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Abstract— In this paper, necessary and sufficient numerical
conditions for stability and for asymptotic stability of linear
continuous time-varying systems are derived. For a given set
of initial conditions, a tube containing all the trajectories of
the system is constructed in the state space. At each instant of
time, there exists an initial condition inside the set such that
the resulting trajectory attains the border of the tube. Based
on the above formulation, necessary and sufficient conditions
for stability and for asymptotic stability are expressed through
the solution of a linear differential Lyapunov equation. The
conditions can deal with the stability of periodic systems as
well. One of the main characteristics of the proposed necessary
and sufficient conditions is that the only assumption on the dy-
namical matrix of the linear time-varying system is continuity.
Examples from the literature illustrate the superiority of the
proposed conditions when compared to other methods.

I. INTRODUCTION

The stability of linear continuous time-varying systems has

been investigated in numerous papers [1–7]. Although from a

theoretical point of view there exist necessary and sufficient

conditions in the literature [8–10], a lot of effort has been

dedicated to the search for numerically tractable necessary

and sufficient conditions (see [11] and references therein).

In many cases, only sufficient conditions are obtained, as

for instance in the methods based on the analysis of the

eigenvalues of a time-invariant system [12, 13].

As it is well known, even when the eigenvalues of the

system have strictly negative real parts for all instants of

time the linear time-varying system can be unstable (see for

instance the second example in this paper). On the other

hand, an asymptotically stable linear time-varying system can

exhibit a system matrix with eigenvalues that have strictly

positive real parts [12]. This gives an idea of the difficulty

of assessing the stability of a linear time-varying system.

Other techniques use the Lyapunov theory, for instance, by

associating to the original linear time-varying system time-

invariant piecewise approximations from which sufficient

conditions for stability are derived [1, 5, 7]. This is the

case of the recently published paper [11], where classical

Lyapunov equations are solved for a sequence of discrete

points inside the time interval of interest. Associating a

quadratic Lyapunov function to each point of the grid, a
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tube is constructed in the state space. For the selected set of

initial conditions, all the trajectories of the original system lie

strictly inside the tube. The dynamic matrix of the system

is supposed to be continuous, norm-bounded and Hurwitz

for all instants of time. The sufficient conditions are derived

from the geometric properties of the tube.

In this paper, necessary and sufficient conditions for sta-

bility and for asymptotic stability of linear continuous time-

varying system are given. Using a strategy similar to the

one in [11], a tube is constructed in terms of the norm of

the trajectories in the state space for a given set of initial

conditions. Inside this set, there exists an initial condition

such that the associated trajectory reaches the boundary of

the tube. In this sense, the tube is not approximated as in [11],

but it is the ellipsoidal tube of minimum “size” that contains

all the trajectories of the system for a given ellipsoidal set of

initial conditions. Another important difference is that in [11]

the dynamic matrix is assumed to be continuous and Hurwitz

for all t, while only the continuity of the dynamic matrix is

assumed here. Using the properties of the tube, necessary

and sufficient conditions for stability and for asymptotic

stability are obtained in terms of the solution of a differential

Lyapunov equation. The computational burden required is

similar to the one in the approach from [11], where a set of

standard Lyapunov equations (one at each point of the time

grid) has to be solved and, between two points, a function

need to be integrated. The conditions proposed here can

easily be adapted to cope with the stability analysis of linear

continuous time-varying periodic system.

The paper is organized as follows. In Section II, some

definitions of stability are recalled. Section III presents the

main results of the paper, i.e. a method to construct an

ellipsoidal tube in the state space containing the trajectories

of the system for a given ellipsoidal set of initial conditions,

based on the solution of a differential Lyapunov equation,

and the necessary and sufficient conditions for stability

and for asymptotic stability. Examples from the literature

illustrate the potentiality of the results when compared to

other methods in Section IV. Conclusions and a discussion

on future topics of research regarding this subject end the

paper.

NOTATION

Notation is standard. The Euclidian vector norm is denoted

by ‖ ·‖. For two symmetric matrices, A and B, A > B means

that A−B is positive definite. Identity and null matrices are

denoted by I and 0, respectively. The transpose of a matrix
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A ∈ R
m×n is denoted by A′. λmin(A) (λmax(A)) denotes the

minimal (maximal) eigenvalue of matrix A.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider linear continuous time-varying systems given by

ẋ(t) = A(t)x(t), x(t0) = x0 (1)

with x ∈ R
n, A(·) : R → R

n×n, t → A(t) and the initial time

t0. It is assumed that the application t → A(t) is continuous

in t. The following classical notions of stability, known as

stability in the sense of Lyapunov (see for instance [8]), are

recalled.

Definition 1: Let t0 be any real number. If for all δ > 0,

there exists r(t0,δ ) > 0 such that ‖x(t0)‖ < r(t0,δ ) implies

‖x(t)‖ < δ for all t ≥ t0, then the system (1) is stable in the

sense of Lyapunov.

As pointed out in [8], for ordinary differential equations

and in particular for (1), if the system is stable for the initial

time t0, it is stable for subsequent initial times t1 > t0. The

important consequence is that t0 can be selected arbitrarily.

However, in some particular situations, the dependence with

respect to the initial time t0 can be dropped, resulting in

uniform stability.

Definition 2: If in Definition 1, r(·) does not depend on

t0, then the system (1) is said to be uniformly stable in the

sense of Lyapunov.

Finally, if the equilibrium at the origin is attractive (see

[8]), uniform asymptotic stability is obtained.

Definition 3: If the system (1) is uniformly stable and

there exists an ε > 0, independent of t0, such that ‖x(t0)‖ <
ε implies limt→∞ x(t) = 0, then the system is said to be

uniformly asymptotically stable.

The aim of this paper is to derive numerically tractable

necessary and sufficient conditions to assess the stability and

the asymptotic stability of system (1). To this end, some

well known facts concerning the solutions of system (1) are

recalled.

For any t0 and x(t0) = x0, the solution of system (1) is

given by

x(t, t0,x0) = Φ(t, t0)x(t0), ∀t ≥ t0 (2)

where Φ(t, t0), the state transition matrix, is the unique

solution of the matrix differential equation [9, 10]

∂

∂ t
Φ(t, t0) = A(t)Φ(t, t0), ∀t ≥ t0, Φ(t0, t0) = I (3)

It is also well known that Φ(t, t0) is non singular for all t ≥ t0
[10].

III. MAIN RESULTS

This section presents the main results of the paper, namely,

numerical tractable necessary and sufficient conditions for

stability and for asymptotic stability.

Consider the following sets

Ω0 =
{

x ∈ R
n; x′x ≤ ρ2

0 , ρ0 > 0
}

(4)

and

Et =
{

x ∈ R
n; x′x ≤ ρ(t)2, ρ(t) > 0, ∀t ≥ t0

}

(5)

with Ω0 ⊆ Et0 (i.e. ρ(t0) ≥ ρ0). Then, the following central

result can be presented.

Theorem 1: Consider system (1) and suppose that x(t0) =
x0 ∈ Ω0. Then x(t) ∈ Et for all t ≥ t0 if and only if ρ(t) is

such that

ρ(t) ≥ ρ(t) = ρ0λ
1/2
max (X(t, t0)) (6)

where matrix X(t, t0) is the solution of the following Lya-

punov differential matrix equation

∂

∂ t
X(t, t0) = A(t)X(t, t0)+X(t, t0)A(t)′, X(t0, t0) = I (7)

Proof: Consider the following optimization problem for

a given instant of time t
{

max
x(t)

ρ(t)2 = x(t)′x(t)

x′0x0 ≤ ρ2
0

(8)

At each instant of time t, the optimal solution provides the

maximal (in terms of ρ(t)2) set Et given by (5) containing

‖x(t)‖ for all initial conditions inside Ω0 defined in (4). The

problem can be equivalently formulated only in terms of the

initial condition x0 as follows.
{

max
x0

ρ(t)2 = x′0Φ(t, t0)
′Φ(t, t0)x0

x′0x0 ≤ ρ2
0

(9)

The Lagrangian of this optimization problem reads

L (x0,β ) = x′0Φ(t, t0)
′Φ(t, t0)x0 +β

(

x′0x0 −ρ2
0

)

(10)

with β ≤ 0. The optimality conditions yield

∂L

∂x0
= 0 ⇒ 2Φ(t, t0)

′Φ(t, t0)x0 +2βx0 = 0 (11)

which can be rewritten as

2βΦ(t, t0)
′ (Φ(t0, t)

′Φ(t0, t)+β−1I
)

Φ(t, t0)x0 = 0 (12)

and
∂L

∂β
= 0 ⇒ x′0x0 −ρ2

0 = 0 (13)

To obtain a solution x0 6= 0 satisfying both conditions, one

must have

det
(

Φ(t0, t)
′Φ(t0, t)+β−1I

)

= 0 (14)

Multiplying condition (11) on the left by x′0, it follows that

x′0Φ(t, t0)
′Φ(t, t0)x0 +βx′0x0 = 0 (15)

and therefore one can deduce that

ρ(t)2 = −ρ2
0 β , ∀t ≥ t0 (16)

Moreover, from (14), it follows that −β−1 is an eigenvalue

of matrix Φ(t0, t)
′Φ(t0, t). Then, from (16) one has

ρ2(t) =max ρ2(t)

= ρ2
0 λ−1

min

(

Φ(t0, t)
′Φ(t0, t)

)

= ρ2
0 λ−1

min

(

X(t, t0)
−1

)

= ρ2
0 λmax (X(t, t0)) (17)
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If ρ(t) ≥ ρ(t)2 for all t ≥ t0, the state of the system is

confined in the family of sets Et and the sufficiency part

is proven. To prove the necessity, suppose x(t) ∈ Et and that

for t > t0, ρ(t) < ρ(t). This implies that there exist both

x0 ∈ Ω0 and t > t0 such that x(t) does not belong to the

ellipsoid Et , which leads to a contradiction. This concludes

the proof.

Remark 1: It is important to note that Theorem 1 defines

in the state space a tube containing all the trajectories of

the system for each t ≥ t0. Note also that, for each t, the

optimal solution of (8) is such that x′0x0 = ρ2
0 . Therefore, for

some x0 ∈Ω0, x′0x0 = ρ2
0 , there always exists a trajectory x(t)

such that x(t)′x(t) = ρ2(t) (i.e. a trajectory that reaches the

boundary of the tube).

A. Necessary and sufficient conditions for stability

The result of Theorem 1 suggests the following test for

stability.

Theorem 2: The system (1) is stable if and only if

ρM = max
t≥t0

ρ0λ
1/2
max (X(t, t0)) < ∞ (18)

where matrix X(t, t0) is the solution to Lyapunov differential

matrix equation (7).

Proof: Theorem 1 states that, for initial conditions such

that x′0x0 ≤ ρ2
0 , one has

x′(t)x(t) ≤ ρ(t)2 (19)

Now, choose an arbitrary scalar δ > 0, define a function γ(t)
satisfying

δ = γ(t) λ
1/2
max (X(t, t0)) , ∀t ≥ t0 (20)

and consider the sets
{

x0 ∈ R
n : x′0x0 ≤ γ(t)2, γ(t) > 0

}

(21)

Following the proof of Theorem 1, each set represents the

set of initial conditions such that x(t)′x(t)≤ δ 2 at time t. For

all t ≥ t0, if the initial condition belongs to the set
⋂

t≥t0

{

x0 ∈ R
n : x′0x0 ≤ γ(t)2

}

=
{

x0 ∈ R
n : x′0x0 ≤ r2

0

}

(22)

with

r0 = min
t≥t0

δ λ
−1/2
max (X(t, t0)) ≤

δρ0

ρM

(23)

Then, for all δ > 0 there exists

r =
δρ0

ρM

such that ‖x0‖ < r ⇒ ‖x(t)‖ < δ ,∀t ≥ t0 (24)

provided that ρM < ∞. Therefore, by Definition 1, the system

is stable in the sense of Lyapunov. This proves the suffi-

ciency. The necessity follows from the fact that Theorem 1

defines in the state space a tube containing all the trajectories

of the system ∀t ≥ t0. Thus, there exists t = t corresponding

to the ρ(t) maximal such that x(t)′x(t) = ρ2
M and, if the

system is stable, ρM must be finite. Uniformity comes from

the fact that r is independent of the initial time t0 ≥ t0.

B. Necessary and sufficient conditions for asymptotic stabil-

ity

The results from Theorem 2 can be extended to provide

necessary and sufficient conditions for asymptotic stability.

Theorem 3: The system (1) is asymptotically stable if and

only if

ρM < ∞ and lim
t→∞

ρ(t) = 0 (25)

Proof: The stability is assured by ρM < ∞. Then, it

is clear that if limt→∞ ρ(t) = 0 one has limt→∞ x(t) = 0. By

choosing ε > 0 independently of t0, it is always possible to

find ρ0 at time t0 such that
{

x ∈ R
n; x′0x0 ≤ ε2

}

⊂
{

x ∈ R
n; x′0x0 ≤ ρ2

0

}

(26)

Therefore, whenever ‖x0‖ < ε one has limt→∞ x(t) = 0 im-

plying that the system is asymptotically stable. The necessity

part follows similarly as in the proof of Theorem 1.

Theorems 2 and 3 provide necessary and sufficient con-

ditions for testing the stability and the asymptotic stability

of system (1). Since system (1) is linear, the results do not

depend on the particular choice for ρ0. The method requires

the numerical integration of the Lyapunov differential linear

equation (7) in the interval [t0,∞). This can be easily done

by some standard techniques and, in practice, a finite time

interval can be used. As pointed out in [11], in many practical

situations the systems operate in a finite time horizon. An

important point concerning time-varying periodic systems is

that conclusive responses about the stability of the system

can be obtained by integrating (7) over one single period.

This extension is presented in the following subsection.

C. Periodic systems

Suppose now that the linear time-varying system (1) is

periodic, i.e.

ẋ(t) = A(t)x(t), x(t0) = x0, A(t +T ) = A(t) (27)

Note that Theorem 2 can be applied to periodic system as

well, but in this special case the test can be formulated taking

into account the period T , as presented in the following

corollary.

Corollary 4: The periodic system (27) is stable if and only

if

ρT = max
t∈[t1,t1+T ]

ρ0λ
1/2
max (X(t, t0)) < ∞ (28)

for all t1 ≥ t0.

Proof: The proof follows from Theorem 2.

Concerning asymptotic stability, Theorem 3 can be ex-

tended as well to cope with periodic systems and the Lya-

punov differential equation (7) can be integrated over one

single period, as shown in next corollary.

Corollary 5: The periodic system (27) is asymptotically

stable if and only if

ρT < ∞ and ρ(t1 +T ) < ρ(t1), ∀t1 ≥ t0 (29)

with

ρT = max
t∈[t1,t1+T ]

ρ0λ
1/2
max (X(t, t0)) , t1 ≥ t0 (30)
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ρ(t) = ρ0λ
1/2
max (X(t, t0)) (31)

and matrix X(t, t0) is the solution of the Lyapunov differential

matrix equation (7).

Proof: Since the system is periodic, (29) implies that

x(t) is bounded for all t ≥ t0 and also that

lim
t→∞

ρ(t) = 0 ⇒ lim
t→∞

x(t) = 0 (32)

The necessity follows with the arguments developed in the

proof of Theorem 1.

IV. NUMERICAL EXAMPLES

To illustrate the proposed conditions, some examples from

the literature are considered. The numerical simulations were

performed with ode45 using default options in Matlab. The

continuity of A(t) assures the good behavior of the method,

since the results are related to the numerical solution of a

standard differential equation. In all the examples, ρ0 = 1

has been chosen.

A. Example 1

This example concerns a mass-spring system where both

damping and elastic constant coefficients are time-varying,

as presented for instance in [11]. The dynamic matrix A(t)
is given by

A(t) =

[

0 1

−(2−α sin t) −(2−α cos t)

]

(33)

where α is a positive constant parameter. It is simple to

verify that this is a periodic system with period T = 2π and

also that, for α < 2, the dynamic matrix A(t) is Hurwitz

for all t. Note that the Hurwitz stability assumption is

central for the method proposed in [11], where this example

was investigated in details. Indeed, some conditions in the

literature require the time variation of the system matrix to

be small [4–6], that is

‖Ȧ(t)‖ ≤ γ ∀t or
1

T1

∫ t0+T1

t0

‖Ȧ(t)‖dt ≤ γ (34)

for γ sufficiently small and a suitable T1. For this particular

example, one has

‖Ȧ(t)‖ = λmax

(

Ȧ(t)′Ȧ(t)
)

= α ∀t (35)

and therefore, as discussed in [11], it is not possible to

improve the results obtained by Rosenbrock [1] with the suf-

ficient conditions proposed in the aforementioned references.

To compare the potentialities of the sufficient conditions

proposed in [1, 11] with the necessary and sufficient con-

ditions proposed in this paper, the maximal value of α
for which stability is assured by each method has been

computed, as shown in Table I.

To further illustrate the evolution of function ρ(t), Figure 1

shows the time simulation in the interval t ∈ [0,14] for α =
1.53 (the limit of stability assured by the algorithm in [11])

and for α = 3.1, two situations where the asymptotic stability

can be confirmed since ρ(4 + 2π) < ρ(4). Figure 2 shows

ρ(t) for α = 3.1 and also ‖x(t)‖ for 100 initial conditions

TABLE I

MAXIMUM VALUES OF α FOR EXAMPLE 1.

Method α

[1] < 1.3

[11] < 1.6

Corollary 5 < 3.162

such that x′0x0 = ρ2
0 randomly generated. It can be noted that

there is no gap between the computed tube and the set of all

the trajectories of the system, as predicted by the theory.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

α = 1.53

α = 3.1

t (s)

Fig. 1. Function ρ(t) for α = 1.53 and for α = 3.1 (the vertical bars
indicate 4 and 4+2π) in Example 1.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

α = 3.1

t (s)

Fig. 2. Function ρ(t) and ‖x(t)‖ for 100 initial conditions such that x′0x0 =
ρ2

0 randomly generated for α = 3.1 in Example 1.

The value of α leading to the limit of asymptotic stability

has been found to be approximately equal to 3.162 through a

line search using the conditions of Corollary 5. This indicates

that the system from Example 1 is asymptotically stable if

and only if α < 3.162. The limit situation is illustrated by the
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time behavior of ρ(t) in Figure 3 and also in Figure 4, where

the phase planes for different initial conditions x0, x′0x0 = 1,

leading to distinct periodic solutions, are depicted.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

α = 3.162

t (s)

Fig. 3. Function ρ(t) for α = 3.162 (the vertical bars indicate 4 and 4+2π)
in Example 1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

x1

x2

Fig. 4. Phase planes for α = 3.162 in Example 1, for initial conditions
[

1/
√

2 1/
√

2
]′

,
[

− 1/
√

2 − 1/
√

2
]′

and
[

1 0
]′

. The dashed line
indicates the circle x′x = 1.

To end with this example, the time simulation of x(t)
is shown for the initial condition x0 =

[

1/
√

2 1/
√

2
]′

in two different situations: stable (α = 3.1, Figure 5) and

unstable (α = 3.2, Figure 6) behaviors, corroborating the

results obtained with Corollary 5.

B. Example 2

The second example is borrowed from [14] and corre-

sponds to an unstable system, periodic with T = π , given

by

A(t) =

[

−1+1.5cos2 t 1−1.5sin t cos t

−1−1.5sin t cos t −1+1.5sin2 t

]

(36)

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t (s)

Fig. 5. Trajectories x(t) for x0 =
[

1/
√

2 1/
√

2
]′

and α = 3.1 in Example 1.

0 10 20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

4

6

8

t (s)

Fig. 6. Trajectories x(t) for x0 =
[

1/
√

2 1/
√

2
]′

and α = 3.2 in Example 1.

which is Hurwitz for all t. Actually, the eigenvalues of A(t)
are given by −0.25± j0.25

√
7 and do not depend on t. The

state transition matrix is given by [14]

Φ(t,0) =

[

exp(0.5t)cos t exp(−t)sin t

−exp(0.5t)sin t exp(−t)cos t

]

(37)

indicating that the trajectories can diverge to infinity for

initial conditions arbitrarily close to the origin. Note that

methods based on sufficient conditions as in [11] cannot

conclude about instability. On the other hand, the approach

proposed here detects instability, as illustrated in Figure 7,

where ρ(t) is shown together with ‖x(t)‖ for 100 initial

conditions randomly generated.

V. CONCLUSION

Necessary and sufficient conditions for stability and for

asymptotic stability of linear continuous time-varying sys-

tems have been given. The conditions are based on the
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0

5

10

15

20

25

30

35

t (s)

Fig. 7. Function ρ(t) and ‖x(t)‖ for 100 initial conditions randomly
generated (the vertical bars indicates 2 and 2 +π) in Example 2.

numerical solution of a linear differential Lyapunov equation,

associated to a tube in the state space that confines all the

trajectories of the system. For periodic systems, it suffices to

integrate the differential Lyapunov equation over one single

period. Extensions of the proposed conditions to cope with

control design problems, particularly in the case of periodic

systems, are being investigated by the authors.
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