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Abstract— We consider a decentralized distributed estimator
for a formation of agents described with a discrete-time LTI
system. Due to the decentralized structure, the estimator may
contain poles invariant with respect to local agents’ observer
gains. We prove that under mild observability assumptions
there exists a communication topology and transmitter-receiver
gains which allow assigning all the poles of the distributed
estimator. We also propose an algorithm for the design of a
minimal communication topology which guarantees closed-loop
pole assignability.

I. INTRODUCTION

Decentralized and distributed estimation is one of the long-
standing problems in engineering. Being closely connected
to a decentralized control problem it has been a topic of
research for many decades. In recent years the problem has
been addressed with new interest and enthusiasm due to
advances in communication and sensor technologies. The
areas of application, just to mention a few, span from
formation and vehicle platoon control problems [3], [4], [6]
to sensor networks and distributed power systems [5], [11].
One of the main issues in the analysis and design of the
decentralized and distributed control and estimation systems
was shown to be the structure of information flow and prop-
erties of the communication between various components
of a system. The communication constraints are critical in
defining stability properties of a system and limitations on
the achievable performance [3], [6], [11].

In this paper we consider the problem of the design of a
distributed decentralized estimator for a class of discrete lin-
ear time-invariant systems introduced by Smith and Hadaegh
in [6]. In our previous papers [7], [8] we have developed
techniques for synthesis of the distributed decentralized
estimator. In this paper we address the question of feasibility
of the design problem and analyze structural properties of the
considered class of systems. Due to the constraints of the
decentralized distributed structure, the closed-loop system
consisting of local agents’ state feedbacks and estimators
may contain fixed modes - eigenvalues of the system which
are invariant under the structured feedback. Existence of
fixed modes in the system results in infeasibility of the design
problem if the modes are unstable or imposes constraints on
the system performance if they are stable. We show that we
can eliminate the fixed modes by introducing communication
between agents and propose a method which allows us to do
this with minimal communication.
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The main result of the paper is a proof that under natural
observability assumptions it is always possible to design a
communication topology and choose transmitter and receiver
gains for inter-agent communication links that guarantee
assignability of all eigenvalues of the distributed decentral-
ized estimator. A condition required to ensure assignability of
the poles is that the formation dynamics should be observable
from the collective measurements of all agents. This is a
fairly mild and practical condition since agents usually have
an access only to some local measurements, each agent’s
own position and velocity, for example, and cannot estimate
the collective formation dynamics from only their own local
measurements. At the same time if the formation dynamics is
not observable from all agents collectively even a centralized
estimator is not guaranteed to be stable. To establish our
result we use a method developed by Anderson and Clements
[1] for algebraic characterization of fixed modes in the
system with decentralized output feedback and exploit the
structure of the proposed decentralized estimator.

Our main proof leads naturally to the procedure for
elimination of the fixed modes. We develop a method which
allows elimination of all fixed modes in the dynamics of
the distributed estimator by introducing communication be-
tween agents with the minimum number of communication
links in a topology and the minimum dimension of the
communication signals. The elimination procedure consists
of several steps with algebraic conditions which can be
easily programmed in an automatic routine. To illustrate the
application of the proposed method we develop an example
with a formation of two agents. The distributed estimator
of the example system has an unstable fixed mode when
agents are using only their own local measurements for
the estimation. The introduction of a communication link
eliminates the fixed mode.

In next section we describe the class of systems we
work with and introduce variables and notation necessary
for further analysis. Later we introduce the communication
into the system and derive our main results. In the last two
sections of the paper we describe the proposed elimination
algorithm and show an illustrative example. Throughout the
paper we use the following notation. The identity matrix with
dimension n× n is defined as In and a column vector with
the dimension n and all elements equal to 1 is defined as 1n.
A block diagonal matrix B with submatrices Bi, i = 1, ..., n
on the diagonal is denoted by B = diag(B1, ..., Bn). The
matrix B′ is the transpose of B. The symbol ⊗ is used to
denote the Kronecker product for matrices.
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II. PROBLEM FORMULATION

We consider discrete LTI systems described by

x(k + 1) = Ax(k) + Buu(k), (1)

where x(k) ∈ IRnx is the system state, u(k) ∈ IRmu is
the actuation input. The state dynamics (1) represent the
collective formation dynamics of N vehicles; the agents of
the formation. The control input is composed of individual
control inputs of each agent, u(k) =

∑N
i=1 ui(k), and ith

agent’s control signal is defined by ui(k) = Πiu(k) ∈ IRmu ,
where Πi is the projection matrix and

∑N
i=1 Πi = I . Note

that this definition of the joint control input, u(k), captures
the situation when u(k) = [ū1(k)′ ū2(k)′ ... ūN (k)′]′ - a
stack of control inputs from all agents, ūi(k) ∈ IRmi , i =
1, ..., N . Each agent measures a signal, yi(k) = Cix(k) ∈
IRkyi – the system output available to agent i. The collected
measurement signal is hence represented by,

y(k) = Cx(k), (2)

where y(k) = [y1(k)′ y2(k)′ ... yN (k)′]′ and C =
[C ′1 C ′2 ... C ′N ]′. Note that the system described by (1), (2)
is similar to the system analyzed in [7] where we proposed a
solution to the synthesis part of the problem. The difference
between these two systems is in the absence of a process
noise in (1) and a measurement noise in (2). Since the
presence of noises in the system model does not influence our
further analysis we have dropped the noises in (1), (2) as well
as a noise in communication signals introduced later. In the
following we introduce a decentralized distributed estimation
structure defined by Smith and Hadaegh in [6].

We assume that a stabilizing state feedback, u(k) =
−Kx(k), which satisfies a formation-wide objective func-
tion, is given and specifies the desired closed-loop dynamics
of the formation through the matrix Aclp = A − BuK.
Since we focus on the estimation part of the problem, we
do not consider a particular method for choice of K. The
formation control law, u(k), is calculated and implemented
by each agent individually using available measurements and
information transmitted from other agents, hence resulting in
a decentralized and distributed architecture. The ith agent’s
control system consists of a combination of a full order for-
mation state estimator which provides local agent’s estimate
of the formation state, x̂i(k) ∈ IRnx , and state feedback
for the calculation of ui(k). As a result, the ith agent’s
contribution to the control input is given by,

ui(k) = −ΠiKx̂i(k). (3)

To be able to approach the distributed estimator design
problem, we first derive the equations describing the com-
plete closed-loop formation dynamics. For simplicity, we
start our derivations for the case where each agent’s estimator
uses only agent’s local measurements to update its formation
state estimate, and then introduce communication in the
estimation structure. If there is no communication between
agents, the state estimator of the ith agent, used to provide
formation state estimate, x̂i(k), is given by,

x̂i(k + 1) = Aclpx̂i(k) + Li(yi(k)− Cix̂i(k)), (4)

where Li is the agent’s estimator gain. We can define an
estimation error for each agent,

ei(k) = x(k)− x̂i(k).

Then the closed-loop plant dynamics are given by,

x(k + 1) = Aclpx(k) + Bu

N∑

i=1

ΠiKei(k). (5)

And the ith estimator error dynamics are,

ei(k + 1) = x(k + 1)− x̂i(k + 1) =

(Aclp − LiCi)ei(k) + Bu

N∑

i=1

ΠiKei(k). (6)

If we collect estimation errors in one vector, e(k) =
[e1(k)′ e2(k)′ ... eN (k)′]′ ∈ IRNnx , we can write the
collected estimation error dynamics which together with (5)
describe the complete dynamics of the closed-loop system,

e(k + 1) = (AM − LfCf )e(k), (7)

where AM = IN ⊗ Aclp + MN , MN = 1N ⊗
[BuΠ1K ... BuΠNK], Lf = diag(L1, ..., LN ), Cf =
diag(C1, ..., CN ).

Analyzing (5) and (7) we see that closed-loop plant dy-
namics are driven by the estimation error and are specified by
the choice of the state feedback gain K in Aclp. The estima-
tion error dynamics (7) are decoupled from (5). The stability
of the collected estimation error and, as a consequence, the
complete closed-loop system depends on the properties of
the matrix AM − LfCf . The block-diagonal matrix LfCf

represents an output feedback term which we may use to
ensure stability of the collected estimation error dynamics
(7). Due to its block-diagonal structure LfCf is naturally
limited in its ability to assign eigenvalues of AM − LfCf .
The system (7) may contain fixed modes, eigenvalues of the
matrix AM which are not affected by the decentralized output
feedback LfCf . Fixed modes are a structural property of a
given system matrix, AM , and decentralized output feedback,
LfCf [9], [10]. It is essential to determine the presence of
fixed modes in our decentralized estimation error dynamics
since, in the best case, they impose the constraints on the
best achievable performance of the decentralized estimator.
In the worst situation, when the fixed modes are unstable,
they result in infeasibility of the estimator design problem.
There are several methods present in the literature which
allow characterization of the fixed modes for the system (7)
[1], [2], [9]. We can apply one of these methods to determine
if there are any fixed modes in the system and if they are
stable. If the system contains deleterious or unstable fixed
modes with respect to LfCf we can try and eliminate them
by introducing communication between agents.

In this paper we prove that there exists a communication
topology with a combination of transmitter-receiver gains
for the network of agents and the estimator gain Lf which
guarantee that there are no fixed modes in the collected
estimation error dynamics if and only if the pair of matrices
A, C for the system (1), (2) is observable. This implies that if
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the observability condition is satisfied, we are able to assign
all the eigenvalues of the collected estimation error dynam-
ics, and hence ensure stability and improve the performance
of the closed-loop system with the distributed estimation
structure. In addition to that, we propose a simple algebraic
method for the design of inter-agent communication topology
which eliminates the fixed modes with the minimal number
of links in the network and minimal dimension of the
communication signals.

III. COMMUNICATION

To introduce communication in the decentralized distrib-
uted estimation structure we allow agents of the formation
to exchange the information about their formation state
estimates, x̂i(k). This naturally results in the modification
of structural properties of the system. We assume that
the information transmitted between two agents’ estimators
through a single unidirectional communication link can be
represented by,

tij(k) = Hij x̂j(k), (8)

where tij(k) ∈ IRkij is the signal received by estimator
i from estimator j. We assume that the transmitter gain
matrix, Hij ∈ IRkij×nx , and its dimension specified by
kij are to be specified by a designer. This formulation
is motivated by the fact that the dimension of a signal
transmitted thorough a single communication link can be
limited and the limitation is reflected in kij . The ith estimator
can use the received signals and update its state estimate
according to the following model,

x̂i(k + 1) =(A−BuK)x̂i(k) + Li(yi(k)− Cix̂i(k))+∑

j

Fij(tij(k)−Hij x̂i(k)), (9)

where Fij is the receiver gain matrix which corresponds to
Hij and the sum is taken over all signals received by ith

agent.
In order to be able to analyze the structural properties of

the collected estimation error dynamics with the introduced
communication, we define new input and output matrices
describing the communication topology and transmitter-
receiver gains. First, we introduce the output matrix Cij ∈
IRnx×Nnx , i 6= j, which corresponds to a communication
link from agent j to agent i and is defined as follows. It
consists of N nx × nx blocks with zero blocks everywhere
except for I ∈ IRnx×nx in the jth block column and
−I ∈ IRnx×nx in the ith block column. So, for example,
C24 ≡ [0 − I 0 I 0 ... 0]. Note that Cii are not defined
and hence there are N(N − 1) matrices Cij in total. We
also introduce an output matrix used to describe information
transmitted by agent j to all other N − 1 agents,

Cj ≡
[
C′1j C′2j ... C′Nj

]′ ∈ IR(N−1)nx×Nnx . (10)

And the collected output matrix describing the complete
set of possible communication links from all agents of the
formation, C ≡ [C′1 C′2 ... C′N ]′ ∈ IRN(N−1)nx×Nnx . In
the similar way we define input matrices Bij ∈ IRNnx×nx ,

i 6= j, which consist of N nx × nx blocks with zero
blocks everywhere except for I ∈ IRnx×nx in the ith

block row. Note that Bii are also not defined and, for
example, B2j ≡ [0 I 0 ... 0] for any j = 1, 3, 4, ..., N .
We also define the input matrix which corresponds to
outgoing links of agent j, Bj ≡ [B1j B2j ... BNj ] ∈
IRNnx×(N−1)nx . And the collected input matrix,
B ≡ [B1 B2 ... BN ] ∈ IRNnx×N(N−1)nx corresponding
to the complete set of possible received signals. Finally,
we introduce the collected receiver gain matrix, Ff =
diag(F1, F2, ... FN ) ∈ IRN(N−1)nx×

PN
i=1

PN
j=1 kij , where

Fj = diag(F1j , F2j , ..., FNj) ∈ IR(N−1)nx×
PN

i=1 kij

contains the receiver gains of the agents receiving
signals from the jth agent, and Fij ∈ IRnx×kij , i 6= j.
And the collected transmitter gain matrix, Hf =
diag(H1, H2, ..., HN ) ∈ IR

PN
i=1

PN
j=1 kij×N(N−1)nx ,

where Hj = diag(H1j , H2j , ..., HNj) ∈
IR
PN

i=1 kij×(N−1)nx , contains transmitter gains of the
jth agent, and Hij ∈ IRkij×nx , i 6= j. The introduced
notation allows specification of all possible communication
interconnections in the formation with different transmitter-
receiver gains, Hij , Fij , assigned for each individual link. If
there is no communication link between agent j and agent
i, then FijHij = 0nx×nx .

With the introduced notation, we can rewrite the equation
for the collected estimation error dynamics of the formation
of agents with the communication between estimators as,

e(k + 1) =(AM − LfCf − BFfHfC)e(k) (11)

=
(

AM − [I B]
[

Lf 0
0 FfHf

] [
Cf

C

])
e(k).

As we can see from equation (11), communication between
agents introduces a new output feedback term, BFfHfC, in
the collected estimation error dynamics. Although this term
is potentially a full matrix, if all agents of the formation
communicate with each other then there are no zero blocks
in BFfHfC, it has structural constraints imposed by blocks
of the output matrix C and it is not obvious that we can freely
assign all Nnx eigenvalues of the collected estimation error
dynamics (11), even with a complete communication.

So far we have defined fixed modes for the system
(7) as the eigenvalues of the system matrix AM invariant
with respect to the decentralized output feedback LfCf .
Similarly we can define fixed modes of the system (11) as
the eigenvalues of the matrix AM invariant with respect to
the combined output feedback introduced by local agents’
measurements, LfCf , and the inter-agent communication,
BFfHfC. It is clear that the presence of a fixed mode in the
system (11) is equivalent to existence of λ ∈ eig(AM ) such
that for any Lf , Hf , and Ff , there exists v 6= 0 and,

(λI − (AM − LfCf − BFfHfC))v = 0.

To prove that there are no fixed modes in the system (11), we,
first, have to establish an important observability condition
summarized in the following lemma.
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Lemma 1: The pair A, C is observable if and only if the

pair AM ,
[

Cf

C

]
is observable.

Lemma 1 can be proved with straight forward matrix
manipulations and we omit it here due to space limitations.
Now we can establish the main result guaranteeing that with
enough communication between agents we can assign all
eigenvalues of the estimation error dynamics (11).

Theorem 1: There exists a communication topology and
observer Lf , transmitter Hf , and receiver Ff gain matrices
which assign all Nnx poles of the collected estimation error
dynamics (11) if and only if the pair A, C is observable.

Proof. First, we prove the sufficiency part of the theorem.
As stated in Lemma 1, observability of the pair A, C is

equivalent to observability of the pair AM ,
[

Cf

C

]
. This

result bound together with an observation that the pair
AM , [I B] is always controllable since rank([I B]) =
Nnx, allows us to use Theorem 4.1, [1] established by
Anderson and Clements for guaranteeing assignability of
the eigenvalues. To proceed with the proof, we partition
the input matrix [I B] into block columns, B̄i, i ∈ S ≡
{1, ..., N + N(N + 1)}, where each block corresponds to
an agent’s measurements or a communication link between
two agents. With the introduced partition BS ≡ [I B] =
[B̄1 ... B̄N B̄N+1 ... B̄N+N(N+1)], where there are N +
N(N − 1) blocks in total, the first N blocks correspond to
agents’ measurements. Last N(N − 1) blocks correspond to
inter-agent communication and, respectively, B̄N+1 ≡ B21,
B̄N+2 ≡ B31, ..., B̄N+N(N+1) ≡ B(N−1)N . We introduce
a similar partition for the block rows of the output matrix

CS ≡
[

Cf

C

]
=

[
C̄ ′1 ... C̄ ′N C̄ ′N+1 ... C̄ ′N+N(N−1)

]′
,

where C̄N+1 ≡ C21, C̄N+2 ≡ C31, ..., C̄N+N(N+1) ≡
C(N−1)N .

Restating the Theorem 4.1 from [1] for the system (11)
and writing it in terms of the introduced variables we arrive
at the following.

For the observable pair AM ,
[

Cf

C

]
and the controllable

pair AM , [I B], rank(λI − (AM − LfCf − BFfHfC)) <
Nnx for all Lf and FfHf and some fixed complex num-
ber λ if and only if there exists a partition of the set
S into two disjoint subsets S1 = {i1, ..., ik} and S2 =
{ik+1, ..., iN+N(N−1)}, S = S1

⋃
S2, S1

⋂
S2 = ∅ such that

rank(MS1,S2) < Nnx, where enumeration of the elements
of the set S is arbitrary and

MS1,S2 =
[

λI −AM BS1

CS2 0

]
.

By definition, a complex number, λ, is a fixed mode of
the system (11) with respect to the output feedback LfCf ,
BFfHfC if rank(λI − (AM −LfCf −BFfHfC)) < Nnx

for all Lf and FfHf . Hence, based on the result stated above,
in order to prove that the system (11) with an observable pair
A, C has no fixed modes with respect to LfCf , BFfHfC,
we need to show that there does not exists a partition
of the set S into two disjoint subsets S1, S2 such that
rank(MS1,S2) < Nnx.

We show that for any disjoint S1 and S2, rank(MS1,S2) =
Nnx independently of matrices λI −AM and Cf . First, we
notice that last N(N−1) blocks, C̄N+i, i = 1, ..., N(N−1)
of the output matrix CS compose the matrix C and are
grouped into N blocks Cj , j = 1, ..., N . Each block Cj has
rank (N−1)nx. If S1 6= ∅ and rank(CS2) = (N−1)nx then
rank(MS1,S2) = Nnx. To see this observe that if S1 6= ∅
then BS1 has at least rank nx. We can reorder the columns
of MS1,S2 and form a square submatrix from the reordered
matrix such that the resulting submatrix has a block upper
triangular structure. The diagonal blocks of the resulting
block upper triangular matrix will consist of a nonzero block
of BS1 of rank nx and nonzero blocks of CS2 of rank
(N−1)nx and hence the resulting matrix is of rank Nnx. In
order to reduce the rank of CS2 we have to eliminate at least
one block row C̄i, and hence corresponding matrices Cij ,
from each Cj and corresponding C, but due to the structure
of C and B such elimination results in appearance of a matrix
of rank 2nx in BS1 . The diagonal blocks of the new block
upper triangular submatrix will have ranks equal to 2nx and
(N−2)nx and hence total rank of the new submatrix is again
Nnx. We can proceed with this argument to the limiting case
when there is only one or no block rows left from each Cj

in CS2 . For these cases rank(BS1) = Nnx. In a case when
S1 = ∅ we return to the observability condition. The above
argument shows that there does not exists disjoint sets S1

and S2 such that rank(MS1,S2) < Nnx. This proves the
sufficiency part of the theorem.

We prove the necessity by converse. Assume that A, C is
unobservable, hence for some eigenvalue of A, λ, there exists

v 6= 0, such that,
[

A− λI
C

]
v = 0. Now we consider,

(λI − (AM − LfCf − BFfHfC))1N ⊗ v,

and observe that LfCf1N ⊗ v = 0 since Civ = 0 for any
i = 1, ..., N and BFfHfC 1N⊗v = 0, because C 1N⊗v = 0
for any v. We arrive at,

(λI −AM )1N ⊗ v = 1N ⊗ (λI −A)v = 0.

This implies that λ and 1N⊗v are an eigenpair of the system
matrix (AM − LfCf − BFfHfC) independent of a choice
of the output feedback gain matrices Lf , FfHf and hence λ
is a fixed mode of the system (11). This proves that if there
are no fixed modes in the system (11) then the pair A, C is
observable.

Theorem 1 proves that with the sufficient communication
we can assign all eigenvalues of the collected estimation
error dynamics (11). Now we describe algorithm which
allows elimination of all fixed modes of the system (7)
by introducing a minimal number of communication links
between agents.

IV. ELIMINATION ALGORITHM

To eliminate the fixed modes of the collected estima-
tion error dynamics by introducing communication between
agents, we treat the transmitter and the receiver gains, Hf ,
Ff , as well as the dimensions of communication signals,
kij ≤ nx, as the design variables. Initially we assume that
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there is no communication between agents. Later, following
the procedure, we will be introducing communication links
by selecting certain columns and rows from the input and
output matrices, B, C, to form input and output matrices
describing the introduced communication. It is important to
notice that while in the proof of the Theorem 1 we operated
with the blocks Cij and hence the links with the dimensions
equal to nx, it is not necessary to use a full dimensional
link to eliminate a fixed mode. By operating with individual
columns and rows of B and C in the elimination procedure
below, we not only define the communication topology, but
also assign the dimensions, kij , of the communication links.
The elimination procedure follows naturally from the proof
of the Theorem 1, and consists of four steps.

First, we characterize the set of the fixed modes of the
system (7). There are several methods present in the literature
[1], [10], [2] which allow calculation of fixed modes of the
system with decentralized output feedback. At this point we
assume that there are mf fixed modes, λ`, ` = 1, ..., mf , in
the system (7) with respect to the output feedback LfCf .

Second, we define the index set Sm ≡ {1, ..., N} and
use it to enumerate the first N blocks, B̄i, C̄i, of the input

matrix, BS = [I B], and the output matrix, CS =
[

Cf

C

]
.

Hence Sm assigns indexes to the blocks of BS and CS

corresponding to local agents’ measurements. Now for each
fixed mode λ` we find all matrices M(λ`)Sm

1 ,Sm
2

,

M(λ`)Sm
1 ,Sm

2
=

[
λ`I −AM BSm

1

CSm
2

0

]
,

where Sm
1 , Sm

2 are all disjoint subsets of Sm. For each λ`

there are 2N − 2 such matrices. For further calculations we
need only matrices M(λ`)Sm

1 ,Sm
2

which have rank less than
Nnx.

At the third step, we use matrices M(λ`)Sm
1 ,Sm

2
defined in

the previous step, with rank(M(λ`)Sm
1 ,Sm

2
) < Nnx to find

communication links eliminating the fixed modes. In order
to find these links we augment the matrices M(λ`)Sm

1 ,Sm
2

with the columns of B and the corresponding rows of C to
check for potential communication. Those combinations of
columns and rows which raise the rank of the augmented ma-
trix to Nnx define communication links eliminating the fixed
modes. For bookkeeping, we define set S̄ ≡ {1, ..., N(N −
1)nx} and use it to enumerate the last N(N−1)nx columns
of the input matrix BS and the last N(N−1)nx rows of the
output matrix CS . S̄ enumerates the columns of BS and the
rows of CS present due to potential communication between
agents and represented in BS and CS through B and C.

For each fixed mode, λ`, we find all subsets of S̄, S̄i(λ`),
i = 1, ...,m` such that each subset S̄i(λ`) contains a mini-
mum number of elements of S̄ and the matrix M(λ`)Sm

1 ,Sm
2

has rank equal to Nnx, when augmented with any disjoint
combination of rows of B and columns of C from S̄i(λ`).
Note that if the rank deficiency of M(λ`)Sm

1 ,Sm
2

is r` ≡
Nnx − rank(M(λ`)Sm

1 ,Sm
2

) then each set S̄i(λ`) contains
only r` elements for any i = 1, ...,m`, because we need
only r` linearly independent columns of B and/or rows of C
to raise the rank to Nnx. Each set S̄i(λ`) uniquely defines

links in the communication topology and the dimensions of
signals eliminating fixed mode at λ`. For each λ` a set S̄i(λ`)
always exists due to Theorem 1.

At the last step we form a joint communication input
matrix B̄ and a joint communication output matrix C̄ by
picking the columns of B and rows of C which correspond
to a joint set S̄c. To find S̄c, we check if there exists a
set S̄i(λ`), i = 1, ..., m`, ` = 1, ..., mf which eliminates
all fixed modes. If such S̄i(λ`) exists then a set of links
necessary to eliminate one of the fixed modes is also suf-
ficient to eliminate all others and we define S̄c ≡ S̄i(λ`).
If such a set does not exist, then we define S̄c such that
it eliminates all fixed modes and S̄c ≡ ⋃`

S̄i(λ`), where
the union is taken over all ` and the subsets S̄i(λ`) for
each ` are chosen to minimize the number of elements in
S̄c. The resulting input and output communication matrices,
B̄, C̄, uniquely define the communication topology which
guarantees assignability of all eigenvalues of the collected
estimation error dynamics with the minimum number of
links between the agents and the minimum dimension of
each communication signal. In order to minimize the number
of links in the topology we should use a different rule for
defining S̄c. Instead of minimizing the number of elements
when forming S̄c, we should try and keep the number of
links corresponding to sets S̄i(λ`) at the minimum.

Note that optimality of the above algorithm is achieved
at the expense of the exhaustive search over all possible
combinations of elements of the set S̄ at the third step and the
search over all sets S̄i(λ`) at the last step of the algorithm.

V. EXAMPLE

To illustrate the application of the ideas described in the
previous sections we consider a simple example. Consider a
system with two agents, N = 2, and the collective formation
dynamics described by,

x(k + 1) =
[

0.25 0
1 1.5

]
x(k) +

[
0 0
0 1

] [
u1(k)
u2(k)

]
,

y1(k) = [1 1]x(k), y2(k) = [1 0]x(k). (12)

The pair A =
[

0.25 0
1 1.5

]
, C =

[
C1

C2

]
=

[
1 1
1 0

]

is clearly observable. We assume that the stabilizing state

feedback for the system is given by K =
[

0 0
0 1

]
with

agents’ control inputs defined through the projection ma-

trices Π1 =
[

1 0
0 0

]
, Π2 =

[
0 0
0 1

]
. The closed-loop

system dynamics are then given by Aclp = A − BuK =[
0.25 0
1 0.5

]
and Aclp has eigenvalues at 0.25 and 0.5.

The collected estimation error dynamics with Lf = 0 is
given by matrix,

AM = IN ⊗Aclp + MN =




0.25 0 0 0
1 0.5 0 1
0 0 0.25 0
0 0 1 1.5


 .

It has two eigenvalues at 0.25, one at 0.5 and one unstable
eigenvalue at 1.5. Now we would like to characterize the set
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of fixed modes of the collected estimation error dynamics
and apply the elimination algorithm if necessary.

First, we would like to check if the collected es-
timation error dynamics has fixed modes with respect
to the distributed output feedback introduced by LfCf .
For that purpose we define the set Sm = {1, 2},
with the first element corresponding to agent 1 and

[C1 01×2],
[

I2×2

02×2

]
output-input matrices, and the sec-

ond element corresponding to agent 2 and the matri-

ces [01×2 C2],
[

02×2

I2×2

]
. We calculate the matrices

M(0.25)1,2, M(0.25)2,1, M(0.5)1,2, M(0.5)2,1, M(1.5)1,2,
and M(1.5)2,1. We find that rank(M(λ`)Sm

1 ,Sm
2

) ≥ Nnx

for all λ = 0.25, 0.5, 1.5 and Sm
1 , Sm

2 except M(1.5)1,2.
For this matrix, rank(M(1.5)1,2) = 3 < Nnx = 4, hence
z = 1.5 is a fixed mode of the collected estimation error
dynamics with respect to the decentralized output feedback
LfCf . z = 1.5 is the only fixed mode of the system.

The original system (12) is observable and by Theorem
1 there exists a communication topology and a combination
of gains which eliminate the fixed mode, hence we proceed
to the second step of the elimination algorithm. We have
already calculated in the previous step matrices M(λ`)Sm

1 ,Sm
2

and defined ones which have rank deficiency. To find the
communication topology which eliminates the fixed mode at
z = 1.5 we need only to consider augmenting the matrix
M(1.5)1,2.

Now we proceed to the third step of the algorithm and
construct the communication input and output matrices for
the system. We define C21 = [−I2 I2], C12 = [I2 − I2],
and B21 = [02 I2]

′, B12 = [I2 02]
′. The collected output

matrix which corresponds to the communication is C =
[C′1 C′2]

′ = [C′21 C′12]
′ and the collected input matrix is

B = [B1 B2] = [B21 B12]. Since rank(M(1.5)1,2) = 3
and the rank deficiency, r = Nnx − 3 = 1, we should
be able to eliminate the fixed mode at z = 1.5 with
only one communication link of a dimension one. This
corresponds to using a single column and a single row
from the communication input and output matrices B, C
respectively. After enumerating columns and corresponding
rows of B and C we check potential sets S̄i(1.5) with only
one element in each set, {1}, {2}, {3}, or {4}. In each pair
of the corresponding disjoints subsets S̄i

1(1.5) or S̄i
2(1.5)

only one of the subsets is not empty since there is only one
element in each potential S̄i(1.5).

Going through calculations we observe that ranks of the
following matrices,

[
M(1.5)1,2

[
B{1}

0

]]
,

[
M(1.5)1,2[
C{1} 01×2

]
]

,

[
M(1.5)1,2

[
B{2}

0

]]
,

[
M(1.5)1,2[
C{2} 01×2

]
]

,

are equal to 4, while ranks of,
[

M(1.5)1,2

[
B{3}

0

]]
,

[
M(1.5)1,2

[
B{4}

0

]]
,

are equal to 3. The first two columns of B and the cor-
responding first two rows of C describing communication
link from agent 1 to agent 2 raise the rank of the above
matrix to Nnx and hence eliminate the fixed mode. We
define S̄1(1.5) = {1}, S̄2(1.5) = {2}. Communication from
agent 2 to agent 1 is not able to eliminate the unstable
fixed mode, because B{3}, B{4}, and hence B{3,4} do not
change the rank of the above matrices. The introduction of
the communication link from agent 1 to agent 2 with nonzero

transmitter and receiver gains H21 = [h1 h2], F21 =
[

f1

f2

]

allows us to assign all eigenvalues of the complete closed-
loop system.

The last step of the elimination algorithm is redundant
since the above system had only one fixed mode.

VI. CONCLUSION

In this paper we showed that if the formation is observable
from the collective output, then there exists a communication
topology and a combination of observer, transmitter and
receiver gains which allow us to assign all the poles of
the decentralized distributed estimator. We also proposed a
method for the design of a minimal communication topology
which eliminates the fixed modes. Although after introducing
the appropriate communication into the estimation structure
we can assign all the poles, it is not clear if we can assign
all poles in arbitrary locations. A further investigation of
structural properties of the system is necessary to answer
that question. Another interesting direction of future research
is investigation of pole assignability in the decentralized
distributed estimator with uncertain communication topology
where communication links are subject to failures.
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