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Abstract— Recursively designed internal models have been
extensively applied in the output regulation problem for lower-
triangular systems. In particular, one internal model component
is constructed at each step to compensate for the steady state of
one plant state (or input). This design method is simple with the
potential expense of high dimension when some components are
duplicate. This paper proposes a novel approach of designing a
minimal dimension internal model by eliminating any possible
duplication.

I. INTRODUCTION AND PROBLEM FORMULATION

Consider the class of lower-triangular systems, with rela-

tive degree of r, as follows:

ż = ψ(z, x1, v, w)

ẋ = ϕ(z, x, v, w) +Rx+ bu

e = x1 − q(v, w) (1)

where z ∈ R
n−r and x := [x1, · · · , xr]

T ∈ R
r are the

states, u ∈ R is the input, e ∈ R is the tracking error,

w ∈ R
p represents the unknown (constant) parameters, and

v ∈ R
q represents the reference trajectories and/or external

disturbances. In (1), the notations are defined as follows:

ϕ(z, x, v, w) :=







ϕ1(z, ~x1, v, w)
...

ϕr(z, ~xr, v, w)






, ~xi :=







x1

...

xi






,

R =

[

0 I(r−1)×(r−1)

0 0

]

, b =

[

0(r−1)×1

1

]

.

We assume that the functions ψ,ϕ, q are sufficiently smooth,

w ∈ W ⊂ R
p with W a compact set, and v(t) is generated

by an autonomous exosystem

v̇ = Sv, v(0) ∈ V0 (2)

where V0 is a compact subset of R
q. We also assume that

the exosystem (2) is neutrally stable in the sense that all

eigenvalues of S are simple with zero real parts. Clearly,

under the neutral stability condition, we have v(t) ∈ V, t ≥ 0
for some compact subset V of R

q if v(0) ∈ V0. In fact,

the exogenous signal v(t) produced by the exosystem (2)

represents finite combinations of constants and/or sinusoids

with unknown amplitudes or phases, but known frequencies.

Now, the problem studied in this paper can be precisely

formulated as follows.
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Definition 1.1: Global Robust Output Regulation Prob-

lem (GRORP): For the system (1), to design a controller

u = k(x, η), η̇ = λ(x, η) (3)

where η ∈ R
l is the compensator state with l to be specified

later and the functions k and λ are continuously differentiable

in their arguments, such that the states of the closed-loop

system are bounded and limt→∞ e(t) = 0 for all initial state

[z(0), x(0), η(0)]T ∈ R
n+l 1, all w ∈ W, and all v(t) ∈ V

generated by the exosystem (2).

The output regulation problem for the class of linear

systems has been thoroughly studied in the 1970s (see,

e.g., [7], [8]). A salient outcome of this research is the

internal model principle which enables the conversion of

the output regulation problem into an eigenvalue placement

problem for an augmented linear system. For the class of

nonlinear systems, the same problem was first treated for

the special case in which the exogenous signals are constant

[9], [14], etc. The nonlinear output regulation problem with

time varying exogenous signals was first studied in 1990

by Isidori and Byrnes without considering the parameter

uncertainty [17]. A celebrated contribution of [17] is to link

the solvability of the regulator equations to that of the output

regulation problem. The robust version of the same problem

was pursued by quite a few people in [2], [10], [20], etc.

Various solvability conditions have been given which impose

assumptions on the solution of regulator equations.

The aforementioned research on output regulation problem

was restricted to local stability because its underpinning was

Lyapunov linearization technique. With the introduction of

non-local techniques, the research on output regulation prob-

lem has been experiencing a vigorous growth. The growth

began from the stabilization problem, which is a special case

of the output regulation problem. Specifically, in the last two

decades, thanks to the introduction of differential geometry

to the structural analysis of nonlinear systems, and the devel-

opment of control synthesis methodology “backstepping”, it

becomes possible to study the non-local stabilization problem

for a high-dimensional system by recursively studying a sets

of low-dimensional subsystems connected in a certain way,

e.g., lower-triangular form. In the simplest case where the

system contains no uncertainty, the stabilization problem was

solved using the backstepping technique in a series of papers

[1], [19], [26]. In the more complex case where the system

contains static uncertainty but not dynamic uncertainty, the

stabilization problem was also extensively studied by many

1For column vectors a1, · · · , an, the column vector obtained by stacking
them is denoted by [a1, · · · , an]T := [aT

1
· · · aT

n
]T.
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researchers. Some of the representative results can be found

in books [16], [21], [23] and so on. For the most general

case where the system contains both static uncertainty and

dynamic uncertainty, the stabilization problem was studied

in [18] using the small gain theorem in the context of the

input-to-state-stability (ISS). Recently, a Lyapunov approach

is developed in [6] whose advantage is that an explicit

Lyapunov function for the closed-loop system is constructed

simultaneously.

The development in stabilization problem has facilitated

the growth of the output regulation. Some authors have

also addressed the semiglobal or global output regulation

problem for nonlinear systems with special structures such as

lower-triangular systems. The global robust output regulation

of systems in output feedback form, a special class of

lower-triangular systems, was studied in [5], [25], [27], etc.

The semi-global robust output regulation problem for more

general lower-triangular systems was studied in [15], [20],

[22], etc. More recently, the global robust output regulation

problem formulated in this paper was first studied in [13]

and a series of accompanying papers. More results on output

regulation can be found in some monographes including [2],

[12], [24], etc.

As we discussed above, the basic manipulation for the

stabilization or output regulation problem of lower-triangular

systems is called “backstepping”, i.e., recursively designing

virtual controllers at each step. So, in the existing results

of global robust output regulation problem, e.g, [13], the

internal models are also recursively designed. Specifically,

one internal model component is constructed compensating

for the steady-state valve of one state xi or input u at

each recursive step. This recursive idea is simple and the

manipulation is easy. However, a disadvantage of this method

is the possible existence of duplicated components in the

internal model when the steady-state values of more than one

states (or input) share a common mode. In this situation, this

internal model design method costs a high dimension. The

main contribution of this paper is to bring a minimal dimen-

sion internal model by eliminating any possible duplication.

The remaining sections are organized as follows. The

existing results on output regulation problem are revisited

in Section II. Then, a minimal internal model is introduced

in Section III with a numerical example. Finally, the paper

is concluded in Section IV.

II. REVISIT OF THE EXISTING RESULTS

In this section, the existing output regulation theory,

mainly developed in [13], is revisited and represented for

better citation. A necessary condition for the output regula-

tion problem is that the steady-state values of the plant input

and state are well defined. Specifically, the so-called output

regulator equations admit a well defined solutions. To this

end, we first list the following assumption.

Assumption 2.1: There exists a sufficiently smooth func-

tion z(v, w), such that,

∂z(v, w)

∂v
Sv = ψ(z(v, w), q(v, w), v, w), (4)

for all v ∈ V, w ∈ W,

Remark 2.1: Due to the special lower-triangular struc-

ture, Assumption 2.1 guarantees that the regulator equations

associated with the system (1), i.e., (4) and

∂x(v, w)

∂v
Sv = ϕ(z(v, w),x(v, w), v, w)

+Rx(v, w) + bu(v, w)

0 = x1(v, w) − q(v, w),

admit a solution given by [z(v, w),x(v, w),u(v, w))]T cor-

responding to the steady-state values of [z, x, u]T.

Clearly, when u = u(v, w), an invariant manifold is

defined by

{[z, x, v]T | z = z(v, w), x = x(v, w)}.

Now, let

Z := z − z(v, w), X := x− x(v, w), U := u− u(v, w) (5)

be the displacement of the state and input away from the

invariant manifold. Then, by noting e = X1, a stricter

definition of the global robust output regulation is given

below (see [4]).

Definition 2.1: Global Robust Output Regulation Prob-

lem 2 (GRORP2): The GRORP with limt→∞ e(t) = 0
enhanced to limt→∞[Z(t),X(t), U(t)]T = 0.

Since the steady-state state and input depend on the

uncertainties v and w, they can’t be used in feedback. Oth-

erwise, the problem becomes a trivial stabilization problem

of designing a controller U using X in feedback through the

direct cancellation (5). Therefore, we expect to construct an

observer (or called an internal model) for these steady-state

values, which are denoted by

~(v, w) := [ x2(v, w) · · · xr(v, w) u(v, w) ]T.

We assume the vector ~(v, w) can be reproduced by the

dynamics given below .

Assumption 2.2: There exists a sufficiently smooth func-

tion τ(v, w) : R
q+p 7→ R

l for an integer l, vanishing at the

origin, such that, for all trajectories v(t) of the exosystem,

dτ(v, w)

dt
= Φτ(v, w)

~(v, w) = Ψτ(v, w). (6)

And the pair (Ψ,Φ) is observable.

In literature [13], the dynamics (6) is called a steady-state

generator. It is used to produce the steady-state state and

steady-state input of a nonlinear system when these steady-

state values are perturbed away from zero by exogenous

disturbances or required to be away from zero to track

some reference signals. Moreover, to explicitly construct an

observer associated with the steady-state generator, a certain

observability condition should be imposed on it as shown in

Assumption 2.2 that (Ψ,Φ) is observable.
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The existence of a linear steady-state generator (6), or the

satisfaction of Assumption 2.2, has been well investigated in

literature. In particular, the equivalence of the immersion,

polynomial, and trigonometric polynomial conditions on

~(v, w) was studied in [11]. All of these conditions lead to

the existence of (6). For example, if ~i(v, w) is a polynomial

function of v for i = 1, . . . , r, then, we have

τi(v, w) = [~i(v, w), LSv~i(v, w), · · · , Lli−1
Sv ~i(v, w)]T

for an integer li, such that

dτi(v, w)

dt
= Φiτi(v, w)

~i(v, w) = Ψiτi(v, w).

As a result, we can construct (6) by stacking the vectors and

matrices as follows:

τ(v, w) = [τ1(v, w), · · · , τr(v, w)]T,

Φ =







Φ1 0 0
...

. . .
...

0 0 Φr






, Ψ =







Ψ1 0 0
...

. . .
...

0 0 Ψr






. (7)

In literature, all steady-state generators and hence internal

models are designed using the above procedure (7) for lower-

triangular systems. As a result, their dimension is l = l1 +
· · · + lr. However, a disadvantage of this method is that the

internal model dimension is not always optimized. There may

exist an integer l < l1 + · · · + lr as shown in the following

example.

Example 2.1: Consider

S =





0 1 0
−1 0 0
0 0 0



 , ~(v) =

[

v1
v2 + v3

]

.

On one hand, we have

τ1(v) =

[

v1
v2

]

, τ2(v) =





v2 + v3
−v1
−v2





and

Φ1 =

[

0 1
−1 0

]

, Ψ1 =
[

1 0
]

Φ2 =





0 1 0
0 0 1
0 −1 0



 , Ψ2 =
[

1 0 0
]

.

As a result, (7) suggests a five dimension steady-state gen-

erator. On the other hand, we note Assumption 2.2 simply

holds for

τ(v) = v, Φ = S, Ψ =

[

1 0 0
0 1 1

]

whose dimension is three. This simple example reveals

that the extra two dimensions are caused by the duplicated

components [v1, v2]
T in τ1(v) and τ2(v).

For a nonlinear system, there may be a variety of internal

model candidates associated with steady-state generators.

In this paper, we let τ(v, w) be the function vector with

minimal dimension satisfying Assumption 2.2. In general,

such a steady-state generator (6) doesn’t have the special

structure of (7) which is required in the existing results (see,

e.g., [3], [13]). Nevertheless, an interesting feature of this

paper is to show how this minimal dimension steady-state

generator (6) leads to a minimal dimension internal model for

lower-triangular systems. In other words, we will construct

an internal model without relying on the special structure of

(7).

III. A MINIMAL DIMENSION INTERNAL MODEL

To facilitate the construction of a minimal dimension

internal model for lower-triangular systems, the steady-state

generator (6) is first rearranged to have a certain lower-

triangular structure. This rearrangement is stated in the

following lemma.

Lemma 3.1: For an observable pair (Ψ,Φ), there exists

a nonsingular matrix T , such that the matrices C := ΨT−1

and A := TΦT−1, denoted by (Ψ,Φ) ∼ (C,A) 2, satisfy

the following property:

C :=











C1 0 0 · · · 0
C21 C2 0 · · · 0

...
...

...
...

...

Cr1 Cr2 · · · Cr(r−1) Cr











A :=











A1 0 0 · · · 0
A21 A2 0 · · · 0

...
...

...
...

...

Ar1 Ar2 · · · Ar(r−1) Ar











(8)

where Ci ∈ R1×li and Ai ∈ R
li×li for an integer li ≥

0 satisfying
∑r

i=1 li = l and the other matrices have the

appropriate dimensions. The pair (Ci, Ai) is observable for

i = 1, · · · , r.

Proof: The proof can be given by using the canonical

decomposition for r times. First, since (Ψ,Φ) is observable,

the canonical decomposition shows

(Ψ,Φ) ∼

([

C1 0
C̄2 C2

]

,

[

A1 0
Ā2 A2

])

where the pairs (C1, A1) and (C2,A2) are observable. Now,

for i = 2, · · · , r − 1, if (Ci,Ai) is observable, then, again,

the canonical decomposition shows

(Ci,Ai) ∼

([

Ci 0
C̄i+1 Ci+1

]

,

[

Ai 0
Āi+1 Ai+1

])

where the pairs (Ci, Ai) and (Ci+1,Ai+1) are observable.

By using the mathematical induction, and letting Cr = Cr

and Ar = Ar, we can define the matrices C and A as in (8)

satisfying (Ψ,Φ) ∼ (C,A).

By using the nonsingular matrix T given in Lemma 3.1,

we define

θ(v, w) := Tτ(v, w).

2For matrices A, B ∈ R
n×n and C, D ∈ R

m×n, (C, A) ∼ (D, B) is
defined as D = CT−1 and B = TAT−1 for a nonsingular matrix T .
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On one hand, the steady-state vector ~(v, w) can be gener-

ated by

dθ(v, w)

dt
= Aθ(v, w)

~(v, w) = Cθ(v, w).

On the other hand, the uncertain term ~(v, w) is contained

in the measurement output

y = Rx+ bu

where x is the state and u is the controller output through

y = RX + bU + ~(v, w).

Here, we note

Rx+ bu = [x2, · · · , xr, u]
T.

So, this measurement output y can be produced by the

following system, viewing θ being a state, i.e., θ(t) =
θ(v(t), w), for the neatness of presentation,

θ̇ = Aθ

y = RX + bU + Cθ. (9)

Since θ represents the steady-state values, the problem be-

comes trivial if θ is measurable. In our situation, θ is not

a part of measurement state, which motives us to build an

observer for θ. A possible one, motivated by the Luenberger

observer, is given as follows:

η̇ = Aη + L(y − ŷ)

ŷ = Cη (10)

where

L := block diag{L1, . . . , Lr}, Li ∈ R
ri×1

is chosen such that M := A−LC is Hurwitz. In particular,

the matrices Mi = Ai −LiCi are Hurwitz for i = 1, · · · , r.

Remark 3.1: The observer (10) is also called an internal

model candidate. It has a property that, at the steady space,

i.e., X = 0, U = 0, and η = θ, its dynamics reduce to

(9). In other words, at the steady space, the trajectories of

the internal model candidate are governed by the steady-

state generator (9). Moreover, if the state η of the internal

model candidate is driven to asymptotically approach θ by an

appropriately designed controller u, then the internal model

candidate is further called an internal model. The concept

of internal model (candidate) used here is closely related to

what introduced in [13] .

The internal model candidate (10) does reduce the dimen-

sion cost against the existing methods in dealing with lower-

triangular systems. Next, we should further show that this

minimal dimension internal model candidate works effec-

tively to make the resulted stabilization problem solvable.

To this end, we perform the coordinate transformation:

(η, v, z, x, u) 7→ (ζ, v,Z, ξ, ω) :














ζ = η − θ(v, w)
Z = z − z(v, w)
ξ = x− x(v, w) −QCζ = X −QCζ

ω = u− u(v, w) − bTCζ = U − bTCζ

,

Q :=

[

0 0
I(r−1)×(r−1) 0

]

.

Then, noting Rx+ bu = Rξ + bω + Cη, we have

ζ̇ = Mζ + L(Rξ + bω + Cζ)

Ż = ψ̄(Z, ξ1, v, w)

ξ̇ = ϕ̄(Z, ξ, ζ, v, w) +Rξ + bω + Cζ (11)

where

ψ̄(Z, ξ1, v, w) := ψ(Z + z(v, w), ξ1 + x1(v, w), v, w)

−ψ(z(v, w),x1(v, w), v, w)

ϕ̄(Z, ξ, ζ, v, w) := ϕ(Z + z(v, w), ξ +QCζ + x(v, w),

v, w) − ϕ(z(v, w),x(v, w), v, w)

−QC{Mζ + L(Rξ + bω + Cζ)}.

In particular, the state ξ = x−QCη−b̄(x1−e) is measurable

and the input ω = u − bTCη is implementable where b̄ =
[1 01×(r−1)]

T. Therefore, we can design a controller ω using

feedback ξ for the system (11). The following Proposition

shows this controller can be converted to the one solving the

GRORP of the original system.

Proposition 3.1: Consider the system (1) and (2) under

Assumptions 2.1 and 2.2, there exists an internal model

candidate (10), such that the augmented system (11) has the

property that [ζ,Z, ξ]T = 0 is the equilibrium point for the

undriven system with ω = 0 for all w ∈ W and v ∈ V.

Moreover, if there exists a controller

ω = κ(ξ), (12)

with sufficiently smooth function κ satisfying κ(0) = 0, such

that the equilibrium point is globally asymptotically stable

for all v ∈ V and w ∈ W. Then, the GRORP2 for the original

system (1) and (2) is solved by a corresponding controller

u = κ(x−QCη − b̄(x1 − e)) + bTCη

η̇ = Aη + L(Rx+ bu− Cη). (13)

Proof: The proof is straightforward and thus omitted

here.

By Proposition 3.1, it suffices to solve the global robust

stabilization problem of (11) viewing (v, w) as external un-

certainties. To make the stabilization tractable, we introduce

another set of coordinate transformation:

(ζ,Z, ξ, ω) 7→ (ϑ,Z, ξ, ω) : ϑ = ζ − Lξ .
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As a result, we have

ϑ̇ = Mϑ+MLξ − Lϕ̄(Z, ξ, ϑ+ Lξ, v, w)

Ż = ψ̄(Z, ξ1, v, w)

ξ̇ = ϕ̄(Z, ξ, ϑ+ Lξ, v, w) +Rξ + bω + Cζ. (14)

Clearly, the solvability of the global stabilization problem

for the system (11) is nothing but that for the system (14).

So, what left is to look into the system (14) to give the

solvability condition of the global stabilization problem. By

noting that the matrices M,L,Q,C and QCLR have the

(block) lower-triangular structures and QCLb = 0, we can

put the system (14) in the form of

ϑ̇i = Miϑ+ γi(Z, ~ξi, ~ϑi−1, v, w)

Ż = ψ̄(Z, ξ1, v, w)

ξ̇i = φi(Z, ~ξi, ~ϑi, v, w) + ξi+1 with ξr+1 := ω

i = 1, · · · , r (15)

where zi ∈ R
li , ξi ∈ R, ~ϑi := [ϑ1, · · · , ϑi]

T, ~ξi :=
[ξ1, · · · , ξi]

T, and γi and φi are sufficiently smooth functions

varnishing at their origins [Z, ϑ, ξ]T = 0.

The stabilization problem of (15) has been well studied in

literature, e.g., [6], [13], [18], under different assumptions.

For instance, the result cited in Proposition 3.2 is given under

the following assumption.

Assumption 3.1: The system Z = ψ̄(Z, ξ1, v, w) is ro-

bustly input-to-state stable with Z as state and ξ1 as input,

and has a known continuously differentiable gain function.

Proposition 3.2: Consider the system (15) with ϑi ∈ R
li ,

Z ∈ R
n−r, ξi ∈ R, v ∈ V, and w ∈ W. If Mi is Hurwitz,

the functions γi and φi are sufficiently smooth satisfying

γi(0, 0, 0, v, w) = 0, and φi(0, 0, 0, v, w) = 0, then, under

Assumption 3.1, there exists a sufficiently smooth controller

ω = κ(ξ) such that the equilibrium point of the closed-loop

system is globally asymptotically stable.

Now, by combining Propositions 3.1 and 3.2, it is ready

to give the main result as follows.

Theorem 3.1: Consider a lower-triangular system (1)

and (2) under Assumptions 2.1, 2.2 and 3.1. Then, there

exists a sufficiently function κ, such that the GRORP2 is

solved by the controller (13).

Finally, this section is closed by a numerical example.

Example 3.1: Consider a nonlinear system

ż = −z + e

ẋ1 = x2

ẋ2 = w1z + w2zx
2
2 + u

e = x1 − v1 (16)

and an exosystem

v̇1 = v2, v̇2 = −v1,

where the uncertainties w1, w2, v1, v2 ∈ [−1 1].

0 10 20 30 40 50

−2

0

2

time(s)

0 10 20 30 40 50

−2

0

2

time(s)

0 10 20 30 40 50

−5

0

5

time(s)

Fig. 1. The controller (18) works to drive the states [z, x, u]T to the
steady state values [z(v, w),x(v, w),u(v, w)]T. Top graph: the trajectories
of z (solid), x1 (dotted), and x2 (dashed). Middle graph: the tracking error
profiles of Z (solid), X1 (dotted), and X2 (dashed). Bottom graph: the
control profiles of u (solid) and U (dashed). (Simulation parameters: z(0) =
5, x1(0) = −1, x2(0) = 2, v(0) = [1, 0]T, w1 = 0.8, w2 = −0.5.)

First, we note that Assumption 2.1 is satisfied with

z(v, w) = 0,x1(v, w) = v1,x2(v, w) = v2,u(v, w) = −v1.

Clearly, the GRORP2 for this system has been solved by

a recursively designed internal model of dimension four in

[13]. However, we see that a two dimension internal model

is suggested in this paper by eliminating the duplicated mode

between x2(v, w) and u(v, w).

In particular, we can verify that Assumption 2.2 holds for

τ(v) = [v2,−v1]
T and

Φ =

[

0 1
−1 0

]

, Ψ =

[

1 0
0 1

]

.

Let A = Φ and C = Ψ, and pick a matrix

L =

[

3 0
1 0

]

such that M = A− LC =

[

−3 1
−2 0

]

is Hurwitz. Then, the internal model can be given by (10).

Obviously, Assumption 3.1 is satisfied. Now, by using the

algorithm in [13], we can design a partial state feedback

stabilizer

ω = −30(ξ1 + ξ2) − 15(ξ1 + ξ2)
3 (17)
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for the system (14). As a result, the overall controller for the

GRORP2 can be given as follows,

u = −30(e+ x2 − η1) − 15(e+ x2 − η1)
3 + η2

η̇ =

[

−3 1
−2 0

]

η +

[

3
1

]

x2. (18)

The profiles of states and tracking errors with the con-

troller (18) are shown in Fig. 1. We can see that both

the states and inputs approach their steady-state values, i.e.,

limt→∞[Z(t),X(t), U(t)]T = 0.

IV. CONCLUSION

The recursively designed internal models for lower-

triangular systems have the disadvantage of duplication

which costs a high dimension. A minimal dimension internal

model has been developed in this paper to eliminate any

possible duplication. For the convenience of presentation,

only linear internal models are considered in this paper.

These linear internal models can be easily extended to

nonlinear ones by using the technique introduced in [13].
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