
ks

−m1+m2
kt

]

g.

Then we have the equation of motion for x,

Mẍ+Cẋ+Kx =

[

−1

1

]

Frh.+

[

0

ktxg + ct ẋg

]

. (2)

For convenience, we further define the state vector

xP ,

[

xP1

xP2

]

,

[

x1 − x2

x2 − xg

]

, or xP = TPx−

[

0

xg

]

,

where the transformation matrix is defined by TP ,
[

1 −1

0 1

]

. Note that the inverse matrix T−1
P =

[

1 1

0 1

]

.

Then the equations of motion (2) can be re-formulated

as

MPẍP +CPẋP +KPxP =

[

−1

0

]

Frh −

[

m1

m1 +m2

]

ẍg, (3)

where the transformed matrices are given by

MP , T−T
P MT−1

P ,CP , T−T
P CT−1

P ,KP , T−T
P KT−1

P .

B. Modified Bouc-Wen MR Damper Model

Fig. 2. Modified Bouc-Wen model

A modified Bouc-Wen model (see Fig. 2) for better

predicting the response of the MR damper in the region

of the yield point was proposed by Spencer [1] and is

adopted in this work. The equations governing the force

exerted by the MRF damper, Frh, are reformulated as

ẋ1 − ẏ =
1

c0 + c1
[−k0(x1 − y)−αz+ c1ẋP1] , (4)

ż = (ẋ1 − ẏ){δ −|z|n [β + γsgn(ẋ1 − ẏ)sgn(z)]} , (5)

and

Frh = −c1(ẋ1 − ẏ)+ c1ẋP1 + k1(xP1 − x̄0),

=
c1

c0 + c1
[k0(x1 − y)+αz]+

c0c1

c0 + c1
ẋP1

+ k1(xP1 − x̄0),

(6)

where

x1 − y and z are the internal relative displacement

and hysteretic component of the MR damper, re-

spectively,

δ ,β ,γ are positive constants, and

α is a scaling value for Bouc-Wen model,

k0, k1 are spring constants,

x̄0 corresponds to the initial displacement,

The voltage dependent parameters are modeled by

α = αa +αbu, c0 = c0a + c0bu, c1 = c1a + c1bu,
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where αa,αb,c0a,c0b and c1a,c1b are positive constants.

Furthermore, the command voltage is accounted for

through the first-order filter

u̇ = −η(u− v),u(0) = 0, (7)

where v is the command voltage sent to the current

driver, and η is a positive number that reflects the lag

time of the MR damper.

To reflect the situation of saturation of the magnetic

field, the command input v is confined to be finite

positive. As a result, u is also limited to be positive

finite, that is,

0 ≤ v ≤Vmax and 0 ≤ u ≤Vmax,

where Vmax is the maximum voltage to the current driver.

It follows that all the related parameters α,c0 and c1 are

all finite positive as well.

Remark 2.1: Equations (4) and (5) indicate that (x1−
y,z) and (ẋP1,xP1 − x̄0) are the state vector and input of

the MR damper model, respectively.

III. CONTROLLER SYNTHESIS

The ride and handling characteristics of vehicles

are governed by the stiffness and damping properties

of the shock absorbers. However, by using magneto-

rheological fluid (MRF) dampers, the suspension system

stiffness and damping properties can be varied by the

application of a magnetic field to the MRF damper.

Fig. 3. Semi-active control systems for a plant integrated with an
MR fluid damper

The schematic of a semiactive control system based

on an MR fluid damper is illustrated in Fig. 3. The MR

damper based semiactive control system consists of:

1) a system controller: generates the desired damping

force according to the dynamic responses of the

plant,

2) a damper controller: adjusts the command voltage

to the current driver to track the desired damping

force.

The damping force of the MR fluid damper should

be monitored and/or predicted and fed to the damper

controller to generate the command voltage according

to the desired damping force generated by the system

controller [7].

A. System Controller: H∞ type PD Controller

At first, define the state variables for the quarter car

model as

xQ(t) ,

[

xP(t)
ẋP(t)

]

=
[

xP1 xP2 ẋP1 ẋP2

]T
, (8)

equation (3) can be rewritten in the state-space form as

ẋQ = AxQ +BFrh +Bwẍg(t), (9)

where

A ,

[

0 I

−M−1
P KP −M−1

P CP

]

,

B ,











0

0

−
(

1
m1

+ 1
m2

)

1
m2











, Bw ,









0

0

0

−1









.

(10)

Next, consider the main performance criteria in vehi-

cle suspension design that includes:

1) ride comfort - keep the transfer functions from

road disturbance xg to car body (sprung mass)

acceleration ẍ1 small over the frequency range of

0−65rad/sec.

2) road holding ability - require the transfer function

from xg to tyre deflection xQ2 should be small.

3) suspension deflection - keep the transfer function

from xg to suspension deflection xQ1 small enough

to prevent excessive suspension bottoming.

For the time being, a perfect tracking is assumed, that is

Frh = FH , where FH is the desired input force. Accord-

ingly it is naive to choose the performance variable [4]

zH = C1xQ +D1FH , (11)

where C1 ,





ks
m1

0 cs
m1

0

αH 0 0 0

0 βH 0 0



 , D1 ,





1
m1

0

0



 , in which

αH > 0 and βH > 0 are scalar weightings. Assume that

the output signals are the suspension deflection and the

velocity of the sprung mass so that

yQ = CxQ, (12)

where C ,

[

1 0 0 0

0 0 1 0

]

. Note that CCT = I,CBw = 0.

The goal is to determine the output feedback gain K in

the feedback controller of the following form:

FH = KHyQ = KHCxQ,

such that the closed-loop is stabilized and the H∞-

norm of the closed-loop transfer function from ẍg to

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThTA18.5

4410



zH , ‖TzH xg‖∞, is minimized, that is,

∫

∞

0 ‖zH(t)‖2dt
∫

∞

0 ẍ2
g(t)dt

≤ γ2. (13)

The following theorem is a direct extension of [6].

For notational convenience, let us define

Q , CT
1 C1, R , DT

1 D1, S , CT
1 D1.

Theorem 3.1: Assume that (A,C1) is detectable. Then

the system defined by (9), (11) and (12) is output-

feedback stabilizable with ‖TzH xg‖∞ < γ , if and only if

1) (A,B) is stabilizable, and (A,C) is detectable and

2) there exist matrices KH and L such that

KHC +R−1(BTP+ST) = R−1L, (14)

where PT = P,P > 0 is a solution to the Riccati

equation

0 = ATP+PA+Q+
1

γ2
PBwBT

wP

− (PB+S)R−1(BTP+ST)+LTR−1L.

(15)

Remark 3.1: The difference between Theorem 3.1

and the one given in [6] is the non-zero “S” in (14).
Remark 3.2: The static gain can easily be obtained

from equation (14),

KH = R−1[L− (BTP+ST)]CT(CCT)−1,

= R−1[L− (BTP+ST)]CT,
(16)

where the fact that CCT = I has been implemented in this

case. Substituting (16) into (14) leads to the relationship

between L and P,

0 = [L− (BTP+ST)][I −CT(CCT)−1C],

= [L− (BTP+ST)][I −CTC].

Hence, when the controller gain is pre-multiplied to the

measurement vector we have

KHyQ = KHCxQ = R−1[L− (BTP+ST)]CTCxQ,

= R−1[L− (BTP+ST)]xQ,
(17)

which takes the same form as a state feedback controller.

B. Damper Controller

To determine the damper controller, we define the

following Lyapunov function of the closed-loop system

V , xT
QPxQ +ρ(Frh −FH)2. (18)

Note that the equation of motion (9) can be re-written

as

ẋQ = AxQ +BFH +B(Frh −FH)+Bwẍg(t).

It follows that

V̇ = ẋT
QPxQ + xT

QPẋQ +2ρ(Frh −FH)(Ḟrh − ḞH),

= xT
Q(ÃTP+PÃ)xQ +2xT

QPBwẍg,

+2
[

xT
QPB+ρ(Ḟrh − ḞH)

]

(Frh −FH),

where Ã , A + BKHC. For the worst case of road

disturbance ẍ⋆
g = 1

γ2 BT
wPxQ, let the output feedback gain

K and P satisfy (14) and (15), respectively. This renders

V̇
∣

∣

ẍg=ẍ⋆
g
= −zT

HzH + γ2(ẍ⋆
g)

Tẍ⋆
g

+2
[

xT
QPB+ρ(Ḟrh − ḞH)

]

(Frh −FH).

Note that since CBw = 0, we have

ḞH = KHCẋQ = KHCAxQ +KHCBFrh.

Assumption: As motivated by the clipped-optimal

method [5], “assuming” that the command force Frh

satisfy

Ḟrh = ḞH −
1

ρ
BTPxQ +βrhFrhv. (19)

Hence, we end up with

V̇
∣

∣

ẍg=ẍ⋆
g
= −zT

HzH + γ2(ẍ⋆
g)

Tẍ⋆
g −βrhFrh(FH −Frh)v,

(20)

where βrh > 0. In this work the assumption (19) will be

verified through numerical examples at this moment.

Remark 3.3: Equation (19) can also be thought of as

an estimator of magnetorheological force Frh. Further-

more, owing to the identity (17) and the fact STxQ =
STCTyQ, the second term of (19) can be replaced by

−BTPxQ = (RKH −STCT)yQ −LxQ.
One of the simple feedback linearization techniques

used to track the desired MR damping force, FH , is the

clipped-optimal method

v = VmaxH[Frh(FH −Frh)], (21)

where H(·) is the Heaviside step function. Yet in this

work we adopt a modified version of the above method

which yields a smooth command voltage [8],

v = sat[0,Vmax][αFB(FH −Frh)sgn(Frh)], (22)

where αFB > 0 is a free parameter, and the one-sided

saturation function is defined by

sat[0,Vmax](·) , max(0,min(·,Vmax)).

For this case, the last term in (20) can be written in

detail as

−βrhFrh(FH −Frh)v

= −βrh|Frh(FH −Frh)|sat[0,Vmax][αFB|FH −Frh|] ≤ 0.
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Integrating (20) (and replacing ẍ⋆
g by ẍg) renders

V (T )−V (0)

=
∫ T

0
[−zT

HzH + γ2(ẍg)
Tẍg −βrhFrh(FH −Frh)v]dt.

Hence, selecting xQ(0) = 0,Frh(0) = FH(0) and the non-

negativeness of V (T ), that is V (T ) ≥ 0,∀T , guarantee

that (13) is satisfied.

IV. NUMERICAL EXAMPLES

Example 4.1: Consider a quarter car and an MR

damper model with the parameters defined by Table I

and II [3], respectively. Assume that the maximum input

voltage of MR damper is Vmax = 2.0V.

TABLE I

QUARTER CAR MODEL PARAMETERS

Parameter value

m1 372 kg
m2 45 kg
ks 40 kN/m
kt 190 kN/m
cs 0 N s/m
ct 0 N s/m

TABLE II

PARAMETERS FOR THE MR DAMPER (RD-1005-1) [3]

Coeff. Coeff.

αa 12441 N/m c0a 784 N · s/m
αb 38430 N/m · V c0b

1803 N · s/m · V

β 2059020 m−2 c1a 14649 N · s/m

γ 136320 m−2 c1b
34622 N · s/m · V

δ 58 n 2

η 190 s−1 x̄0 0 m
k0 3610 N/m
k1 840 N/m

Then we implement the above H∞ controller to the

quarter car model with MR damper. The performance

weighting parameters are chosen as αH = 100,βH =
50,αFB = 0.3,βFB = 1, for illustration purpose. It is easy

to verify that the pair (A,B) is controllable, and both

(C1,A),(C,A) are observable, since

rank
[

λ I −A B
]

= 4,

rank

[

C

λ I −A

]

= rank

[

C1

λ I −A

]

= 4,∀λ ∈ C .

After solving the coupled equations (14) and (15), we

obtain the static output feedback gain

KH =
[

1.1168×104 0.9444×104
]

.

Figure 4 depicts the magnitude part of the Bode plot of

the suspension system as MR dampers activated (assume

Frh = FH ) and inactivated (Frh = 0). It is clear that at both

of the two system resonant frequencies the magnitudes

are attenuated.
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Fig. 4. Magnitude part of Bode plot for the system without and with
using MR damper

Assume that the vehicle is subject to a grade C

random road excitation. The system response of sprung

and unsprung masses, supplied damping force (Frh) and

command voltage (v) are depicted in Figure 5 and 6,

respectively. In addition, some typical values of the

RMS of the acceleration of the sprung, the suspension

deflection (x1 −x2), and the tyre deflection (x2 −xg) for

the listed three different cases are given in Table III.

These results indicate that for suspension deflection and

tyre deflection the H∞-PD controller provides a better

performance compared with that of the passive suspen-

sion systems (input voltage v = 0V and v = 2V), while

for the acceleration of sprung mass the H∞ controller

gives in-between performance.

TABLE III

RMS ANALYSIS FOR GRADE C ROAD EXCITATION TESTS

Damper ẍ1(m/sec2) x1 − x2(m) x2 − xg(m)

H∞ 0.9251 0.0016 0.0020
v = 0 0.5903 0.0037 0.0019
v = 2 1.3292 0.0018 0.0029

To verify the validity of the “assumed” dynamics of

Frh (19), a comparison is given in Fig. 7. As we can tell

from the figure, the difference is insignificant. Actually,
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Fig. 5. Responses of sprung and unsprung masses under grade C
random road excitation with augmented H∞ controller
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Fig. 6. Damping force Frh and input voltage v under grade C random
road excitation with augmented H∞ controller

several examples conducted also show similar results.
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Fig. 7. Damping force Frh (solid line) and the assumed damping
force given by (19) (dot-dash line) (βrh = 0.5,ρ = 1).

V. CONCLUSIONS AND FUTURE WORKS

The implementation of a static H∞ output feedback

controller to a quarter vehicle suspension system with

magnetorheological fluid (MRF) damper is presented in

this paper. Unlike most of the models used in existing

literature, all the states are relative displacements and

velocities between sprung mass, unsprung mass and road

disturbance, the input is the acceleration from road dis-

turbance instead. The H∞ controller serves as a system

controller to provide the desired damping force with

the necessary robustness, while a modified version of

the clip-optimal controller serves as a damper controller

to track the the desired damping force. The proposed

scheme is validated through numerical simulations under

a grade C random road excitations, the results show that

the H∞-PD controller achieve a better performance than

those with constant input voltages. In addition, the major

assumption motivated by the clip-optimal control is ver-

ified through several examples. this alternatively implies

the dynamics of the MR damper can be approximated

by equation (19), or (19) can be treated as an estimator

of the magnetorheological damping force.
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