
The Rate of Convergence for a Pseudospectral Optimal Control Method

Wei Kang

Abstract— Over the last decade, pseudospectral (PS) methods
have emerged as a popular computational solution for the
problem of nonlinear constrained optimal control. They have
been applied to many industrial-strength problems, notably
the recent zero-propellant-maneuvering of the International
Space Station performed by NASA. In this paper, we prove a
theorem on the rate of convergence for the approximate optimal
cost computed using PS methods. This paper contains several
essential differences from existing papers on PS optimal control
as well as some other direct computational methods. First,
the proofs do not use necessary conditions of optimal control.
Secondly, we do not make coercivity type of assumptions. As
a result, the theory does not require the local uniqueness
of optimal solutions. The proof is not build on the bases of
consistency approximation theory. Thus, we can remove some
restrictive assumptions in the previous results on PS optimal
control methods.

I. INTRODUCTION

As a result of significant progress in large-scale com-
putational algorithms and nonlinear programming, the so-
called direct computational methods have become popular
for solving nonlinear optimal control problems [1], [2], [3],
particularly in aerospace applications [4], [5]. In simple
terms, in a direct method, the continuous-time problem of
optimal control is discretized, and the resulting discretized
optimization problem is solved by nonlinear programming
algorithms. Over the last decade, pseudospectral (PS) tech-
niques have emerged as a popular direct method for op-
timal control. They have been applied to many industrial-
strength problems, notably the recent attitude maneuvers of
the International Space Station (ISS) performed by NASA.
By following an attitude trajectory developed using PS
optimal control, ISS was maneuvered 180 degrees on March
3, 2007, by using the gyroscopes equipped on the ISS
without propellant consumption. This single maneuver have
saved NASA about one million dollars’ worth of fuel [6].
The Legendre PS optimal control method has already been
developed into software named DIDO, a MATLAB based
package commercially available [7]. In addition, the next
generation of the OTIS software package [8] will have the
Legendre PS method as a problem solving option.

For the last decade, active research has been carried out
in the effort of developing a theoretical foundation for PS
optimal control methods. Among the research focuses, there
are three fundamental issues, namely the state and costate ap-
proximation, the existence and convergence of approximate
solutions, and the convergence rate. The general importance
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of these issues is not limited to PS optimal control. They
are essential to other computational optimal control methods
suchlike those based on Euler [11] and Runge-Kutta [12]
discretization. For PS methods, a covector mapping was
established and proved in [13] and [14]; several theorems
on the existence and convergence were published in [15]
and [16]; and then the results were generalized in [17] to
problems with non-smooth control.

In this paper, we prove a rate of convergence for the ap-
proximate optimal cost computed using PS methods, which
is a first result on the rate of convergence proved for
PS optimal control. This paper contains several essential
differences from existing papers on PS optimal control as
well as some other direct computational methods. First,
the proof does not use necessary conditions of optimal
control. Furthermore, we do not make coercivity type of
assumptions. As a result, the theory does not require the local
uniqueness of optimal solutions. Therefore, it is applicable
to problems with multiple optimal solutions that exist in a
small neighborhood. Secondly, the proof is not build on the
bases of consistent approximation theory [3]. Thus, we can
remove the assumption in [15] and [17] on the existence
of cluster points for the derivatives of discrete solutions.
The key that makes these differences possible is that we
regulate the region in which a solution is being searched.
This regulation does not add restrictions to the original
control problem. It is different from existing approaches in
which the desired convergence is achieved by making harsh
assumptions on the original control problem. However, the
approach in the current paper does require that the system is
feedback linearizable. A proof for general control systems is
one of the tasks for future research.

II. PROBLEM FORMULATION

In this paper, we address the following Bolza problem of
control systems in the feedback linearizable normal form.

Problem B: Determine the state-control function pair
(x(t), u(t)), x ∈ <r and u ∈ <, that minimizes the cost
function

J(x(·), u(·)) =
∫ 1

−1

F (x(t), u(t)) dt+ E(x(−1), x(1)) (1)

subject to the state equation{
ẋ1 = x2, · · · , ẋr−1 = xr
ẋr = f(x) + g(x)u (2)

x(−1) = x0 (3)

where x ∈ <r, u ∈ <, and F : <r×< → <, E : <r×<r →
<, f : <r → <, and g : <r → < are all Lipschitz continuous
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functions with respect to their arguments. In addition, we
assume g(x) 6= 0 for all x. In this paper, we only consider
the problems that have at least one optimal solution in which
x∗r(t) has bounded m-th order weak derivative. For some
results, we assume m ≥ 3. For others, m is smaller. Unless
the term ‘strong derivative’ is emphasized, all derivatives in
the paper are in the weak sense.

In typical direct methods, the original optimal control
problem, not the associated necessary conditions, is dis-
cretized to formulate a nonlinear programming problem.
Given any function f(t) : [a, b]→ <, a conventional method
of approximation is to interpolate at uniformly spaced nodes:
t0 = a, t1 = (b − a)/N , · · · , tN = b. However, uniform
spacing is not efficient in approximation. More sophisticated
node selection methods are able to achieve significantly
improved accuracy with fewer nodes. In a PS approximation,
a function f(t) is approximated by N -th order Lagrange
polynomials based on the interpolation at the Legendre-
Gauss-Lobatto (LGL) quadrature nodes. The LGL nodes,
t0 = −1 < t1 < · · · < tN = 1, are defined by

t0 = −1, tN = 1, and
for k = 1, 2, . . . , N − 1, tk are the roots of L̇N (t)

where L̇N (t) is the derivative of the N -th order Legendre
polynomial LN (t). The discretization works in the interval
of [−1, 1]. It was proved in approximation theory that the
polynomial interpolation at the LGL nodes converges to
f(t) under L2 norm at the rate of 1/Nm, where m is the
smoothness of f(t). If f(t) is C∞, then the polynomial
interpolation at the LGL nodes converges at a spectral rate,
i.e. it is faster than any given polynomial rate. This is a very
impressive convergence rate.

In a PS optimal control method, the state and control
functions, x(t) and u(t), are approximated by N -th order
Lagrange polynomials based on the interpolation at the LGL
quadrature nodes. In the discretization, the state variables are
approximated by the vectors x̄Nk ∈ <r, i.e.

x̄Nk =
[
x̄Nk1 x̄Nk2 · · · x̄Nkr

]T
is an approximation of x(tk). Similarly, ūNk is the ap-
proximation of u(tk). Thus, a discrete approximation of the
function xi(t) is the vector

x̄Ni =
[
x̄N1
i x̄N2

i · · · x̄NNi
]

A continuous approximation is defined by its polynomial
interpolation, denoted by xNi (t), i.e.

xi(t) ≈ xNi (t) =
N∑
k=0

x̄Nki φk(t), (4)

where φk(t) is the Lagrange interpolating polynomial [9].
Instead of polynomial interpolation, the control input is
approximated by the following non-polynomial interpolation

uN (t) =
ẋNr (t)− f(xN (t))

g(xN (t))
(5)

In the notations, the discrete variables are denoted by letters
with an upper bar, such as x̄Nki and ūNk. If k in the
superscript and/or i in the subscript are missing, it represents
the corresponding vector or matrix in which the indices run
from minimum to maximum. For example,

x̄N =


x̄N0

1 x̄N1
1 · · · x̄NN1

x̄N0
2 x̄N1

2 · · · x̄NN2
...

...
...

...
x̄N0
r x̄N1

r · · · x̄NNr


ūN =

[
ūN0 ūN1 · · · ūNN

]
Given a discrete approximation of a continuous function, the
interpolation is denoted by the same notation without the
upper bar. For example, xNi (t) in (4), uN (t) in (5). The
superscript N represents the number of LGL nodes used in
the approximation. Throughout this paper, the interpolation
of (x̄N , ūN ) is defined by (4)-(5), in which uN (t) is not
necessarily a polynomial. It is proved in Lemma 5 that (5)
is indeed an interpolation.

For differentiation, the derivative of xNi (t) at the LGL
node tk is computed using matrix multiplications [9]

[
ẋNi (t0) ẋNi (t1) · · · ẋNi (tN )

]T = D(x̄Ni )T (6)

where D is the (N + 1) × (N + 1) differentiation matrix,
which depends on N and can be computed off-line ([9]). The
cost functional J [x(·), u(·)] is approximated by the Gauss-
Lobatto integration rule,

J̄N (x̄N , ūN ) =
N∑
k=0

F (x̄Nk, ūNk)wk + E(x̄N0, x̄NN )

where wk are the LGL weights[9]. The approximation is so
accurate that it has zero error if the integrand function is a
polynomial of degree less than or equal to 2N − 1, a degree
that almost double the number of nodes [9]. Now, we are
ready to define a PS discretization of Problem B.

For any integer m1 > 0, let
{aN0 (m1), aN1 (m1), · · · , aNN−r−m1+1(m1)} denote the
sequence of spectral coefficients (the coefficients in the
Legendre series) for the interpolation polynomial of the
vector x̄Nr (DT )m1 . Note that the interpolation of x̄Nr (DT )m1

equals the polynomial of dm1xN
r (t)

dtm1 . Thus, there are only
N − r−m1 + 2 nonzero spectral coefficients because it can
be proved that the order of dm1xN

r (t)
dtm1 is at most degree of

N − r−m1 + 1. They depend linearly on x̄Nr [18]. The PS
discretization of Problem BNis defined as follows.

Problem BN Find x̄Nk ∈ <r and ūNk ∈ <, k =
0, 1, . . . , N , that minimize

J̄N (x̄N , ūN ) =
∑N
k=0 F (x̄Nk, ūNk)wk + E(x̄N0, x̄NN )

(7)
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subject to

D(x̄N1 )T = (x̄N2 )T

D(x̄N2 )T = (x̄N3 )T
...

D(x̄Nr−1)T = (x̄Nr )T

D(x̄Nr )T =

 f(x̄N0) + g(x̄N0)ūN0

...
f(x̄NN ) + g(x̄NN )ūNN


(8)

x̄N0 = x0 (9)

b ≤
[
x̄Nk

ūNk

]
≤ b̄, 0 ≤ k ≤ N (10)

bj ≤
[

1 0 · · · 0
]
Dj(x̄Nr )T ≤ b̄j (11)

1 ≤ j ≤ m1 − 1,m1 ≥ 2
N−r−m1+1∑

n=0

|aNn (m1)| ≤ d (12)

Comparing to Problem B, (8) is the discretization of
the control system defined by the differential equation. The
constraint (11) assures that the derivative of the interpolation
up to the order of m1 is bounded. It is proved in the
following sections that the integer m1 is closely related to
the convergence rate. The inequalities (10), (11) and (12) are
additional constraints that do not exist in Problem B. It can
be proved that these additional constraints do not affect the
feasibility of Problem BN. It is important to emphasize that
these constraints do not impose assumptions or limitations to
Problem B. They simply regulate the region in which an ap-
proximate solution is being searched. The family of problems
that can be solved is not limited by these constraints. These
additional constraints are necessary for several reasons. In
practical computation, nonlinear programming solvers al-
ways require a bounded region (10) for the searching of an
optimal solution. The constraints (11) and (12) are necessary
to avoid the restrictive consistent approximation assumption
made in [15]. At a more fundamental level, the order of
derivatives, m1 in (11) and (12), determines the convergence
rate of the approximate optimal control. Another interesting
fact that amply justify these additional constraints is that
Problem BN may not even have an optimal solution if we
do not enforce (10). This is shown by the following counter
example.

Example 1: Consider the following problem of optimal
control.

min
(x(·),u(·))

∫ 1

−1

(x(t)− u(t))2

u(t)4
dt

ẋ = u (13)
x(−1) = e−1

It is easy to check that the optimal solution is u = et, x(t) =
et and the optimal cost value is zero. Although the solution to
the problem (13) is simple and analytic, the PS discretization

of (13) does not have an optimal solution if the constraint
(10) is not enforced. To prove this claim, consider the PS
discretization,

min
(x̄N ,ūN )

J̄N (x̄N , ūN ) =
N∑
k=0

(x̄Nk −Dk(x̄N )T )2

(Dk(x̄N )T )4 wk

D(x̄N )T = (ūN )T (14)
x̄N0 = e−1

where Dk is the kth row of the differentiation matrix D.
Let xN (t) be the interpolation polynomial of x̄N , then it is
obvious that x̄N (t)− ˙̄xN (t) 6≡ 0. Thus, there exists k so that
x̄Nk −Dk(x̄N )T 6= 0. So,

J̄N (x̄N , ūN ) > 0 (15)

for all feasible pairs (x̄N , ūN ). For any α > 0, define
x̄Nk = e−1 + α(tk + 1). The interpolation of x̄N is the
linear polynomial xN (t) = e−1 + α(t+ 1). Then,

Dk(x̄N )T = ẋN (tk) = α

The cost function is

J̄N (x̄N , ūN ) =
N∑
k=0

(e−1 + αtk)2

α4
wk

≤
N∑
k=0

(e−1 + α)2

α4
wk = 2

(e−1 + α)2

α4

Therefore, J̄N (x̄N , ūN ) can be arbitrarily small as α ap-
proaches ∞. However, J̄N (x̄N , ūN ) is always positive as
shown by (15). We conclude that the discretization (14) has
no minimum value for J̄N (x̄N , ūN ).

III. RATE OF CONVERGENCE

Problem BN has several bounds in its definition, b, b̄,
bj , b̄j , and d. These bounds can be selected from a range
determined by Problem B. The constraints b and b̄ are lower
and upper bounds so that the optimal trajectory of Problem
B is contained in the interior of the region. Suppose Problem
B has an optimal solution (x∗(t), u∗(t)) in which (x∗r(t))

(m)

has bounded variation for some m ≥ 3, where x∗r(t) is
the rth component of the optimal trajectory. Suppose m1

in Problem BN satisfies 2 ≤ m1 ≤ m − 1. Then, we can
select the bounds bj and b̄j so that (x∗r(t))

(j) is contained
in the interior of the region. For d, we assume

d >
6√
π

(U(x∗r
(m1+1)) + V (x∗r

(m1+1)))ζ(3/2)(16)

where U(x∗r
(m1+1)) is the upper bound and V (x∗r

(m1+1))
is the total variation of x∗r

(m1+1) (t); and ζ(s) is the ζ
function. If all the bounds are selected as above, then it
can be proved that Problem BN is always feasible provided
m ≥ 2 (the proof is omitted for the reason of space).
Note that in practical computation, b, b̄, bj , b̄j , and d are
unknown. They must be estimated based upon experience or
other information about the system. However, we would like
to point out that in most engineering problems that we solved
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using PS methods, the sequence of optimal solutions satisfy
all the bounds without specifically enforcing the constraints
(11) and (12) in the computation. This is because that the
nonlinear programming seeks for optimal solutions with
minimum cost that generally rules out unbounded discrete
trajectories automatically. The constraint (10) is always en-
forced in the computation as a required bound for nonlinear
programming solvers.

Theorem 1: Suppose Problem B has an optimal solution
(x∗(t), u∗(t)) in which the strong derivative (x∗r(t))

(m) has
a bounded variation for some m ≥ 3. In Problem BN, select
m1 and α so that 1 ≤ m1 ≤ m − 1 and 0 < α < m1 −
1. Suppose f(·), g(·), and F (·) are Cm. Suppose all other
bounds in Problem BN are large enough. Given any sequence

{(x̄∗N , ū∗N )}N≥N1 (17)

of optimal solutions of Problem BN. Then the approximate
cost converge to the optimal value at the following rate∣∣J(x∗(·), u∗(·))− J(x∗N (·), u∗N (·))

∣∣ ≤ M1

N2m−2m1−1
+
M2

Nα

(18)∣∣J(x∗(·), u∗(·))− J̄N (x̄∗N , ū∗N )
∣∣ ≤ M1

N2m−2m1−1
+
M2

Nα

(19)
where M1 and M2 are some constants independent of N .
In (18), (x∗N (t), u∗N (t)) is the interpolation of (17) defined
by (4)-(5). In fact, x∗N (t) is the trajectory of (2) under the
control input u∗N (t).

Remark 3.1: Theorem 1 implies that the costs of any
sequence of discrete optimal solutions must converge to
the optimal cost of Problem B, no matter the sequence
of the discrete state and control trajectories converge or
not. In other words, it is possible that the sequence of
discrete optimal controls does not converge to a unique
continuous-time control; meanwhile the costs using these
approximate optimal controls converge to the true optimal
cost of Problem B. Therefore, this theorem does not require
the local uniqueness of solutions for Problem B.

Remark 3.2: If f(·), g(·), F (·) and x∗r(t) are C∞, then
we can select m and m1 arbitrarily large. In this case, we
can make the optimal cost of Problem BNconverge faster
than any given polynomial rate.

The proof is convoluted that involves results from sev-
eral different areas, including nonlinear functional analysis,
orthogonal polynomials, and approximation theory. The fol-
lowing lemma is standard in functional analysis [19].

Lemma 1: Suppose J takes a local minimum value at u∗.
Suppose J has second order Fréchet derivative at u∗. Then,

J (u∗ + ∆u) = (J ′′(u∗)∆u)∆u+ o(||∆u||2)
The rate of convergence for the spectral coefficients can

be estimated by the following Jackson’s Theorem.
Lemma 2: (Jackson’s Theorem [20]) Let h(t) be of

bounded variation in [−1, 1]. Define

H(t) = H(−1) +
∫ t

−1

h(s)ds

then {an}∞n=0, the sequence of spectral coefficients of H(t),
satisfies the following inequality

an <
6√
π

(U(h(t)) + V (h(t)))
1

n3/2

for n ≥ 1.
Given a continuous function h(t) defined on [−1, 1]. Let

p̂N (t) be the best polynomial of degree N , i.e. the N th order
polynomial with the smallest distance to h(t) under || · ||∞
norm. Let INh(t) be the polynomial interpolation using the
value of h(t) at the LGL nodes. Then,

Lemma 3: ([9] or [10])

||h(t)− INh||∞ ≤ (1 + ΛN )||h(t)− p̂N (t)||∞

where ΛN is called Lebesgue constant. It satisfies

ΛN ≤
2
π
log(N + 1) + 0.685 · · ·

The best polynomial approximation represents the closest
polynomial to a function under || · ||∞. The error can be
estimated by the following Lemma [9].

Lemma 4: (1) Suppose h(t) ∈ Wm,∞. Let p̂N (t) be the
best polynomial approximation. Then

||p̂N (t)− h(t)||∞ ≤
C

Nm
||h(t)||Wm,∞

for some constant C independent of h(t), m and N .
(2) If h(t) ∈Wm,2, then

||h(t)− PNh(t)||∞ ≤
C||h(t)||Wm,2

Nm−3/4

where PNh is the N-th order truncation of the Legendre
series of h(t).
(3) If h(t) has the m-th order strong derivative with a
bounded variation, then

||h(t)− PNh(t)||∞ ≤
CV (h(m)(t))
Nm−1/2

The following are lemmas proved specifically for PS
optimal control methods.

Lemma 5: (i) For any trajectory, (x̄N , ūN ), of the dynam-
ics (8), the pair (xN (t), uN (t)) defined by (4)-(5) satisfies
the differential equations defined in (2). Furthermore,

x̄Nk = xN (tk), ūNk = uN (tk), k = 0, · · · , N (20)

(ii) For any pair (xN (t), uN (t)) in which xN (t) consists of
polynomials of degree less than or equal to N and uN (t) is a
function, if (xN (t), uN (t)) satisfies the differential equations
in (2), then (x̄N , ūN ) defined by (20) satisfies (8).

(iii) If (x̄N , ūN ) satisfies (8), then the degree of xNi (t) is
less than or equal to N − i+ 1.

Proof: (i) Suppose (x̄N , ūN ) satisfies the equations in
(8). Because xN (t) is the polynomial interpolation of x̄N ,
and because of equations (6), we have[

ẋNi (t0) ẋNi (t1) · · · ẋNi (tN )
]

= x̄Ni D
T = x̄Ni+1

=
[
xNi+1(t0) xNi+1(t1) · · · xNi+1(tN )

]
Therefore, the polynomials ẋNi (t) and xNi+1(t) must equal
each other because they coincide at N+1 points and because
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the degrees of xNi (t) and xNi+1(t) are less than or equal
to N . In addition, (5), the definition of uN (t), implies the
last equation in (2). So, the pair (xN (t), uN (t)) satisfies
all equations in (2). Now, we prove (20). Because xN (t)
is an interpolation of x̄N , we know x̄Nk = xN (tk) for
0 ≤ k ≤ N . From (5),

uN (tk) =
ẋNr (tk)− f(xN (tk))

g(xN (tk))
=
ẋNr (tk)− f(x̄Nk)

g(x̄Nk)
(21)

Because of (6), (21) is equivalent to[
uN (t0) uN (t1) · · · uN (tN )

]T =

diag
(

1
g(x̄N0)

, · · · , 1
g(x̄NN )

)D(x̄Nr )T −

 f(x̄N0)
...

f(x̄NN )




Comparing to the last equation in (8), it is obvious that
uN (tk) = ūNk. So, (20) holds true. Part (i) is proved.

(ii) Assume (xN (t), uN (t)) satisfies the differential equa-
tions in (2). Because xN (t) are polynomials, (6) implies

x̄Ni D
T =

[
ẋNi (t0) ẋNi (t1) · · · ẋNi (tN )

]
(22)

=
[
xNi+1(t0) xNi+1(t1) · · · xNi+1(tN )

]
= x̄Ni+1

Furthermore,

x̄Nr D
T =

[
ẋNr (t0) ẋNr (t1) · · · ẋNr (tN )

]
=
[
f(xN (t0)) + g(xN (t0))uN (t0) · · ·

]
Equations (22) and (23) imply that (x̄N , ūN ) satisfies (8).
Part (ii) is proved.

(iii) We know that the degree of xN1 (t), the interpolation
polynomial, is less than or equal to N . From (i), we know
xN2 (t) = ẋN1 (t). Therefore, the degree of xN2 (t) must be less
than or equal to N − 1. In general, the degree of xNi (t) is
less than or equal to N − i+ 1.

Lemma 6: Suppose {(x̄N , ūN )}∞N=N1
is a sequence sat-

isfying (8), (10), (11) and (12), where m1 ≥ 1. Then,{
||(xN (t))(l)||∞

∣∣∣N ≥ N1, l = 0, 1, · · · ,m1

}
is bounded. If f(x) and g(x) are Cm1−1, then{

||(uN (t))(l)||∞
∣∣∣N ≥ N1, l = 0, 1, · · · ,m1 − 1

}
is bounded.

Proof: Consider (xNr (t))(m1). From Lemma 5, it is a
polynomial of degree less than or equal to N − r−m1 + 1.

(xNr (t))(m1) =
N−r−m1+1∑

n=0

aNn (m1)Ln(t)

where Ln(t) is the Legendre polynomial of degree n. It
is known that |Ln(t)| ≤ 1. Therefore, (12) implies that
||(xNr (t))(m1)||∞ is bounded by d for all N ≥ N1. Now,
let us consider (xNr (t))(m1−1). From (6) we have,

(xNr (t))(m1−1) = (xNr (t))(m1−1)|t=−1 +
∫ t

0
(xNr (s))(m1)ds

=
[

1 0 · · · 0
]
Dm1−1(x̄Nr )T +

∫ t
0
(xNr (s))(m1)ds

So, ||(xNr (t))(m1−1)||∞, N ≥ N1, is bounded because of
(11). Similarly, we can prove all derivatives of xNr (t) of order
less than m1 are bounded. The same approach can also be
applied to prove the boundedness ofuN (t). Because f(x)
and g(x) have continuous derivatives of order less than or
equal to m1 − 1, the boundedness of{

||(uN (t))(l)||∞
∣∣∣N ≥ N1, j = 0, 1, · · · ,m1 − 1

}
follows the boundedness of (xNr (t))(l) proved above.

Given any function h(t) defined on [−1, 1]. In the fol-
lowing, U(h) represents an upper bound of h(t) and V (h)
represents the total variation.

Lemma 7: Let (x(t), u(t)) be a solution of the differential
equation (2). Suppose x

(m)
r (t) has bounded variation for

some m ≥ 2. Let m1 be an integer satisfying 1 ≤ m1 ≤
m − 1. Then, there exist constants M > 0 and N1 > 0 so
that for each integer N ≥ N1 the differential equation (2)
has a solution (xN (t), uN (t)) in which xN (t) consists of
polynomials of degree less than or equal to N . Furthermore,
for i = 1, · · · , r; l = 1, · · · ,m1, the pair (xN (t), uN (t))
satisfies

||xNi (t)− xi(t)||∞ ≤
M ||xr||Wm,2

N (m−m1)−3/4
, (23)

||(xNr (t))(l) − (xr(t))(l)||∞ ≤
M ||xr||Wm,2

N (m−m1)−3/4
, (24)

||uN (t)− u(t)||∞ ≤
M ||xr||Wm,2

N (m−m1)−3/4
(25)

Furthermore, the spectral coefficients of (xNr )(m1)(t) satisfy

|aNn (m1)| ≤ 6(U(x(m1+1)
r ) + V (x(m1+1)

r ))√
πn3/2

, (26)

for n = 1, 2, · · · , N−r−1. If f(x) and g(x) have Lipschitz
continuous Lth order derivatives for some L ≤ m1−1, then

||(uN (t))(l) − (u(t))(l)||∞ ≤
M ||xr||Wm,2

N (m−m1)−3/4
, l = 1 : L (27)

Furthermore,

xN (−1) = x(−1)
uN (−1) = u(−1), If m1 ≥ 2 (28)

Remark 3.3: In this lemma, if xr(t) has the m-th order
strong derivative and x(m)

r (t) has bounded variation for some
m ≥ 2, then the inequalities (23), (24), and (25) are slightly
tighter.

||xNi (t)− xi(t)||∞ ≤
M ||xr||Wm,2

N (m−m1)−1/2
, (29)

||(xNr (t))(l) − (xr(t))(l)||∞ ≤
M ||xr||Wm,2

N (m−m1)−1/2
, (30)

||uN (t)− u(t)||∞ ≤
M ||xr||Wm,2

N (m−m1)−1/2
(31)

The proof is identical as that of Lemma 7 except that the
error estimation in (3) of Lemma 4 is used.

Proof: Consider the Legendre series

(xr)(m1)(t) ∼
N−r−m1+1∑

n=0

aNn (m1)Ln(t)
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Define a sequence of polynomials xN1 (t), · · · , xNr+m1
(t),

xNr+m1
(t) =

N−r−m1+1∑
n=0

aNn (m1)Ln(t)

xNr+m1−1(t) = (xr)(m1−1)(−1) +
∫ t

−1

xNr+m1
(s)ds

...

xNr+1(t) = ẋr(−1) +
∫ t

−1

xNr+2(s)ds

xNi (t) = xi(−1) +
∫ t

−1

xNi+1(s)ds, for 1 ≤ i ≤ r

uN (t) =
xNr+1(t)− f(xN (t))

g(xN (t))

From the definition of xN (t), we have xN (−1) = x(−1).
If m1 ≥ 2, then xr+1(−1) = ẋr(−1). From the definition
of uN (t), we know uN (−1) = u(−1) provided m1 ≥ 2.
Therefore, (xN (t), uN (t)) satisfies (28). It is obvious that
xNi (t) is a polynomial of degree less than or equal to N ;
and (xN (t), uN (t)) satisfies the differential equation (2).
Because we assume V (x(m)

r ) < ∞, we have x
(m)
r ∈ L2.

From Lemma 4

||xNr+m1
(t)− x(m1)

r (t)||∞ =

||x(m1)
r (t)−

N−r−m1+1∑
n=0

aNn (m1)Ln(t)||∞ ≤
C1||xr||Wm,2

N−(m−m1)+3/4

for some constant C1 > 0. Therefore,

|xNr+m1−1(t)− (xr)(m1−1)(t)|

≤
∫ t

−1

|xNr+m1
(s)− (xr)(m1)(s)|ds

≤ 2C1||xr||Wm,2N−(m−m1)+3/4

Similarly, we can prove (23) and (24).
To prove (26), note that the spectral coefficient aNn (m1)

of (xNr )(m1)(t) is the same as the spectral coefficients of
(xr)(m1)(t). From Jackson’s Theorem (Lemma 2), we have

|aNn (m1)| < 6√
π

(U(x(m1+1)
r ) + V (x(m1+1)

r ))
1

n3/2

Because f and g are Lipschitz continuous. In a bounded
set around x(t), g(x) > α > 0 for some α > 0. Therefore,
the function

s− f(x)
g(x)

is Lipschitz in a neighborhood of (x, s), i.e. there exists a
constant C2 independent of N such that

|uN (t)− u(t)| =∣∣∣xN
r+1(t)−f(xN (t))

g(xN (t))
− ẋr(t)−f(x(t))

g(x(t))

∣∣∣ ≤ C2(|xNr+1(t)
−ẋr(t)|+ |xN1 (t)− x1(t)|+ · · ·+ |xNr (t)− xr(t)|)

(32)
Hence, (25) follows (23), (24) and (32) when l = 0.
Similarly, we can prove (27) for l ≤ L.

Now, we are ready to prove Theorem 1.
Proof of Theorem 1: Let (x∗(t), u∗(t)) be an optimal

solution to Problem B. According to Lemma 7 and Remark
3.3, for any positive integer N that is large enough, there
exists a pair of functions (x̂N (t), ûN (t)) in which x̂N (t)
consists of polynomials of degree less than or equal to N .
Furthermore, the pair satisfies the differential equation with
initial conditions in Problem B and

||x̂N (t)− x∗(t)||∞ <
L

Nm−m1−1/2
(33)

||ûN (t)− u∗(t)||∞ <
L

Nm−m1−1/2
(34)

||(x̂Nr (t))(l) − (x∗r(t))
(l)||∞ <

L

Nm−m1−1/2
, (35)

where 1 ≤ l ≤ m1. If we define

ˆ̄uNk = ûN (tk), ˆ̄xNk = x̂N (tk)

Then {(ˆ̄xN , ˆ̄uN )} satisfies (8) and (9) (Lemma 5 and 7).
Because x̂Nr (t) is a polynomial of degree less than or equal
to N and because of (6), we know (x̂Nr (t))(j) equals the
interpolation polynomial of ˆ̄xNr (DT )j . So,[

1 0 · · · 0
]
Dj(ˆ̄xNr )T = (x̂Nr (t))(j)|t=−1

Therefore, (35) implies (11) if the bounds bj and bj are large
enough. In addition, the spectral coefficients of ˆ̄xNr (DT )m1

is the same as the spectral coefficients of (x̂Nr (t))(m1). From
(26), (16), and the definition of ζ function, we have

N−r−m1+1∑
n=0

|aNn (m1)| ≤ d

So, the spectral coefficients of (x̂Nr )(m1) satisfies (12). Be-
cause we select b and b̄ large enough so that the optimal tra-
jectory of the original continuous-time problem is contained
in the interior of the region, then (33) and (34) imply (10) for
N large enough. In summary, we have proved that (ˆ̄xN , ˆ̄uN )
is a discrete feasible trajectory satisfying all constraints, (8)-
(12), in Problem BN.

The cost J(x∗(·), u∗(·)) can be considered as a functional,
denoted by J (u). Because all the functions in Problem B
are Cm with m ≥ 2, we know that J (u) has second order
Fréchet derivative. By Lemma 1

|J(x∗(·), u∗(·))− J(x̂N (·), ûN (·))| = |J (u∗)− J (ûN )|

≤ C1(||u∗ − ûN ||2
Wm1−1,∞) ≤ C2

N2m−2m1−1

(36)
for some constant numbers C1 and C2 (34).

Now, consider F (x̂N (t), ûN (t)) as a function of t. Let
FN (t) represent the polynomial interpolation of this function
at t = t0, t1, · · · , tN . Let p̂(t) be the best polynomial approx-
imation of F (x̂N (t), ûN (t)) under the norm of L∞[−1, 1].

|J(x̂N (·), ûN (·))− J̄N (ˆ̄xN , ˆ̄uN )|
=
∣∣∣∫ 1

−1
F (x̂N (t), ûN (t))dt−

∫ 1

−1
FN (t)dt

∣∣∣
≤
∫ 1

−1
|F (x̂N (t), ûN (t))− FN (t)|dt

≤ 2(1 + ΛN )||p̂(t)− F (x̂N (t), ûN (t))||∞
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where

ΛN ≤
2
π
log(N + 1) + 0.685 · · · (37)

is the Lebesgue constant. The inequality (III) is a corollary of
Lemma 3. Because f(·), g(·), and F (·) are Cm, it is known
(Lemma 4) that the best polynomial approximation satisfies

||p̂(t)−F (x̂N (t), ûN (t))||∞ ≤
C3||F (x̂N (t), ûN (t))||Wm1−1,∞

Nm1−1

Because of Lemma 6, {||F (x̂N (t), ûN (t))||Wm1−1,∞ |N ≥
N1} is bounded. Therefore,

|J(x̂N (·), ûN (·))− J̄N (ˆ̄xN , ˆ̄uN )| ≤ (1 + ΛN )C4

Nm1−1
≤ C5

Nα

(38)
for some constant numbers C4 and C5 independent of N and
any α < m1 − 1. Let

{(x̄∗N , ū∗N )}∞N=N0
(39)

be a sequence of optimal discrete solutions. Its interpolation
is denoted by (x∗N (t), u∗N (t)). Then, similar to the deriva-
tion above, we can prove

|J(x∗N (·), u∗N (·))− J̄N (x̄∗N , ū∗N )|
≤ 2(1 + ΛN )||pN (t)− F (x∗N (t), u∗N (t))||∞ (40)

≤ C6(1 + ΛN )
Nm1−1

||F (x∗N (t), u∗N (t))||Wm1−1,∞

where pN (t) is the best polynomial approximation of
F (x∗N (t), u∗N (t)) with degree less than or equal to N .
Because of Lemma 6, ||F (x∗N (t), u∗N (t))||Wm1−1,∞ |N ≥
N1} is bounded. So

|J(x∗N (·), u∗N (·))− J̄N (x̄∗N , ū∗N )| ≤ C7

Nα
(41)

for some constant C7 > 0. Now, we are ready to piece
together the puzzle of inequalities and finalize the proof.

J(x∗(·), u∗(·))

≤ J(x∗N (·), u∗N (·))
(

(x∗N (t), u∗N (t)) is a feasible
trajectory (Lemma 5)

)
≤ J̄N (x̄∗N , ū∗N ) +

C7

Nα
( inequality (41))

≤ J̄N (x̂N , ûN ) +
C7

Nα

(
(x̂N , ûN ) is a feasible discrete
trajectory and (x̄∗N , ū∗N ) is optimal

)
≤ J(x̂N (·), ûN (·)) +

C5

Nα
+
C7

Nα
( inequality (38))

≤ J(x∗(·), u∗(·)) +
C2

N2m−2m1−1

+
C5

Nα
+
C7

Nα
( inequality (36))

Therefore,

0 ≤ J(x∗N (·), u∗N (·))− J(x∗(·), u∗(·))

≤ C2

(N − r −m1 − 1)2m−2m1−1
+
C5

Nα
+
C7

Nα

This inequality implies (18). Furthermore, (18) and (41)
imply (19). 2

IV. CONCLUSION

According to Theorem 1, the rate of convergence for
the optimal cost is determined by both m and m1. It can
be proved that the optimal selection of m1 results in a

convergence rate of at least
1

N
2(m−1)

3 −1
. The proof is based

on basic algebra; and it is omitted in this paper for the reason
of space.
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