
  

  

Abstract— Robust and early detection of Oscillatory Failure 

Case (OFC) in the Electrical Flight Control System (EFCS) of 

new generation aircraft (A/C) appears to be a challenging 

problem. OFC leads to strong interactions with loads and aero-

elasticity and consequently must be detected in time. A robust 

analytical redundancy-based technique implemented in A380 

Flight Control Computer (FCC) is used for detecting such 

unauthorized oscillatory events. The technique has been 

successfully validated and provides a complete OFC coverage 

without false alarms in the A380 EFCS. However, for upcoming 

and future generation A/C, it could be required to detect OFC 

with less important amplitude. To meet this requirement, it 

becomes necessary to get more sensitive fault indicating signals. 

It is shown that the model quality can be significantly improved 

by reliable estimating of some physical parameters. The fault 

indicating signals obtained with the proposed methodology are 

compared to those obtained from A380 FCC during flight tests. 

The results are quite encouraging and suggest that OFC with 

less important amplitude could be successfully detected by the 

new strategy. 

I. INTRODUCTION 

FC results in an unwanted control surface oscillation, 

leading to strong interactions with loads and aero-

elasticity when located within actuator bandwidth [12]. 

Consequently, OFC must be detected in time. Early and 

robust detection of OFC is very important because it has an 

impact on the structural design of the A/C. The model-based 

approach implemented in the A380 permits stringent 

requirements to be met with low computational cost [12]. 

This solution is currently used on in-service Airbus A380 to 

ensure OFC detection, providing a complete coverage of 

such events. However, for upcoming and future A/C, it could 

be required to detect OFC with less important amplitude in 

less time while keeping a good robustness. Since the 

precursor works of Jones [1] and Beard [2], many model-

based FDI methods have been developed during the past 

decades. See for instance [3]-[7] for a survey. They offer 

many attractive features for improving the existing fault 

diagnosis techniques (see [3], [4], [9], [10], [12], [13]).  

However, to the best of our knowledge, model-based FDI 

techniques have not been used so far in on board A/C 

computers. The first reported work on oscillatory fault 

detection is [24], in which a set of methods called OFIS 

(Oscillatory Failure Identification System) was presented. 

The methods correspond to different fault situations (solid, 

liquid, …) and are based on a combination of linear methods 
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and signal processing. In [25] a dynamic estimator with 

global convergence property is proposed to reconstruct the 

unknown values of an oscillatory signal. The design method 

is independent of the actuator's model. The convergence time 

is however relatively important, which makes the approach 

not suitable to OFC. In this paper, an attempt is made to 

present a complete and new methodology for robust 

detection of OFC. The modeling stage is based on on-line 

joint parameter/state estimation, allowing for model 

parameter variations during A/C flight. This modeling 

process is associated with the same decision making rules as 

currently used for in-service Airbus A380. The performance 

of the proposed fault detection scheme is measured by its 

detection delay, its propensity to issue false alarms and 

whether it permits a failure to go undetected. The 

performance indicators are assessed and discussed based on 

the simulation results. The data used in simulations 

correspond to real flight data provided by Airbus France, 

Toulouse. The work presented here describes the status of on 

going research activity undertaken within a collaborative 

research project which aims at providing a general 

framework in which various design goals and trades-off can 

be easily formulated and managed. 

The paper is organized as follows. The OFC detection 

context is presented in section II. Section III is devoted to 

the description of the OFC detection strategy implemented 

on in-service A380. Section IV describes the proposed 

methodology. Section V discusses the results. Finally, some 

concluding remarks are given in a final section. 

II. OFC FAILURES: PROBLEM SETTING 

EFCS, first developed by Aerospatiale and installed on 

Concorde (analogue system) and then designed with digital 

technology on Airbus A/C from the 80s (A310), provides 

more sophisticated control of the A/C and flight envelope 

protection functions [20],[21],[23]. In parallel, introduction 

of Fly By Wire (FBW) technology leaded to strong 

interactions between EFCS and flight physic disciplines, in 

particular interactions with loads and aero-elasticity. The 

study of these interactions leads to determine the OFC level 

to detect and the time allowed for the confirmation, for each 

control surface. Thus, it is required to be able to detect small 

amplitude OFC in a short delay. 

The capability to detect these failures is very important 

because it has an impact on the structural design of the A/C. 

The load envelope constraints must be respected. More 

precisely, if OFC of given amplitude cannot be detected and 

passivated, this amplitude must be considered for load 
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computations. If the result of this computation is too high, 

this can lead to reinforce the structure, degrading A/C 

performances. In order to avoid reinforcing the structure and 

consequently to gain weight, low amplitude OFC must be 

detectable quickly. 

In this paper, only OFC located in the servo-loop control 

of the moving surfaces are considered, between the FCC and 

the control surface, including these two elements (Fig. 1). 

Consequently, the considered failure impacts only one 

control surface. OFC are mainly due to electronic 

components in fault mode generating spurious sinusoidal 

signals. This oscillatory signal propagates through the servo-

loop control, leading to control surface oscillation. The 

faulty components are located inside the Analog 

Inputs/Outputs, the position sensors or the actuators. The 

FCC may also generate unwanted oscillations of the 

command current sent to the actuator servo-valve. OFC 

signals are considered as sinusoidal signals with frequency 

and amplitude uniformly distributed over the frequency 

range 0-10 Hz. Beyond 10 Hz, OFC have no significant 

effects because of the low-pass behavior of the actuator. It is 

necessary to detect OFC beyond a given amplitude in a given 

number of periods, whatever the OFC frequency. The time 

detection is expressed in period numbers, which means that, 

depending on the failure frequency, the time really allowed 

for detection is not the same. 
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Fig. 1: OFC source localization in the servo-loop control of a control 

surface. 

The main objective of this work is to decrease the 

detection threshold and the time detection (number of 

periods), while maintaining a high level of robustness with 

respect to other unknown inputs. OFC with amplitude greater 

than the detection threshold should be detectable.  

In addition, in order to ensure A/C safety and reliability, 

an important requirement is that the false alarm rate must be 

minimal. Indeed, after detection and confirmation of a failure 

event, the actuator concerned by the OFC detection is 

automatically reverting in passive mode. Control surfaces 

concerned by OFC detection are generally controlled by two 

actuators [12]: one assumes the control law (active actuator) 

and a redundant actuator (passive actuator) is in a stand-by 

mode and follows the movement of the active one. If a false 

alarm is triggered, there is a hand-over between both 

actuators (system reconfiguration) and then the redundancy 

on the concerned control surface is degraded. The non 

detection probability should also be minimal, because even if 

OFC are very improbable, the consequences are that extreme 

loads can be generated damaging the structure.  

III. IN-SERVICE OFC DETECTION FOR A380 

An analytical redundancy-based approach is applied to 

detect OFC on A380. The overall methodology is described 

in [12]. In the following section, we describe first the 

hydraulic actuator model used [12]. Next, the on boarded 

A380 solution is briefly presented. 

A. Hydraulic actuator modelling 

The nonlinear model is based on the physical behavior of 

the hydraulic actuator. The corresponding equation gives the 

actuator rod speed as a function of the hydraulic pressure 

delivered to the actuator and the forces applying on the 

control surface and reacted by the actuator. The actuator rod 

speed can be expressed as the rod speed command, weighted 

by two main contributor factors which are aerodynamics 

forces and the servocontrol load in damping mode (of the 

passive actuator in the case of two actuators). The actuator 

rod speed for a hydraulic servo control is expressed as: 
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where: 

-  ∆P(t) is the hydraulic pressure delivered to the actuator. 

- Faero(t) represents the aerodynamic forces applying on 

the control surface. The corresponding model will not be 

detailed here as it is not of primary interest in this work. 

- Fdamping(t) represents the servocontrol load of the 

adjacent actuator in damping mode: 

 
2
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 - Ka(t) is the actuator damping coefficient and )(ty&  

represents the rod speed. 

-   S is the actuator piston surface area. 

- ∆Pref is the differential pressure corresponding to the 

maximum rod speed. This speed is reached when the 

servovalve is fully opened, i.e. when ∆P(t)=∆Pref and 

when no opposed forces apply. 

- V0(t) is the rod speed computed by the flight control 

computer. It corresponds to the maximal speed of one 

actuator alone with no load: 

  ))()(.()(0 tytuKKtV ci −=  (3) 

- K is the servo control gain and an estimated current 

i(t)=K(u(t)-y(t)) expressed in milliamp (servo-loop 

current derived from the flight control law order) is 

converted in rod speed V0(t) by a slope gain Kci.  

Equation (1) can also be written as the following 

continuous-time state space representation: 
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where θ1(t)= ∆P(t), θ2(t)= Faero(t) and θ3(t)= Ka(t). 

Different saturations (actuator limit positions, maximum 

orders…) are taken into account in the varying gains (Kci…). 

B. A380 OFC detection 

To the best of our knowledge, it is probably the first time 

that the concept of analytical redundancy is implemented on 

board for a family of civil aircraft for the detection of 

actuator failures on such a large number of control surfaces 

(3 pairs of ailerons, 2 pairs of elevators and two rudders on 

the A380). The fault indicating signal is the difference 

between the measured control surface position and the 

estimated position. The nonlinear hydraulic actuator model 

described above is used to estimate the position. 

The overall method consists in two steps: residual 

generation and residual evaluation. Firstly, it consists in 

generating a residual by comparing the real position y of the 

control surface delivered by a sensor with an estimated 

position produced by the actuator model. The input of the 

model is the flight control law (the command used in the 

servo-control of the control surface). Secondly, the residual 

is decomposed in several spectral sub-bands [12]. As the 

computing resource is limited in the computer, the OFC 

detection is performed by counting oscillations directly on 

the filtered residual, in each subband. This consists in 

counting successive and alternate crossings of a given 

threshold. The failure amplitude that is detectable depends 

on the model quality. In this approach, the flight control law 

is considered as fault-free. All its oscillations are correct and 

are calculated in order to compensate perturbations (e.g. 

external disturbance such as turbulence). The hypothesis of a 

fault-free command is justified because the flight control law 

is also monitored by dedicated techniques. 

C. Application to real flight data 

In order to reduce the computational burden, Ka and P∆  

are assumed to keep constant values (their most probable 

value) and Faero is considered to be equal to zero. Such a 

simplification is justified on the A380 because it has been 

validated that the overall method permits the load 

requirements to be met for this A/C. In fact, these three 

parameters could be estimated from mathematical 

relationships using other measured parameters (e.g. slats and 

flaps configuration, speed, temperature…). However the loss 

of a measurement could make obsolete the whole detection 

strategy. Moreover, Ka and P∆  depend on varying 

operational conditions such as hydraulic fluid temperature or 

number of servo-control used simultaneously, which make 

their estimation process difficult. 

The above detection technique has been validated during 

severe simulation campaigns on desktop simulators and 

industrial flight simulators. The robustness has been tested 

on the same test facilities and additionally during several 

hundred flight test hours on four A380 A/C. 

The following figures show an example of results obtained 

during a real A380 flight, for the left inboard elevator. These 

figures show the dependency of the residual amplitude in 

function of the control law dynamic. When the dynamic of 

the flight control law is rapidly changing, the residual energy 

content becomes more important. 
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Fig. 2: a) actuator position (°) and b) the corresponding residual 

In this example no OFC signal appears during the flight. 

Fig. 2.b shows an increasing of residual power when high 

control law dynamic appears. One can note that, during the 

first 300 seconds of the test scenario, the residual amplitude 

is often greater than 0.3°. Consequently detection threshold 

cannot be fixed to 0.3° because a lot of false alarm would 

appear during this period. Moreover, during the period 

between 500 and 1000 seconds the residual amplitude 

overflows regularly 0.2° due to the poor model quality. 

IV. JOINT PARAMETER AND STATE ESTIMATION 

As already mentioned the OFC detection strategy 

described in the previous section has been intensively tested 

by Airbus, validated and certified for on-board 

implementation in the FCC and provides a complete OFC 

coverage without false alarm.  

However, for upcoming and future Airbus programs, it 

could become necessary to improve the detection 

performance in case of more stringent requirements that 

would lead to the monitoring of OFC with smaller amplitude 

in less time of confirmation. But it appears that a reduction 

of residual power, particularly in dynamically changing 

stages, is necessary to detect less important OFC signals. 

Such OFC signals may go undetected if the modeling process 

is not sufficiently robust against neglected dynamics and 

parametric variations. The solution chosen in this work is to 

determine a more accurate actuator model, followed by the 

same decision making rule. This is done by estimating jointly 

state (actuator position) and the varying parameters Ka and 

Faero. The estimated parameters are to be updated at each 

FCC sampling time. 

Remark. Coming back to the model (5), it can be seen that 
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the parameters 1θ  and 2θ cannot be identified in a unique 

way (structural identifiability). One solution would be to 

modify the structure of the physical model (5) to get an 

identifiable model structure, this can be done for example by 

replacing the term modeling Faero by a polynomial function 

of the output. In this work P∆  has been fixed to a constant 

value, as a sensitivity analysis has shown that P∆  variations 

influence weakly the model output compared to Faero. 

To start, let the observed output y be decomposed as: 

 yyy δ+= ˆ  (6)  

where ŷ  is the model output (estimated actuator position), 

and δy is a general error term resulting from the 

approximation of y by ŷ  (i.e. the part of the data which is not 

explained by the model). δy represents a general stochastic 

input that accounts for the combined effects of other factors 

affecting the original time series, such as noise, other 

stochastic inputs or model limitations. 

Now, the relation (5) can be rewritten as an augmented 

nonlinear discrete-time state space representation, where the 

augmented state vector x contains actuator position output ŷ  

as well as the varying parameters )(kiθ . This representation 

can be written as: 

 ))(),(),(),(()1( kkvkukxfkx θ=+  (7) 

 ))(),(),(()( kkwkxgky θ=   (8) 

where f et g are known nonlinear functions, obtained from 

the basic equation (5) and k is the discrete time. Here, w is 

the measurement noise (dimension 1) and v is the process 

noise. The dimension of v is set to be 4. 

The first 2 components of v allow for parametric 

variations, each parameter being modeled by a dynamic 

equation as: 

 2,1)()()1( =+=+ ikvkk iii θθ  (9) 

 The third component of v affects the control input (u). The 

last one will affect, additively, the whole state equation. The 

latter can be seen as an additional degree of freedom which 

can be used to take into account the ageing of the actuator. 

Indeed, the structure of the state space model could evolve 

slightly with time, despite ground-based maintenance for 

actuator health monitoring. 

v and w are both stationary white noise sequences, 

Gaussian with covariance matrices noted Q and R: 

 { } { }( ) ( )   et   ( ) ( )T TQ E v k v k R E w k w k= =  (10) 

The initial estimates of state and covariance matrix are: 

 { }00 xEx =  (11) 

 { }TxxxxEP ))(( 00000 −−=  (12) 

The a priori state and covariance estimates are obtained as 

the conditional expectation [22]: 
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The problem of recursively estimating state can be 

formulated as a nonlinear filtering problem [15]. According 

to a specification of the uncertainties in model and 

measurements, the filter calculates an optimal estimation of 

the augmented state and its covariance matrix. A classical 

way to solve the filtering equations is to use the Extended 

Kalman Filter (EKF) [15]. The filter has been widely used in 

the context of estimating the state and the parameters. The 

practical problems with the EKF are well-known, even when 

the hyper-parameters (Q and R) are well tuned. The EKF 

involves the integration of n+n(n+1)/2 (see [22] page 134) 

coupled differential equations. Moreover, it is well known 

that the parameter estimates can converge slower than the 

state estimates and in general, only local convergence can be 

expected [16]. In [17], the authors proposed a method based 

on polynomial approximation of the nonlinear 

approximations obtained with a multi-dimensional extension 

of Stirling's interpolation formula. In contrast to Taylor’s 

formula, no derivatives are needed in the interpolation 

formula, only functions evaluations. This accommodates 

easy implementation and it is not necessary to assume 

differentiability of the nonlinear mappings. The method was 

judged suitable and superior to the EKF in a wide range of 

applications; see for instance [18]. 

To avoid duplicating materials from [17], the 

mechanization equations of the estimator are not given here, 

the interested reader can refer to [17] for further details. To 

obtain correct results, the tuning of Q and R is a crucial 

issue. By choosing values for the diagonal elements of the 

matrix Q, the flexibility of the model is controlled by the 

amount of noise allowed. Similarly, the matrix R controls the 

flexibility of the measurement equation. In this study, the 

optimization of the hyper parameters is done by iteratively 

testing different values and evaluating the results over a test 

period. The knowledge of maximum and minimum 

parameters bounds are helpful to set up initial covariance 

matrices (not given here for evident confidential reasons).  

Again, all the saturations (maximum order, maximum 

actuator position…) are taken into account for the filter 

coding. Three different state space equations (7) have been 

used for the filter determination. These three non linear 

functions (f1, f2 and f3) are used alternately according to (u-y) 

value and take into account the double slope gain 

transformation Kci and the saturation model. 

V. SIMULATION RESULTS: ASSESSMENT OF PERFORMANCE 

AND ROBUSTNESS  

A. Nominal case 

Simulations have been run with the same flight data, as in 

section III.C. The following figures show an example (Ka) of 

the normalized estimated parameters and the residual 

obtained with the above estimation technique for the A380 

hydraulic left inboard elevator. 

Three different phases can be distinguished in Fig. 3.a). 

Initially, the parameter value is close to its initialised value, 

an important amplitude variation is observed between 100 
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and 250 seconds corresponding to an important control law 

dynamic (-10°/+15°). Finally, a last variation appears at 

1200 seconds for a new control law dynamic variation (15°).  
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Fig. 3: a) Behavior of the estimated normalized parameter Ka b) Residual 

obtained with the nonlinear filter 

Now, recall that the main motivation of this work was to 

get residuals that allow us to detect OFC with lower 

amplitude. In this way, the process would permit to decrease 

the threshold detection and smaller OFC signals could be 

detected. In the following, the method described in section 

III (Airbus technique) will be noted “Method 1” and the 

proposed technique presented in section IV will be referred 

to “Method 2”. As the decision making process is the same 

for both methods (see section III.B), the detection 

performance will depend on the model quality. To compare 

the model quality, two time domain performance indicators 

and four frequency-domain distances are computed: 

- Time domain indicators 

The coefficient of determination (R
2
) is an intuitively 

attractive indication of model accuracy since it indicates how 

much of the variability in the observed data is being 

reproduced by the model. Another useful indicator is the 

“Absolute Mean Error” (AME). The numerical results are: 

 Method 1 Method 2 

AME (°) 0.0316 0.0128 

R2 0.1220 0.023 

Table 1: Performance time indicators 

- Frequency domain distances 

Four spectral distances have been computed between the 

Power Spectral Densities (PSD) of the real data and the PSD 

of the data produced by Method 1 and Method 2: the 

logarithmic distance (d2), the Itakura-Saïto distance (dIS), the 

cepstrum distance ( 2

cd ) and the Yegnanarayana distance 

( 2

Ld ).To save place and to avoid duplicating materials from 

[19], the mathematical definitions of these indicators are 

omitted here. The interested reader can refer to [19] for 

further details. In order to ease the comparison, these 

distances have been normalised with respect to Method 1. 

The results are given in Table 2. 
 Method 1 Method 2 

d2
 1 0.638 

dIS 1 0.077 

2
cd  1 0.638 

2
Ld  1 0.644 

Table 2: Spectral distances as performance indicators 

One can see that all performance indicators are better for 

Method 2. The frequency domain distances clearly show that 

the distance between the real position and the position 

estimated with Method 2 is smaller than with Method 1, 

reinforcing the results presented in Table 1. 

A quick comparison between Fig. 2.b (Method 1) and Fig. 

3.b (Method 2) allows us to get a deeper insight into the 

situation. First, one can observe that at time 300 seconds 

(high dynamic behaviour of the control law, see Fig. 2.a), the 

corresponding residual amplitude is about 1° (Method 1, Fig. 

2.b) and 0.6° (Method 2, Fig. 3.b). The residual amplitude 

variation is decreased when the Method 2 is used for the 

modelling stage. A second interesting feature is what 

happens between 500 and 1000 seconds. During this period, 

where the actuator has lower frequency dynamic (weak 

dynamic of the control law), the residual variations belong to 

the range [-0.2°, 0.2°] (Method 1, Fig. 2.b) and [-0.15°, 

0.15°] (Method 2, Fig. 3.b). 

Finally, the output of the decision rule for detecting OFC 

events (see section III) is analysed. The procedure consists in 

counting successive and alternate crossings of a given 

threshold. To avoid cumulating transitory threshold crossings 

(due to model uncertainties) that would necessarily lead to a 

false alarm, the oscillation counter is decremented after a 

given time (see [12]). Another reason to decrease the counter 

is that detection of oscillations is not required below a given 

frequency (see section II). 

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

Half period

L
o
g

(I
n
c
re

m
e
n

t 
n
u
m

b
e
rs

)

 

 

Method 1

Method 2

 
Fig. 4: Decision making for a threshold equal to 0.25° 

Fig.4 shows the results for the decision making, when the 

threshold is fixed to a very small value (0.25°). This table 

shows the total number of increments for each value of the 

OFC counter. The detection performance is not the same for 

both methods. Here, the number of periods for OFC 

detection is fixed to 3 (6 half periods in the table). 

Several false alarms occur with Method 1 whereas no false 

alarm appears with Method 2 for this threshold. This 

suggests that false alarm rate could be significantly reduced 

if the Method 2 is applied for the modelling stage. This 

simulation result shows clearly the benefit of the Method 2 if 

a small detection threshold is required.  

The first objective (lower false alarm rate in nominal case 

with a small threshold) is then achieved; it is now important 

to verify that OFC signals could be detected successfully. 

B. Failure cases 

A simulated OFC with amplitude 0.4° and frequency 5 Hz 
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is injected at time 800 seconds. One can see that OFC signal 

is clearly exhibited with both methods (Fig. 5).  
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Fig. 5: Method1 and Method 2: faulty situation (liquid failure) 

Fig.6 shows that with Method 1 (dashed line) and Method 

2 (full line) the OFC detection (amplitude 0.4°) with a 

threshold fixed to 0.25° is succeeded. The time detection for 

Method 1 is 0.719s and for Method 2 is decreased to 0.703s.  
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Fig. 6: OFC detection for ‘liquid’ OFC 

These results show that with method 2 it is not possible to 

detect OFC smaller than 0.4° (with this threshold) because 

OFC signal is reduced on the residual by the methodology 

(Fig. 5.b). For this example, with a threshold of 0.25°, the 

benefit of method 2 is clear because no OFC false alarm 

appears. Further work is needed to estimate the observed 

attenuation and consequently the threshold to apply for a 

given level to detect. For this example no false alarms appear 

with Method 2 and the detection is performed slightly more 

rapidly than with Method 1. 

VI. CONCLUSION 

The problem studied is that of designing robust detection 

unit for early detection of OFC events that can occur in 

EFCS of civil A/C. It was shown that the nonlinear 

estimation techniques could be useful to significantly 

improve the quality of the actuator model. The simulation 

results suggest that OFC with less important amplitude can 

be successfully detected by the new strategy without 

degrading the robustness. A number of appealing avenues 

can be considered for further investigations. This study has 

focused on hydraulic actuators. Further investigations are 

necessary for to set up a systematic modeling process for the 

new generation actuators (EHA, EBHA) which are used on 

A380. Next, the whole procedure should be tested on 

dedicated industrial flight simulators, to assess the level of 

achievable detection performance and the associated 

computational burden. This is the topic of future works. 
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