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Abstract— We study the stereo matching problem for recon-
struction of the location of 3D-points on an unknown surface
patch from two calibrated identical cameras without using
any a priori information about the pointwise correspondences.
We assume that camera parameters and the pose between
the cameras are known. Our approach follows earlier work
for coplanar cameras where a gradient flow algorithm was
proposed to match associated Gramians. Here we extend
this method by allowing arbitrary poses for the cameras.
We introduce an intrinsic Riemannian Newton algorithm that
achieves local quadratic convergence rates. A closed form
solution is presented, too. The efficiency of both algorithms
is demonstrated by numerical experiments.

Index Terms— Stereo Matching, Computer Vision, Corre-
spondences, Newton’s Algorithm, Lie Groups, Cholesky De-
composition.

I. INTRODUCTION

The stereo matching problem is one of the challenging
open issues in the area of computer vision [5]. Under the
restriction that the 3D points are all lying on an unknown
surface, the problem can be formulated as follows: Assume
that two cameras observe a surface patch, as in Fig. 1. The
two sets of image points {X1,i}, and {X2,i}, X1,i, X2,i ∈
R3 for i = 1, · · · , k are unordered, i.e. the pointwise
correspondence between both sets is unknown. The only
available information then is the Euclidian displacement
(R, τ), R ∈ SO(3) and τ ∈ R3 between the cameras. From
this stereo vision scenario three problems arise: (i) recover
the geometry of the observed patch from the two images, (ii)
establish a pointwise correspondence of both sets of image
points, and (iii) find a homographic transformation from the
points of one image to the points of the other. These three
questions, which are closely related, have generated different
approaches to the stereo matching problem. Brockett [2]
considered the simplified matching problem for two finite
point sets in R3 as an optimization on the rotation group
SO(3). He observed that the Gramians

N = 1
k

k∑
i=1

X1,iX
>
1,i, Q = 1

k

k∑
i=1

X2,iX
>
2,i

are invariant up to permutations of the points X1,i and X2,i,
respectively, and proposed a solution by a gradient flow that
achieves matching of the two Gramians.

Zhou and Ghosh [1] were interested in the recovery of
the observed planar patch for coplanar cameras. Thus, they
analyzed the case where only the simple translation τ =

Fig. 1. Typical stereo vision scenario. Two coplanar cameras, left and
right, observe a planar patch.

[
h v 0

]>
between the cameras occurs and observed that the

image points are related by a homography matrix A ∈ R3×3,
whose parameters uniquely describe the unknown location
of the surface patch. They expressed the problem as an
optimization of a cost function f : Gs → R on a Lie
group Gs and developed a gradient flow algorithm, similar
to Brockett’s. In this way, a homographic transformation
A ∈ Gs is found without the necessity to explicitly compute
the pointwise correspondences. This proposed method has
only linear convergence.

Li and Hartley [4] proposed a Newton-Schulz-like method
to find the pointwise correspondences by matching associated
Gramians. Two k×2 matrices X, Y are constructed for each
pair of image point sets. It is assumed that the transformation
between these matrices is given as X = PY R, where P is a
permutation matrix and R ∈ SO(2). This algorithm performs
a Newton iteration to match the Gramians. No convergence
analysis of the algorithm is given.

Based on the work by Ghosh et al., we develop a Newton
method to compute the planar surface parameters in the
case of arbitrary camera poses. This leads to a smooth
optimization problem posed on a non-compact homogeneous
space M . The differentiable manifold M has been consid-
ered in [3] together with a Jacobi-type algorithm. However,
this approach leads in general only to a linear convergent
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algorithm and thus is not fast enough for our purposes.
The Lie group G under consideration in the present work

is the semi-direct product G = R nRn. This Lie group G is
actually a subgroup of Gs acting linearly on projective space
RPn. A manifold version of Newton’s method is formulated
to minimize a smooth cost function f : M → R. This
algorithm shows local quadratic convergence.

Later, based on the structure of the group elements of G
and the properties of the Gramians N and Q, we elaborate a
closed form solution for the same stereo matching problem.

The structure of this paper is as follows. In the next
section, we present a more general problem formulation
which includes the above problem as a low-dimensional
case. This includes a characterization of the general homo-
graphies between image points, showing that they belong
to a Lie group G and defining the homogeneous space
M of tranformed Gramians. In section III, Newton and
Cholesky algorithms are presented for computing the surface
parameters and demonstrating local quadratic convergence.
In section IV, we conclude with numerical experiments.
These simulations show excellent convergence performance.

II. PROBLEM FORMULATION

In the sequel we assume that our cameras achieve pro-
jections from Rn and analyze the homographies between
them. Let the first camera be equipped with the standard
coordinate system of Rn. Let the second camera be displaced
by a Euclidean motion (R, τ), R ∈ SO(n) and τ ∈ Rn

such that the coordinate transformation between both camera
coordinate systems is given as

RX + τ, X ∈ Rn (1)

Let S denote an arbitrary hypersurface in Rn such that
the last component of any element P ∈ S is strictly positive.
There exists then a unique number

λ : Rn → (0,∞], λ(X) ∈ (0,∞] (2)

such that λ(X)X ∈ S. For the case λ = ∞ the interpre-
tation is that there is no finite value of λ > 0 for which
λ(X)

[
X, 1

]> ∈ S. Let M ⊂ Rn denote the open subset
consisting of points where λ exists and is finite. We refer to
λ as the the depth function of S. The associated homography
for S then is the map

H(X) :=
RX+ τ

λ(X)

e>n (RX+ τ
λ(X) )

. (3)

It can be shown that a homography is a semi-algebraic map,
provided that the associated hypersurface is semi-algebraic.
If the hypersurface is smooth, then the homography need not
necessarily be smooth everywhere where it is defined.

Instead of starting with a hypersurface and then compute
the homography, we can also reverse the process and start
with an arbitrary, say smooth, analytic, or algebraic function
λ : M → (0,∞) and define a hypersurface as S :=
{λ(X)X|X ∈ M}. Then the associated homography is
given as above.

Now let X =
[
x1 · · · xn−1 1

]>
and consider affine

hypersurfaces given as S = {p ∈ Rn|pn = α0 +∑n−1
j=1 αjpj}. Then 1/λ = a>X , where a = 1/α0 ·[
−α1 · · · −αn−1 1

]>
. If we donote the normalizing

factor in the homography by κ > 0, we can write the
homography as

H(X) = κ(R + τa>)X. (4)

As τ = hRτe1 holds for some rotation Rτ ∈ SO(n) and
the scalar h = ‖τ‖ ≥ 0, we have that

H(X) = κRτ (I + e1ã
>)R>

τ RX (5)

for ã := ‖τ‖R>
τ Ra. Thus, by transforming the image points

X̃1,i :=
bX1,i

e>n
bX1,i

, X̂1,i := R>
τ RX1,i,

X̃2,i :=
bX2,i

e>n
bX2,i

, X̂2,i := R>
τ X2,i

(6)

we obtain the matching condition

AX̃1,i = X̃2,π(i) (7)

with the linear operator A := I + e1ã
> and permutation

π : {1, . . . , k} → {1, . . . , k}. The set

G =
{

In + e1a
> ∈ Rn×n

∣∣ 1 + e>1 a > 0, a ∈ Rn
}

. (8)

forms a Lie group with Lie algebra

g :=
{

e1b
>∣∣ b ∈ Rn

}
(9)

and Lie bracket the matrix commutator. By exponentiating
Lie algebra elements we obtain for any g ∈ G the parame-
terization map

ν : Rn→G, ν(b) := exp(e1b
>)=In+h(e>1 b)e1b

> (10)

with

h(b1) =


eb1 −1

b1
b1 6= 0

1 b1 = 0
. (11)

Note that ν satisfies ν(0) = In and ν defines a global
diffeomorphism onto the group G.

Lemma II.1 Given an (n×n)-matrix N = N> > 0 and let
M = {ANA>|A ∈ G}. Then M is a smooth and connected
n-dimensional manifold. The map

φ : G → M, φ(A) := ANA> (12)

is a global diffeomorphism. The tangent space of M at X ∈
M is TXM = {BX + XB>|B ∈ g} (cf. [3]).

Correspondingly, we obtain a family of global parameteriza-
tions of the manifold M as

µX : Rn → M, µX(b) := ee1b> X(ee1b>)>. (13)

Thus µX satisfies µX(0) = X and µX defines a global
diffeomorphism onto the manifold M .
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Following [1], the stereo matching problem without corre-
spondences can be formulated as follows. From the normal-
ized image points we form the two Gramians N,Q ∈ Rn×n

N = 1
k

k∑
i=1

X1,iX
>
1,i, Q = 1

k

k∑
i=1

X2,iX
>
2,i. (14)

In the sequel we will always assume that N and Q are
positive definite. This assumption corresponds to a generic
situation in the stereo matching problem. Then, the stereo
matching problem is equivalent to finding a transformation
A ∈ G and a permutation π on k elements, such that (7)
holds for all i = 1, . . . , k. Of course, when the permutation
matrix π is known then this amounts to solving the least
squares problem of minimizing

∑k
i=1 ‖AX1,i − X2,π(i)‖2

over G. Often, however, such knowledge is not available
and the question arises if one can find such an optimizing
transformation A without knowing π.

III. STEREO MATCHING ALGORITHMS

The nice idea of [1] was to reformulate the exact task of
solving the former equation via the weaker task of achieving
the matching condition for the Gramians

Q = ANA>. (15)

Motivated by this we aim to solve the minimization of the
least squares cost function

f : M → R, f(X) = ‖Q−X‖2 (16)

where ‖Y ‖2 :=
∑n

i,j=1 y2
ij .

Lemma III.1 Let N = N> be positive definite. The func-
tion f(X) = ‖Q−X‖2 has a unique critical point Xc ∈ M .
The critical point Xc is characterized by the property that
the first column coincides with that of Q.

Proof: The derivative Df of f : M → R evaluated at
X ∈ M acting on (BX + XB>) ∈ TXM , with B ∈ g is

Df(X) · (BX + XB>) = 4tr
(
B> (X −Q) X

)
. (17)

By the special form (9) of the matrix B ∈ g, (17) vanishes
if and only if

e1e
>
1 · (Xc −Q)Xc = 0n (18)

holds, i.e., by the positive definiteness of Xc, if and only
if the first row of Xc = X>

c and Q = Q>, respectively,
are identical. On the other hand, (Xc)ij = Nij holds for all
2 ≤ i, j ≤ n, because the group action G×M → M defined
by (A,N) 7→ ANA> affects only the first row and the first
column of N . Thus Xc is the unique critical point.
Note that in the noise free case there exists a group element
A ∈ G such that

Q−ANA> = 0n.

Consequently, the unique global minimum Xc of the function
f is characterized by Xc = Q with critical value equal to
zero.

A. NEWTON’S ALGORITHM

Now we will develop a Newton-type algorithm to min-
imize the composition of the cost function (16) with the
global parameterization as in (13). The gradient and Hessian
of this composed function can be explicitly computed as

∇(f ◦ µX)(0) = 4X(X −Q)e1, (19)

Hf◦µX
(0) = 4(X2+Xe1e

>
1 X+e>1 (X −Q)e1X)

+ 1
2 (X(X−Q)e1e

>
1 +e1e

>
1 (X−Q)X)).

(20)

Note that the Hessian at the unique critical point Xc simpli-
fies to

Hf◦µXc
(0) = 4

(
X2

c + Xce1e
>
1 Xc

)
(21)

and thus is positive definite. We now give a more precise
description of those points where the Hessian is invertible.
Due to the above simple form of the Hessian at a critical
point we consider a modification of the Newton step as
follows. For any X ∈ M let

Ĥf◦µX
(0) = 4

(
X2 + Xe1e

>
1 X

)
. (22)

The Newton-type algorithm we propose is defined by iterat-
ing a map

s : M → M. (23)

Let xopt(X) denote the solution of

Ĥf◦µX
(0)x = −∇(f ◦ µX)(0). (24)

Thus

xopt(X) = X−1(In − 1
2e1e

>
1 )(Q−X)e1 (25)

is well-defined for any X ∈ M . The algorithmic map s is
given as

s(X) = µX

(
xopt(X)

)
. (26)

Theorem III.1 Let a planar patch be given by

z = α0 + α1x1 + · · ·+ αn−1xn−1 (27)

being observed for two identical cameras, both with the same
focal length f and the camera centers displaced by τ = e1.
Let N and Q be the Gramians from the normalized image
points of the planar patch as in (14). The algorithm defined
by iterating

X0 = N, Xt+1 = s(Xt) (28)

is locally quadratically convergent to the unique global
minimum Xc of the cost function f (16). Furthermore, the
sequence of matrices in the Lie group G

A0 = In, At+1 = ν(xopt(Xt))At (29)

converges locally to the optimal transformation

A = In + e1a
> ∈ G, (30)

with
a = − 1

α0

[
α1 · · · αn−1 −1

]>
(31)

solving the stereo matching problem in Rn.
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Proof: It is seen by inspection that the algorithmic map
s is smooth. It therefore suffices to check that the derivative
of s at the unique critical point Xc vanishes. Let ξ denote
an arbitrary tangent element of M at Xc. Then

ξ = e1x
>Xc + Xcxe>1 (32)

for a given, arbitrary element x ∈ Rn. Note that the critical
point Xc is characterized by the property (Q −Xc)e1 = 0.
Thus h(b)=1 for

b := e>1 (Q−Xc)(In −
1
2
e1e

>
1 )X−1

c e1. (33)

The derivative of s at Xc therefore is

D s(Xc)ξ = ξ − e1e
>
1 ξ − ξe1e

>
1 + e>1 ξe1e1e

>
1 . (34)

By substituting ξ = e1x
>Xc + Xcxe>1 into (34) we see that

D s(Xc)ξ = 0. (35)

Now, let At be as in (29). From the definition of the
algorithmic iteration, we get

Xt+1 = s(Xt) = At+1NA>
t+1. (36)

The matrices Xi are elements of the manifold M , the latter
being diffeomorphic with the Lie group G (cf. Lemma II.1).
As the sequence of matrices (Xt|Xt ∈ M) is convergent
to the critical point Xc, the sequence (At|At ∈ G) is
convergent to the optimal group element A ∈ G such that
Xc = ANA> (cf. Lemma III.1). The matrix A is known to
have the desired form.

B. CHOLESKY APPROACH FOR PLANAR SURFACES

An alternative approach of this problem can be developed
using the Cholesky factorization of positive definite Grami-
ans. Let

N = UNU>
N , Q = UQU>

Q (37)

denote the unique Cholesky factorization of the Gramians N
and Q, respectively, with upper triangular matrices UN , UQ

with positive diagonal entries. Then, for group elements

A(x1, . . . , xn) =

[ x1 x2 ··· xn
1

. . .
1

]
(38)

we introduce another cost function

f̃ : Rn → R,

f̃(x1, . . . , xn) := ‖A(x1, . . . , xn)UN − UQ‖2
(39)

to be minimized. This function f̃ is convex and its gradient
and Hessian can be easily computed. In the special case n =
3, which is relevant for vision applications, we obtain them
explicitly as

UN =
[

a b c
0 d e
0 0 g

]
, UQ =

[
r s t
0 u v
0 0 w

]
. (40)

∇f̃(x, y, z) = 2UN (A(x, y, z)UN − UQ)>e1 (41)

H ef(x,y,z) =2UNU>
N =2N=2

[
a2+b2+c2 bd+ce cg

bd+ce d2+e2 eg

cg eg g2

]
. (42)

It is clear that H ef(x,y,z) is positive definite. A Newton
iteration step for this problem then moves right into the
minimum[ xt+1

yt+1
zt+1

]
=

[
xt
yt
zt

]
−H−1ef(xt,yt,zt)

∇f̃(xt, yt, zt)

=

[ r
a

as−rb
ad

adt−cdr−aes+ber
adg

] (43)

Thus, A(x, y, z) ∈ G with

x = r
a , y = as−rb

ad , z = adt−cdr−aes+ber
adg (44)

is the unique group element minimizing f̃ . Therefore, cal-
culating Cholesky factors for N and Q and substituting
into (44) represents an alternative way to solve the stereo
matching problem in closed form. Observe that in the noise
free case at the minimum

d = u, e = v, g = w, (45)

AUN = UQ and therefore the minimal value is equal to zero.

IV. NUMERICAL EXPERIMENTS
A. TWO CAMERAS OBSERVING A PLANAR PATCH

The objective of this experiment was to recover the plane
parameters α, β, and γ from a set of observations or
measurements on two images of the planar patch

z = α + βx + γy (46)

without knowing point-to-point correspondences between the
images. For the simulation, 2000 3D−points on the plane
defined by

z = 21.6478 + 0.414214x, (47)

i.e.,
α = 21.6478, β = 0.414214, γ = 0 (48)

were generated such that they formed the letter “E”. The
points were uniformly randomly distributed on the letter. All
points were projected onto the left and onto the right image,
firstly, assuming there is no noise in the detected features
and secondly, assuming presence of noise.

The two cameras were assumed to have focal length f =
1. The second camera was assumed to have a displacement
of τ =

[
10.0 4.3 −6.7

]>
from the first camera and a

rotation of R = Rz(π
6 )Rx( π

72 )Ry( π
12 )

R =
[

0.8309 −0.4995 −0.2452
0.4927 0.8652 −0.0929
0.2586 −0.0436 0.9650

]
. (49)

1) Noise free simulation: Images for both cameras were
calculated by projecting perspectively each of the points from
the original set. The resulting images are shown in Fig. 2.
The calculated Gramians N and Q from these image points
were

N =
[

4.0394 −2.2089 −1.8830
−2.2089 1.6256 0.9535
−1.8830 .0953 1.0

]
,

Q =
[

12.5868 −3.944 −3.3511
−3.944 1.6256 0.9535
−3.3511 0.9535 1.0

]
.

(50)
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2) Simulation with noisy data: To simulate noise in the
measurement random points of a Gaussian distribution with
zero mean and standard deviation 0.025 were added to the
projections of both images. The resulting image points are
shown in Fig. 3. The corresponding Gramians N and Q were

N =
[

4.9758 −2.2248 −3.3721
−4.0234 1.6603 0.9563
−3.3721 0.9563 1.0

]
,

Q =
[

12.8834 −4.0234 −3.3721
−4.0234 1.6603 0.9563
−3.3721 0.9563 1.0

]
.

(51)

3) Newton’s algorithm without noise: Newton’s method,
cf. Section (III), needed 12 iterations to find the solution.
This is illustrated in Fig. 4.

Fig. 2. Projected noise free image points for the left and right camera,
respectively.

Fig. 3. Projected noisy image points for the left and right camera,
respectively.

Fig. 4. Development of the Newton algorithm in the noise free case. Up left
are the projected image points when the algorithm starts. The next figures
show how the matrix A obtained after each iteration maps the red points to
the blue ones until they perfectly match.

4) Newton’s algorithm with noise: The resulting image
points and their evolution along the algorithm’s iterations
are shown in Fig. 5. The recovered parameters in both cases,

Fig. 5. Up left are the projected images simulating noise in the measure-
ments. The blue points correspond to the left image and red to the right
image.

with and without noise are summarized in tables I and II. The
algorithm needed 16 iterations in the noisy case to achieve
the solution.

5) Cholesky algorithm without noise: The Cholesky ap-
proach of Section (III-B) was also applied to the noiseless
data. After Cholesky factorization of the Gramians, we used
(44) to obtain the matrix parameters, and from that the plane
parameters. The point-to-point correspondence achieved by
the resulting matrix is shown in Fig. 6, the corresponding
reconstructions in Fig. 7. The corresponding parameters are
shown in Table I and Table II.

Fig. 6. Left are the projected image points of the original “E” on the
planar patch. Right, the image points of the right camera are mapped to
the points of the left camera by the matrix A, obtained with by Cholesky
decomposition (Section III-B) of the Gramians Q and N using noiseless
data.

6) Cholesky algorithm with noise: Using (44) the matrix
A and the corresponding plane parameters were calculated.
In Fig. 8 the point-to-point correspondence achieved by the
resulting matrix is presented. In Fig. 9 the reconstructions
on the planar patch are illustrated.

V. CONCLUSION

In this paper we have presented two algorithms to solve
the stereo matching problem without correspondence. Firstly,
an iterative Newton-like algorithm and secondly, a method
based on Cholesky factorization leading to a closed form
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Fig. 7. Reconstruction of space points with noise free data. Left is the
original data set, in the middle the reconstruction using the solution by
Newton’s method and in the right the reconstruction with the solution by
the Cholesky method. The reconstructions were calculated using the image
points and obtained plane parameters, respectively.

Fig. 8. Left are the projected image points of the left (blue) and right
(red) camera and on the right the pointwise correspondence achieved by the
obtained matrix with the Cholesky method using noisy data.

Fig. 9. Reconstructions of space points of the Newton and the Cholesky
algorithms performing on noisy data. On the left the original “E”, in the
middle, the reconstruction from the Newton solution and in the right the
reconstruction from the Cholesky solution.

solution. The results of the Newton iteration were excellent
with noiseless data as one would expect. But even in the
presence of noise it showed to be robust. This algorithm
achieved a locally quadratically fast convergence.

The computation of the Gramians N and Q must be
done for both algorithms, Newton and Cholesky. However,

Method Data a1 a2 a3

True value 0.01913 0 -0.046194
Noiseless 0.01913 −7.65× 10−15 -0.0462Newton
Noisy 0.02266 0.00258 -0.0448
Noiseless 0.01913 3.153× 10−15 -0.046194Cholesky
Noisy 0.02242 0.002221 -0.04488

TABLE I
TRUE VALUES AND ESTIMATED ONES FROM THE SIMULATIONS FOR

MATRIX A.

Method Data α β γ
True value 21.6478 0.414214 0
Noiseless 21.6478 0.414214 1.66× 10−13

Newton
Noisy 22.326 0.5058 0.0576
Noiseless 21.6478 0.414214 −6.82× 10−14

Cholesky
Noisy 22.28 0.4995 0.0495

TABLE II
TRUE VALUES AND ESTIMATED PARAMETERS FOR THE PLANE

EQUATION z = α + βx + γy.

Method Data Final cost
Noiseless 5.687× 10−23

Newton
Noisy 1403.32
Noiseless 6.349× 10−23

Cholesky
Noisy 46059.11

TABLE III
FINAL COST ACCOMPLISHED IN EACH EXAMPLE WITH THE COST

FUNCTION f = ‖Q−ANA>‖2 CALCULATED WITH THE MATRIX A

OBTAINED IN EACH CASE.

to achieve the closed form solution exploiting Cholesky
factorization is of very low computational cost because the
two matrices to be factorized are simply 3 × 3. In our
experiments this method showed a good performance as well,
even with noisy data.
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