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Abstract— In this article we compute state estimation
schemes for discrete-time Markov chains observed in arbitrary
observation noise. Here we assume the observation noise dis-
tribution is known in advance. Appealing to a fundamental
L

1 convergence result in [1] we propose to represent any
practical observation noise model by a convex combination of
Gaussian densities, that is, a mixture function that is itself a
valid probability density function.

To compute our state estimation schemes we use the tech-
niques of reference probability, (see [2]). Here however, our
Gaussian mixtures appear as sums in a product representation
of Radon-Nikodym derivatives. The state estimation schemes we
compute are; an information state recursion (filter), a general
smoothing theorem, an M -ary detection scheme. A computer
simulation is provided to indicate the performance of our
recursive filter in a non-Gaussian observation noise scenario.

Index Terms— Gaussian-Mixture Distribution, Martingales,
Reference Probability, Filtering, Smoothing, Detection, Viterbi
Algorithms

I. INTRODUCTION

In this work our primary aim is to relax the Gaussian noise

assumption in the observation process model and substitute

a suitably chosen finite Gaussian mixture model. Using this

approach we compute the corresponding filters smoothers,

detection schemes and state-sequence estimation schemes.

The application of a Gaussian mixture approximation in

any setting, naturally raises two important questions, these

are;

1) precisely how accurate is a Gaussian mixture approx-

imation ?

2) how does one fit a Gaussian mixture to a given non-

Gaussian density ?

Question 1 is readily answered by a fundamental Theorem

given by Korevaar in [1], which essentially proves, (roughly

speaking), that any practical probability density can be

approximated arbitrarily closely by a finite Gaussian mixture.

Korevaar’s Theorem effectively provides a compelling case

for Gaussian densities to be used in finite mixture approxi-

mation. Further, the second question has been answered, (in

part), in [3] and [4]. Put briefly, there are several effective

algorithms to determine a suitable parametric mixture.

Our motivation in this work is partly driven by a practical

reality, that is, in many real world scenarios the observation

noise processes are well known to be non-Gaussian. Some

recent examples of this issue in the context of modern

communications are given in the articles: [5], [6], [7] and

[8].
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This article is organised as follows. In §I-A we describe

the classes of dynamics we wish to consider, including some

facts about Gaussian mixtures and the extension of reference

probability to Gaussian mixture scenarios. In sections II, III

and IV, we compute, respectively, Filters, Smoothers and

M -ary detection schemes. Finally, in §V, we consider an

example of the filter performance in a non-Gaussian noise

scenario.

A. State Process Dynamics

Our state processes of interest are time-homogeneous

scalar-valued Markov chains evolving in discrete-time. It is

now standard to identify the state spaces of such processes

with a vector-valued canonical basis of indicator functions.

To this end we label our vector-valued Markov chain by

X =
{
Xk, 0 ≤ k

}
. The state space of X is taken as the

collection of unit vectors in R
n, that is,

S = {e1, e2, . . . ,en} =
{
(1, 0, . . . , 0)′, (0, 1, 0, . . . , 0)′, . . . , (0, 0, . . . , 1)′

}
. (1.1)

Suppose X is defined on the probability space (Ω,F , P ) and

write

a(j,i)
∆
= P (Xk+1 = ej | Xk = ei) = P (X1 = ej |X0 = ei).

(1.2)

To denote the matrix of transition probabilities for the

process X , we write A =
[
a(j,i)

]
1≤j≤n
1≤i≤n

. The information

generated by the state process X is denoted by F0,k
∆
=

σ{X0, X1, . . . , Xk}. Then, (see [9]),

Xk+1 = AXk + Lk+1. (1.3)

Here, the stochastic process L is an increment of the (P,F)-
martingale ϕk =

∑k

ℓ=1 Lℓ.

B. Finite Gaussian Mixtures

DEFINITION 1 A scalar-valued finite Gaussian mixture is

univariate function Ψ(ξ) : R → R+, with the form

Ψ(m)(ξ; Θ) =

m∑

j=1

αjfj

(
ξ; {µj, σ

2
j }
)
. (1.4)

Here, each fj is a Gaussian density with mean µj and

variance σ2
j .

We write Θ =
{
u1, . . . , µm, σ1, . . . , σm

}
. To ensure the

function Ψ(ξ) is itself a valid probability density function,
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the following two constraints must be satisfied:

αj > 0, for each j in the set {1, 2, . . . , m}, (1.5)
m∑

j=1

αj = 1. (1.6)

There are several motivations to use a Gaussian mixture

approximation. Firstly Gaussian densities enjoy many useful

properties. Foremost in state estimation is the fact that any

linear transformation of a Gaussian random variable is again

a Gaussian random variable. However, in addition to the

convenience of working with Gaussian densities, a Gaussian

mixture can be chosen to approximate any arbitrarily closely

any probability density function. This important fact was

established in Korevaar [1]. Korevaar’s Theorem is stated

below.

THEOREM 1 (KOREVAAR) Suppose p is any practical prob-

ability density function and that we wish to approximate p
by a Gaussian mixture of order m. Then, for every ǫ > 0,

∃ m ∈ N, such that

0 ≤
∫

R

|p(ξ) − Ψ(m)(ξ; Θ)|dξ < ǫ. (1.7)

C. Observation Process Dynamics

In the standard formulation the Markov chain X is par-

tially observed through a related sequence y =
{
y0, y1, . . .

}
,

whose dynamics are given by

yk =
〈
Xk, g

〉
+
〈
Xk, d

〉
Vk. (1.8)

Here g = (g1, . . . , gn)′ ∈ R
n, d = (d1, . . . , dn)′ ∈ R

n and

the process V =
{
Vk

}
k≥1

, is a sequence of independent

in identically distributed non-Gaussian random variables. In

what follows we propose to represent the probability density

for the process V by a finite weighted Gaussian mixture

distribution of order m ∈ N.

D. Reference Probability

Notation: Write Φ(ξ) : R → R+ for the standard Gaussian

density

Φ(ξ) =
1√
2π

exp
(
− 1

2ξ2
)
. (1.9)

We define a new probability measure P † on the measurable

space (Ω,F), such that, under P †

1) The dynamics for X remain unchanged.

2) The process y, is independently and identically dis-

tributed and is Gaussian with zero mean and unity

variance.

With the measure P † now defined, we construct a real world

probability measure P , such that under P , the following two

conditions hold.

1) The dynamics for X remain unchanged.

2) The random variables

Vk
∆
=

yk −
〈
Xk, g

〉
〈
Xk, d

〉 , (1.10)

form a sequence of independently and identically dis-

tributed non-Gaussian random variables whose density

function is the mixture density give at (1.4).

DEFINITION 2 For k = 1, 2, . . . ,

λk
∆
=

m∑

j=1

αj

σj

〈
Xk, d

〉Φ
(

yk −
(〈

Xk, g
〉

+ µj

)

σj

〈
Xk, d

〉
)/

Φ(yk)

(1.11)

Λ0,k
∆
=

k∏

ℓ=0

λℓ, λ0 = 1. (1.12)

We introduce the filtrations {Y0,k} = ∪0≤ℓ≤kYℓ, {Fk} =
∪0≤ℓ≤kFℓ and {Gk} = ∪0≤ℓ≤kGℓ, where

Y0,k
∆
= σ

{
y0, y1, . . . , yk

}
, (1.13)

F0,k
∆
= σ

{
X0, X1, . . . , Xk

}
(1.14)

G0,k
∆
= σ

{
X0, X1, . . . , Xk, y0, y1, . . . , yk

}
. (1.15)

The ‘real world’ probability P , is defined in terms of the

probability measure P †, by setting

dP

dP †

∣∣∣
G0,k

∆
= Λ0,k. (1.16)

E. Bayes Rule

DEFINITION 3 Recalling the definitions of G and Y above,

we suppose that γ is any integrable G-adapted process. Then,

the abstract form of Bayes rule states

E
[
γk | Y0,k

]
=

E†
[
Λ0,kγk | Y0,k

]

E†
[
Λ0,k | Y0,k

] . (1.17)

REMARK 1 In practice the denominator on the right hand

side of equation (1.17) is never ”directly calculated”. This

term is in effect a normalising constant and is readily deter-

mined as a basic function of the numerator. For example, if

X is a Markov chain with dynamics (1.3), then we note that

〈
E†
[
Λ0,kXk | Y0,k

]
,1
〉

=
〈
E†
[
Λ0,k

〈
Xk,1

〉
| Y0,k

]
= E†

[
Λ0,k | Y0,k

]
. (1.18)

Here 1 = (1, 1, . . . , 1)′ ∈ R
n.

II. FILTERING

In filtering we are interested to estimate conditional prob-

abilities, at time k, for each of the events Xk = ei, given

the information record Y0,k.

Write

qk
∆
= E†

[
Λ0,kXk | Y0,k

]
∈ R

n
+. (2.19)

THEOREM 2 (FILTER) The recursion for the information

state q, has the form:

qk =
[ m∑

j=1

Bj
k

]
Aqk−1. (2.20)
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Here

Bj
k = diag

i=1,2,...,n

{γ(i,j)
k } ∈ R

n×n
+ (2.21)

and

γ
(i,j)
k =

{
αj

σj

〈
ei, d

〉Φ
(

yk − (
〈
g, ei

〉
+ µj)

σj

〈
d, ei

〉
)/

Φ(yk)

}
.

(2.22)

REMARK 2 In practice the recursion at equation (2.20) is

implemented, however, one is essentially interested in the

corresponding normalised probabilities of the form,

p
(
Xk = ei | Y0,k

)

= E
(
1{

ω|Xk(ω)=ei

} | Y0,k

)
=

〈
qk, ei

〉
〈
qk,1

〉 .
(2.23)

Proof of Theorem 2.

qk
∆
= E†

[
Λ0,kXk | Y0,k

]

= E†
[
Λ0,k−1λk

n∑

i=1

〈
Xk, ei

〉
ei | Y0,k

]

=

n∑

i=1

E†
[
Λ0,k−1λk

〈
Xk, ei

〉
| Y0,k

]
ei

=

n∑

i=1

E†

[
Λ0,k−1

{
m∑

j=1

αj

σj

〈
Xk, d

〉×

Φ

(
yk − (

〈
g, Xk

〉
+ µj)

σj

〈
Xk, d

〉
)/

Φ(yk)

}
〈
Xk, ei

〉
| Y0,k

]
ei

=

n∑

i=1

m∑

j=1

{
αj

σj

〈
ei, d

〉Φ
(

yk − (
〈
g, ei

〉
+ µj)

σj

〈
ei, d

〉
)/

Φ(yk)

}
×

E†

[
Λ0,k−1

〈
Xk, ei

〉
| Y0,k

]
ei

=

n∑

i=1

m∑

j=1

γ
(i,j)
k E†

[
Λ0,k−1

〈
AXk−1 + Lk, ei

〉
| Y0,k

]
ei

=

n∑

i=1

m∑

j=1

γ
(i,j)
k E†

[
Λ0,k−1

〈
AXk−1, ei

〉
| Y0,k−1

]
ei

=

n∑

i=1

m∑

j=1

γ
(i,j)
k

〈
E†

[
Λ0,k−1Xk−1 | Y0,k−1

]
, AT ei

〉
ei

=

n∑

i=1

m∑

j=1

γ
(i,j)
k

〈
Aqk−1, ei

〉
ei

=
[ m∑

j=1

Bj
k

]
Aqk−1.

(2.24)

�

III. SMOOTHING

In our context, the term smoothing refers to computing a

conditional-mean estimate of the quantity Xk, (or a MAP es-

timate), given the information record Y0,T , here the discrete-

time index can vary in the interval [0, T ], that is, 0 ≤ k ≤ T .

Our approach to construct a general smoother Theorem, is

to compute dynamics for the backwards, or dual process

corresponding to the estimated unnormalised probability q. It

is this backwards process that will introduce the information

Yk,T into the formulation of a smoothed estimate.

Appealing to the form of Bayes’ Theorem given at 1.17,

we note that for any k ∈ {1, 2, . . . , T}

E
[
Xk | Y0,T

]
=

E†
[
Λ0,T Xk | Y0,T

]

E†
[
Λ0,T | Y0,T

] . (3.25)

Again we restrict our attention to the numerator of equation

(3.25) and note from the property of repeated conditioning

that

E†
[
Λ0,T Xk | Y0,T

]
=

E†
[
Λ0,kXk E†

[
Λk+1,T | Y0,T ∨ F0,k

]
Y0,T

]
. (3.26)

It is critical here that we are able to factorise our Radon-

Nikodym derivatives, that is

Λk+1,T =

T∏

ℓ=k+1

λℓ = λk+1Λk+2,T . (3.27)

Further, since the state process X is first-order Markov, then

E†
[
Λk+1,T | Y0,T ∨ F0,k

]
= E†

[
Λk+1,T | Y0,T ∨ σ{Xk}

]
.

(3.28)

We define a vector-valued process v ∈ R
n, where

vk,T
∆
=

(〈
vk,T , e1

〉
, . . . ,

〈
vk,T , en

〉)′

. (3.29)

Here

〈
vk,T , ei

〉 ∆
= E†

[
Λk+1,T | Y0,T ∨ {Xk = ei}

]
. (3.30)

THEOREM 3 The process v, for k ∈
{
0, 1, 2, . . . , T − 1

}
,

satisfies the backward recursion

vk,T = AT
[ m∑

j=1

Bj
k+1

]
vk+1,T . (3.31)

Here AT denotes the matrix transpose of A and vT,T =
(1, 1, . . . , 1)′.
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Proof of Theorem 3

〈
vk,T , ei

〉
= E†

[
Λk+2,T λk+1 | Y0,T ∨ {Xk = ei}

]

= E†

[
Λk+2,T

{
m∑

j=1

αj

σj

〈
Xk+1, d

〉×

Φ

(
yk+1 − (

〈
Xk+1, g

〉
+ µj)

σj

〈
Xk+1, d

〉
)/

Φ(yk+1)

}

∣∣∣∣Y0,T ∨ {Xk = ei}
]

=

n∑

ℓ=1

E†

[
〈
Xk+1, eℓ

〉
Λk+2,T

{
m∑

j=1

αj

σj

〈
Xk+1, d

〉×

Φ

(
yk+1 − (

〈
Xk+1, g

〉
+ µj)

σj

〈
Xk+1, d

〉
)/

Φ(yk+1)

}

∣∣∣∣Y0,T ∨ {Xk = ei}
]

=

n∑

ℓ=1

m∑

j=1

γ
(ℓ,j)
k+1 E†

[〈
Xk+1, eℓ

〉
×

E†
[
Λk+2,T | Y0,T ∨

{
Xk = ei

}
∨
{
Xk+1 = eℓ

}]

∣∣∣∣Y0,T ∨
{
Xk = ei

}]

=

n∑

ℓ=1

m∑

j=1

γ
(ℓ,j)
k+1 E†

[〈
Xk+1, eℓ

〉〈
vk+1,T , eℓ

〉
|

Y0,T ∨
{
Xk = ei

}]

=

n∑

ℓ=1

a(ℓ,i)

m∑

j=1

γ
(ℓ,j)
k+1

〈
vk+1,T , eℓ

〉

=
〈
AT
[ m∑

j=1

Bj
k+1

]
vk+1,T , ei

〉
.

(3.32)

�

THEOREM 4 (SMOOTHER) The normalised smoothed esti-

mate for the event
{
ω | Xk(ω) = ei

}
, given the information

record Y0,T , is computed by the quotient

p(Xk = ei | Y0,T ) =

〈
qk, ei

〉〈
vk,T , ei

〉
∑n

ℓ=1

〈
qk, eℓ

〉〈
vk,T , eℓ

〉 . (3.33)

Proof of Theorem 4.

To establish to right hand side of equation (3.33), we need

only consider the numerator, that is

〈
E†
[
Λ0,T Xk | Y0,T

]
, ei

〉

=
〈
E†
[
Λ0,kΛk+1,T Xk | Y0,T

]
, ei

〉

=
〈
E†
[
Λ0,kE†

[
Λk+1,T Xk |

Y0,T ∨
{
Xk = ei

}]
| Y0,T

]
, ei

〉

=
〈
E†
[
Λ0,kXkE†

[
Λk+1,T | Y0,T ∨

{
Xk = ei

}]
|

Y0,T

]
, ei

〉

=
〈
E†
[
Λ0,kXk

〈
vk,T , ei

〉
| Y0,T

]
, ei

〉

=
〈
E†
[
Λ0,kXk | Y0,T

]
, ei

〉〈
vk,T , ei

〉

=
〈
E†
[
Λ0,kXk | Y0,k

]
, ei

〉〈
vk,T , ei

〉

=
〈
qk, ei

〉〈
vk,T , ei

〉
.

(3.34)

�

IV. M -ARY DETECTION

The term M -ary detection is used in Electrical Engineer-

ing to describe sequential hypothesis testing for more than

2 candidate model hypotheses. Here we are interested in

model-parameter hypotheses. In effect our formulation is

something like a finite version of the EM algorithm, that is,

rather than considering an uncountable collection of model

parameter sets in the space of all admissible models, we

consider a finite collection in this space. For example, write

Hj ∆
=
{
AHj , gHj , dHj

}
, j = 1, 2, . . . , M. (4.35)

Here we suppose the Gaussian mixture model for the noise

process V is known. Further, it is assumed that any reali-

sation of an observation process y is generated by a fixed

model parameter set. What we would like to do is estimate

the probabilities p(Hj | Y0,k). It will be shown that this

problem separates into a pure filtering component and a pure

estimation component. In the context of M -ary detection this

is known as the Separation Theorem [10].

To compute our M -ary detection schemes we use a vector

valued simple random variable that can assume one of M
possible states corresponding to each of the M candidate

model hypotheses. To this end we suppose α is a vector-

valued simple random variable in R
M and has a state space

A = {f1, f2, . . . ,fM} =
{

(1, 0, . . . , 0)′, (0, 1, 0, . . . , 0)′, . . . , (0, 0, . . . , 1)′
}
. (4.36)

Here, the statistical meaning of the state of α, is, α =
f j ⇔ H = Hj . What we are interested to compute, are

the estimated un-normalised probabilities

q j
k

∆
= E†

[
Λ0,k

〈
α, f j

〉
| Y0,k

]
. (4.37)

To avoid confusion between the scalar-valued probabilities

defined by equation (4.37) and the vector-valued information

state defined by equation (2.19), we write

qDet
k

∆
=
(
q1
k, q2

k . . . , qM
k

)′
. (4.38)
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Here ”Det” abbreviates M -ary detection probability.

THEOREM 5 (M -ARY DETECTION FILTER) The M -ary de-

tection filter for the model hypothesis Hi is computed by the

recursion

〈
qDet
k , f i

〉
=

M∑

ℓ=1

{
m∑

j=1

αj

σj

〈
eℓ, d

Hi
〉×

Φ

(
yk −

(〈
eℓ, g

Hi
〉

+ µj

)

σj

〈
eℓ, d

Hi
〉

)/
Φ(yk)

}

×
{〈

AHiqHi

k−1, eℓ

〉
〈
AHiqHi

k−1,1
〉

}
〈
qDet
k−1, f i

〉
. (4.39)

The corresponding normalised detector probability is com-

puted by normalising over all candidate model-hypotheses,

that is

p(H = Hi | Y0,k) =

〈
qDet
k , f i

〉
〈
qDet
k ,1

〉 . (4.40)

REMARK 3 Theorem 5 provides a scheme to identify the

most likely model hypothesis explaining a given observation.

It should be noted that the most likely model hypothesis need

not correspond to the true model, it will simply identify

the most likely model from the collection of candidate

hypotheses.

V. EXAMPLE

In this section we consider a scenario where a two-state

Markov chain is observed in non-Gaussian noise taken to

be a uniform distribution. The particular observation noise

model we consider is uniform noise on [−2, 2]. Following

the example in [3], we construct a Gaussian mixture approx-

imation to the uniform density by minimising the L1 norm.

We take M = 20 and set all densities to equal weight, so that

αj = 1/20 for all j. Further, all the means µj are regularly

spaced ∆ apart on [−2, 2], starting from −2+(2−(−2)/21).
This spacing ensures matching the first moment exactly, that

is

1
2 (−2 + 2) = (1/20)

M∑

j=1

(−2 + j∆) = 0. (5.41)

We assume that the standard deviations for each of the 20

densities are the same, so the optimisation, (curve fitting),

problem we wish to solve is

σ̂
∆
= min

σ ∈R+

∫

R

| 141[−2,2] − Ψ(20)(ξ; Θ)|dξ. (5.42)

We note that since the uniform density has compact support

and that Ψ(20)(ξ; Θ) is a valid probability density function,

the integration domain of this optimisation problem can be

reduced to a compact set, that is

min
σ ∈R+

∫

R

| 141[−2,2] − Ψ(20)(ξ; Θ)|dξ. =

1 + min
σ ∈R+

∫

[−2,2]

{∣∣1
41[−2,2] − Ψ(20)(ξ, Θ)

∣∣−

Ψ(20)(ξ; Θ)
}
dξ. (5.43)

Using numerical quadrature to estimate the right member of

5.43 we obtain σ̂ ≈ 0.0901.

The parameter values for the state process and observation

process dynamics were as follows

A
∆
=

[
0.7 0.3
0.2 0.8

]
(5.44)

and

g
∆
= (−1, 1.3)′, d

∆
= (1, 1)′. (5.45)

The computer simulation results for our simulation scenario

are shown below in Figures 1 and 2.

0 50 100 150
−2

−1

0

1

2

discrete−time index

Markov Chain

0 50 100 150
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discrete−time index

Estimate for P(X
k
= −1 | Observation)

0 50 100 150

0

0.5

1

Estimate for P(X
k
= 1.3 | Observation)

Fig. 1. In this set of three subplots we show the partially observed Markov
chain, (2-state), and the estimated (filter) probabilities corresponding to each
state.
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0
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Fig. 2. Here we show a typical realisation of a MAP estimated state process
and its corresponding finite state error process.
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VI. CONCLUSION

In this article state estimation schemes for HMMs in non-

Gaussian noise scenarios were developed. The techniques

used to compute these schemes was the method of reference

probability.

The motivation for this work was driven by the need to

extend HMM estimation schemes beyond the usual Gaussian

noise assumption. Moreover, our aim was to effectively

consider all practical noise models by appealing to the effi-

cacy of Gaussian mixture approximations of densities. The

schemes we developed were: a recursive filter, its associated

N -step ahead predictor, a general smoothing Theorem, and

an M -ary Detection scheme. Our formulations are also in a

form amenable to the usual and important analysis, such as

stability analysis etc.
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