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Abstract— Institutional investors manage their strategic mix
of asset classes over time to achieve favorable returns in
spite of uncertainties. A fundamental issue in this context is
to maintain risk under control while achieving the desired
return targets. When the asset mix is to be re-balanced many
times over the investment horizon, the decision maker faces a
rather difficult constrained dynamic optimization problem that
should take into account conditional decisions based on future
market behavior. This problem is usually solved approximately
using scenario-based stochastic programming: a technique that
suffers from serious problems of numerical complexity due to
the intrinsic combinatorial nature of scenario trees.

In this paper, we present a novel and computationally
efficient approach to constrained discrete-time dynamic asset
allocation over multiple periods. This technique is able to
control portfolio expectation and variance at both final and
intermediate stages of the decision horizon, and may account for
proportional transaction costs and intertemporal dependence of
the return process. A key feature of the proposed method is
the introduction of a linearly-parameterized class of feedback
reaction functions, which permits to obtain explicit analytic
expressions for the portfolio statistics over time. These expres-
sions are proved to be convex in the decision parameters, hence
the multi-stage problem is formulated and solved by means
of efficient tools for quadratic or second-order-cone convex
programming.

Keywords: Control of financial risk, strategic asset allocation,
multi-stage decision problems, dynamic optimization, convex
optimization, portfolio optimization, transaction costs.

I. INTRODUCTION

The classical Markowitz mean-variance portfolio model
[17], [18] assumes a single time period for the determination
of optimal asset allocation. For an investor with a long-
term investment horizon the question arises whether the
optimal multi-period portfolio has any relationship to optimal
holdings in a single-period setting. In his seminal works [19],
[20], Merton proposes a continuous-time stochastic dynamic
programming approach to the multi-period allocation prob-
lem. Despite the fact that this model is quite complicated
and unsuitable to efficient practical implementation, Merton
manages to show that if the objective is maximization of
a utility function and if the assets expected returns and
covariances are constant over the decision horizon, then the
asset allocations are also constant and equal to the one-period
solutions for a mean-variance investor, that is, there is no
intertemporal hedging demand in this case.

However, Merton’s formulation only considers maximiza-
tion of the terminal wealth (i.e. it ignores the path and
risk taken to arrive at the terminal wealth) and does not
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take into account cost of transactions or the possibility of
imposing constraints on the portfolio composition at the final
and intermediate stages. When these realistic features are
added to the model, the myopic one-period approach is no
longer equivalent to the optimal multi-period one, hence
an investment advantage may be gained by employing a
decision model that fully exploits the intertemporal struc-
ture of the problem. Moreover, multi-period problems in
presence of transaction costs and constraints are in general
not tractable analytically by means of the optimal control
techniques employed for instance in [5], [6], [10], [19], [20].

The mainstream computational model for dealing with
multi-period decision problems in presence of uncertainty
is currently provided by multi-stage stochastic programming,
see e.g. [1], [2], [3], [14], [24], [26] and the many references
therein. However, while stochastic programming provides a
conceptually sound framework for posing multi-stage de-
cision problems, from the computational side it results to
be impervious to exact and efficient numerical solution,
[25]. The key difficulty in the stochastic programming for-
mulation comes from the fact that the stage decisions are
actually conditional decision rules, or “policies” that define
which action should be taken in response to past outcomes.
To model the conditional nature of the problem in some
“tractable” way, a discretization of the decision space is
typically introduced by constructing a “scenario tree,” and
this scenario tree may grow exponentially if an accurate
and representative discretization is needed, see e.g. [12]. On
the other hand, if branching is kept low in the scenario
tree, the resulting discretization cannot be guaranteed to
be a reliable representation of reality. These computational
difficulties are witnessed by the fact that most multi-period
problems discussed in the literature deal with few securities
over only two or three periods.

In the specific context of financial allocation, a classical
stochastic programming method based on Benders decompo-
sition is proposed in [11], and techniques for construction of
scenario trees are discussed for instance in [21], [23], [28].
Scenario-based stochastic programming models for portfolio
optimization have also been recently proposed in [15], [22].
A survey with theoretical analysis of multi-period models
based on scenario trees is provided in [27].

In this paper we propose a different route to multi-stage
allocation, which prescinds from the use of decision trees
or sample paths, and which leads to explicit convex pro-
gramming models that can be solved globally and efficiently.
We achieve these goals by considering a restricted class of
decision policies that are affine functions of the past return
innovations. Within this setting, we obtain exact and explicit
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expressions for portfolio expectations and volatilities at all
stages of the decision horizon, and these expressions result
to be affine or convex quadratic functions of the decision
parameters. This approach thus leads to computationally
tractable optimization problems (convex quadratic or second
order cone programming problems) whose solutions provide
suboptimal policies, since affinely parameterized recourse
functions constitute only a subclass of the set of possible
recourse relations. This sub-optimality is however largely
counterweighted by numerical tractability of the ensuing
optimization programs, which enables application of multi-
stage techniques to real-world investment endeavors. The
idea of using affine recourse policies has been first proposed
in [9], where a problem limited to two stages and with no
transaction costs was considered; a generalization to number
of periods larger than two was then proposed in [7]. An
extended version of the present paper is available in [8].

a) Notation: If x ∈ Rn,1, then diag(x) denotes a
diagonal matrix having the entries of x on the diagonal.
A> denotes the transpose of matrix A. The operator ¯
denotes the Hadamard (entry-wise) product of conformably
sized matrices. In, 0n denote the identity matrix and the
zero matrix in Rn,n, respectively. For a random vector x,
E {x} denotes the expected value of x, and var {x} .=
E

{
(x− E {x})(x− E {x})>}

its covariance matrix. We
shall denote with an over bar the expectation of random
quantities and with a tilde the centered quantities, i.e. the
quantities with the expectation subtracted, that is x̄

.=
E {x} , x̃

.= x− x̄.

II. SETUP AND PRELIMINARIES

Consider an investment problem involving n assets or
asset classes {a1, . . . , an}, which may include cash, over
a decision horizon of T periods, where the k-th period starts
at time k − 1 and ends at time k. We denote with xi(k)
the Euro value of the portion of the investor’s total wealth
invested in security ai at time k. The portfolio at time k is
the vector

x(k) .=
[

x1(k) · · · xn(k)
]>

,

being x(0) the initial portfolio. The investor’s total wealth at
time k is

w(k) .=
n∑

i=1

x(k) = 1>x(k),

where 1 denotes a vector of ones. At the end of each period,
the investor has the opportunity of adjusting his/her invest-
ment, by rebalancing the portfolio composition. Specifically,
we denote with x+(k) the portfolio composition just after
the adjustment u(k) occurred at time k:

x+(k) .= x(k) + u(k),

where u(k) .= [u1(k) · · · un(k)]> is the vector of portfolio
adjustments. A value of ui(k) > 0 indicates that the portfolio
content in asset ai is increased by ui(k) Euros (by buying
this asset), whereas ui(k) < 0 indicates that the portfolio
content in asset ai is decreased by ui(k) Euros (by selling
this asset). If pi(k) denotes the market value of ai at time

k, then the (simple) return of investment in security ai over
the period of time [k − 1, k] is ri(k) .= (pi(k) − pi(k −
1))/pi(k − 1) = pi(k)/pi(k − 1) − 1, and the one-period
gain of the same investment is

gi(k) .=
pi(k)

pi(k − 1)
= ri(k) + 1.

We denote with g(k) the vector collecting the asset gains, and
with G(k) = diag(g(k)) the corresponding diagonal matrix.
The portfolio composition then evolves in time according to
the recursive equations

x+(k) = x(k) + u(k) (1)
x(k + 1) = G(k + 1)x+(k), k = 0, 1 . . . , T − 1.(2)

Here, we take a standard stochastic view of the market and
consider the asset gains g(k), k = 1, . . ., to follow a possibly
non-stationary discrete-time stochastic process with finite
and possibly time-varying means and covariances. Equation
(2) thus specifies a stochastic discrete-time system which
describes the time evolution of the portfolio.

A. Problem statement
The purpose of our decision model is to determine in-

vestment adjustment policies (in our context, a policy is a
function expressing u(k) in terms of the previous market
gains g(t), t = 1, . . . , k) so to attain a desired target expected
return at the end of the investment horizon, while maintaining
the associated risk and transaction costs under control. The
expected value of cumulative gross return of the investment
over the whole horizon is P .= E {w(T )} /w(0). The risk
associated with the investment strategy is here measured by
a weighted sum of wealth variances (volatilities) at all the
decision stages:

R .=
T∑

k=1

vkvar {w(k)} , (3)

where vk ≥ 0 are given weights. For instance, vk = 1/T ,
k = 1, . . . , T , sets R to measure the average wealth variance
over the decision horizon, whereas vk = 0, k = 1, . . . , T−1,
vT = 1, sets R to measure only end-of-horizon variance.

Let ci ≥ 0 denote the proportional transaction cost coeffi-
cient for trading in asset ai. The cost due to all transactions at
time k is given by

∑n
i=1 ci|ui(k)| = ‖c¯u(k)‖1, where ‖·‖1

denotes the `1 vector norm and c> = [c1 · · · cn] is the vector
of unit transaction costs. The total expected transaction cost
over the investment horizon is hence

C .= E

{
T−1∑

k=0

‖c¯ u(k)‖1
}

. (4)

We consider the portfolio to be self-financing, that is∑n
i=1 ui(k) = 0, except that for transaction costs, which

are covered by newly injected cash.
Usually, constraints need be enforced on portfolios. These

constraints include for instance portfolio composition condi-
tions (minimum and maximum exposure in individual assets
or in groups of assets), or no-shortselling constraints. In this
paper, we include generic linear constraints in the model by
imposing that the expected value of the updated portfolios
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x+(k) lie within a given polytope X (k). The multi-period
asset allocation problem (MAP) we are interested in can now
be formally stated as follows:

J̃∗ .= min
u(k)∈U

R+ γC (5)

subject to: E {x+(k)} ∈ X (k), k = 0, . . . , T − 1
1>u(k) = 0, k = 0, . . . , T − 1

E {w(T )} ≥ ψ · w(0),

where U is the class of strictly causal functions of
g(1), . . . , g(T ), γ ≥ 0 is a relative objective weight param-
eter, and ψ is the given target final return.

We notice that considering a general set U of causal
recourse functions in problem (5) makes this problem ex-
tremely hard to solve in practice. Indeed, even the computa-
tion of the objective may not be tractable for a general set
U of causal functions. On the other extreme, a conventional
approximation providing a lower bound on the objective of
(5) is to restrict U to the class of “open-loop” strategies,
that is, control functions that are actually independent of
the returns. This latter approach, however, might be too
coarse and fails to capture the dynamic nature of the decision
problem at hand, that is the fact that only the first decision
u(0) need actually be determined at time k = 0 (the
so-called “here-and-now” variable), whereas the decision
maker can wait and see what progressively happens to the
market before actually deciding the subsequent adjustments
u(1), . . . , u(T − 1).

In the following section we consider a tractable approxi-
mation to the above problem that uses a restricted class of
recourse functions (namely, affine recourse functions). Then,
in Section III-B we derive upper and lower bounds for the
expectation of the transaction cost term C. The combination
of affine recourse strategy and upper-bound approximation
for the transaction cost term leads to a problem formulation
that is efficiently computable by means of convex program-
ming.

III. AFFINE RECOURSE AND PORTFOLIO DYNAMICS

In our approach we postulate that the control action u(k) is
an affine, strictly causal function of the returns’ innovations:

u(0) = ū(0),

u(k) = ū(k) +
k∑

τ=1

Θτ (k)g̃(τ), k = 1, . . . , T − 1, (6)

where ū(k) ∈ Rn, k = 0, . . . , T−1, are the nominal portfolio
adjustments, with u(0) = ū(0) representing the “here-and-
now” decision variable, and Θτ (k) ∈ Rn,n, k = 1, . . . , n,
τ = 1, . . . , k, are additional decision variables representing
market reaction matrices. We rewrite (6) in more compact
notation as

u(0) = ū(0),
u(k) = ū(k) + Θ(k)[g(k)− ḡ(k)], (7)

with Θ(k) .= [Θ1(k) · · · Θk(k)] ∈ Rn,kn,
g(k) .= [g>(1) · · · g>(k)]> ∈ Rnk.

Remark 1 (Interpretation of the recourse policy):
Besides rendering the multi-stage decision model efficiently
solvable (as it will be shown shortly), the affine recourse
policy (7) also bears a sound interpretation, as explained
next. The initial portfolio adjustment u(0) = ū(0) is the
“here-and-now” variable, describing the first “move” to
be done by the investor. The successive adjustments u(k),
k = 1, . . . , T − 1, are “wait-and-see” variables whose value
is assumed to be decomposed in the sum of a nominal
decision ū(k) and a recourse term. The nominal adjustment
ū(k) represents the move we would make at time k,
if the market during periods preceding k performed as
expected. Since the market will never perform exactly as
expected, we correct the nominal decision ū(k) with a term
proportional to all past market deviations from expectation.
The coefficients of the correction are collected in the market
reaction matrices Θτ (k). In particular, element [Θτ (k)]ij
in row i and column j of matrix Θτ (k) represents the
sensitivity of the control action in the i-th security, ui(k),
with respect to deviations from expectation of the return of
the j-th security in the τ -th period. ♦

A. Dynamics of portfolio statistics

Applying the control policy (7) to the portfolio recursion
(1), (2), we obtain the following (stochastic) recursions for
the controlled portfolio

x+(k) = x(k) + ū(k) + Θ(k)[g(k)− ḡ(k)] (8)
x(k + 1) = G(k + 1)x+(k), k = 0, 1 . . . , T − 1,(9)

with Θ(0) = 0. Our objective in this section is to ob-
tain analytic expressions for the portfolio expectations and
covariances. To this end, from repeated application of (9)
we obtain the expression for the portfolio composition at a
generic instant k:

x(k) = Φ(1, k)x(0)+Φ(k)ν(k)+
k−1∑

i=1

i∑
τ=1

Φ(i+1, k)Θτ (i)g̃(τ)

(10)
where

ν(k) .=




ū(0)
ū(1)

...
ū(k − 1)


 , Φ(k) .=

[
Φ(1, k) · · · Φ(k, k)

]
,

being Φ(i, k), i ≤ k, a diagonal matrix of compound gains
from beginning of period i to end of period k:

Φ(i, k) .= G(k)G(k − 1) · · ·G(i) .= diag(ϕ(i, k)).

Let now [Θτ (i)]c denote the c-th column of matrix Θτ (i),
θ(k) ∈ Rn2k(k−1)/2 represent the vector containing all
columns [Θτ (i)]c ordered lexicographically according to the
triple (i, τ, c), for i = 1, . . . , k − 1, τ = 1, . . . , i, c =
1, . . . , n, and let Ψ(k) ∈ Rn,nk(k−1)/2 be the corresponding
matrix formed by horizontal juxtaposition of the diagonal
Φ(i + 1, k)g̃c(τ) blocks, in the same lexicographic order.
With this notation, x(k) in (10) can be written in the form

x(k) = Φ(1, k)x(0) + Φ(k)ν(k) + Ψ(k)θ(k),
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where Φ(1, k), Φ(k), Ψ(k) contain all terms depending
on stochastic gains, while decision variables are contained
in ν(k), θ(k). This formalism is useful for expressing the
portfolio expectation and wealth variance, since we have

x̄(k) = E {x(k)} = Φ̄(1, k)x(0) + Φ̄(k)ν(k) + Ψ̄(k)θ(k),
(11)

var {w(k)} = E
{
x̃>(k)11>x̃(k)

}
(12)

=




x(0)
ν(k)
θ(k)



>

Q(k)




x(0)
ν(k)
θ(k)


 ,

were we defined φ̃(k) .= Φ̃>(k)1, ψ̃(k) .= Φ̃>(k)1,

Q(k) .= E








ϕ̃(1, k)
φ̃(k)
ψ̃(k)







ϕ̃(1, k)
φ̃(k)
ψ̃(k)



>




.

The previous algebraic derivations actually prove the follow-
ing statement.

Lemma 1: Consider the portfolio dynamic equations un-
der affine policy (8), (9), and let G(t) = diag(g(t)), t =
1, 2, . . ., be a generic, possibly dependent, stochastic return
process. Then, the portfolio expectation E {x(k)} is an affine
function of the policy parameters ū(t), t = 0, 1, . . . , k −
1, and the total wealth variance var {w(k)} is a convex
quadratic function of these parameters and of Θ(t), t =
1, . . . , k − 1.

Notice that although (11), (12) show that the expected
portfolio is affine in the decision variables and that the
wealth variance is convex and quadratic in the variables,
these function are not easy to obtain exactly in practice, since
they depend on parameters Φ̄(1, k), Φ̄(k), Ψ̄(k), Q(k) that
are difficult to evaluate for generic and serially correlated
return processes. We shall discuss in Section IV-A an ap-
proximated technique for computing the parameters Φ̄(1, k),
Φ̄(k), Ψ̄(k), Q(k) in full generality. Also, a key result given
in Section V shows how to compute portfolio expectations
and covariances exactly, under a standard efficient market
hypothesis.

B. Bounds on expected transaction cost
The result in the previous lemma implies that, under affine

policy, the risk term R in (3) can be explicitly expressed as
a convex quadratic function of the model decision variables
ū(k) and Θ(k), and that the final expected wealth E {w(T )}
is explicitly given as an affine function of the ū(k)’s. In
order to obtain a full convex approximation to problem
(5), however, we still need to elaborate on the expected
transaction cost term C in (4), which cannot be expressed in
analytic form. In this section, we develop computable upper
and lower bounds for the expected transaction cost under the
affine recourse policy. First notice that using the recourse rule
(7) in (4), we have that

C =
T−1∑

k=0

E {‖c¯ (ū(k) + Θ(k)g̃(k))‖1} . (13)

The following lemma holds.

Lemma 2 (Upper and lower bounds on C): The expected
transaction cost term in (13) is upper and lower bounded as
C ≤ C ≤ C̄, where

C .=
T−1∑

k=0

‖c¯ ū(k)‖1 (14)

C̄ .=
T−1∑

k=0

n∑

i=1

ci‖ξi(k)‖2, (15)

being ξi(k) .=
[

ūi(k) Θ>
i (k)Υ(k)

]
, where Θ>

i (k) de-
notes the i-th row of Θ(k), and Υ(k) is a full-rank factor
such that Υ(k)Υ>(k) = Σ(k) .= var {x(k)}.

Proof. We first prove the lower bound C ≤ C. To this end,
we recall that the Jensen’s inequality (see, e.g., [4]) states
that for any random variable X and convex function f(·) it
holds that f(E {X}) ≤ E {f(X)}. Considering in particular
f(·) = | · |, we have that |E {X} | ≤ E {|X|}, thus

C =
T−1∑

k=0

n∑

i=1

ciE
{|ūi(k) + Θ>

i (k)g̃(k)|}

≥
T−1∑

k=0

n∑

i=1

ci

∣∣E {
ūi(k) + Θ>

i (k)g̃(k)
}∣∣

=
T−1∑

k=0

n∑

i=1

ci|ūi(k)| =
T−1∑

k=0

‖c¯ ū(k)‖1 = C.

To prove the upper bound C ≤ C̄, we consider again Jensen’s
inequality with f(·) = (·)2 applied to the random variable
|X|, which gives E {|X|} ≤

√
E {X2}, hence

C =
T−1∑

k=0

n∑

i=1

ciE
{|ūi(k) + Θ>

i (k)g̃(k)|}

≤
T−1∑

k=0

n∑

i=1

ci

√
E

{
(ūi(k) + Θ>

i (k)g̃(k))2
}

=
T−1∑

k=0

n∑

i=1

ci‖ξi(k)‖2 = C̄. ¤

Note that both the upper and lower bounds for the ex-
pected transaction cost are convex functions of the decision
variables. In particular, C is the sum of absolute values of
decision variables, whereas C̄ is the sum of Euclidean norms
of linear functions of the decision variables.

IV. CONVEX MAP FORMULATIONS

The multi-period allocation problem stated in (5), under
the affine restriction (7) on the allowed recourse functions,
is written as

J∗ .= min
ū(k)∈Rn,Θ(k)∈Rn,nk

R+ γC, subject to: (16)

E
{
x+(k)

} ∈ X (k), k = 0, . . . , T − 1,

1>ū(k) = 0, 1>Θ(k) = 0, k = 0, . . . , T − 1,

Θ(0) = 0n, E {w(T )} ≥ ψ · w(0).

Since the affine recourse class is included in the generic
causal class U considered in (5), it clearly holds that J̃∗ ≤
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J∗. Notice that, due to the presence of transaction cost term
C, the problem is not yet formulated as a convex program.
However, using the convex relaxations developed in the
previous section, we can formulate two convex programs that
describe upper and lower bounds on J∗, as formalized in the
following proposition.

Proposition 1 (Convex formulation of MAP): Consider
the multi-period asset allocation problem with affine
recourse in (16), having optimal value J∗. We have that

J∗lb ≤ J∗ ≤ J∗ub,

where J∗lb, J∗ub are respectively the optimal values of the
following convex optimization problems:

J∗lb
.= min

ū(k)∈Rn,Θ(k)∈Rn,nk
R+ γC, subject to: (17)

E
{
x+(k)

} ∈ X (k), k = 0, . . . , T − 1,

1>ū(k) = 0, 1>Θ(k) = 0, k = 0, . . . , T − 1,

Θ(0) = 0n, E {w(T )} ≥ ψ · w(0),

J∗ub
.= min

ū(k)∈Rn,Θ(k)∈Rn,nk
R+ γC̄, subject to: (18)

E
{
x+(k)

} ∈ X (k), k = 0, . . . , T − 1,

1>ū(k) = 0, 1>Θ(k) = 0, k = 0, . . . , T − 1,

Θ(0) = 0n, E {w(T )} ≥ ψ · w(0),

and where C, C̄ are given in (14) and (15), respectively.

A. Sampling approximations
We now go back to expressions (11), (12) for the expected

portfolios and wealth variance. Since the parameters Φ̄(1, k),
Φ̄(k), Ψ̄(k), Q(k) appearing in these expressions are not in
general expressible in closed form (see Section V for an
important exception), we here propose a standard sampling
technique to approximate them. Indeed, we notice that, if
a stochastic dynamic model is given for the return process
g(k), the conditional expectations in (11) and the conditional
covariance matrix Q(k) can be efficiently approximated by
their empirical counterparts. That is, performing N stochastic
simulations of the return series g(t), t = 1, . . . , T , we may
build empirical expectations

Φ̂(1, k) = 1
N

∑n
s=1 Φs(1, k), Φ̂(k) = 1

N

∑n
s=1 Φs(k),

Ψ̂(k) = 1
N

∑n
s=1 Ψs(k),

Q̂(k) = 1
N−1

∑n
s=1




ϕ̃s(1, k)
φ̃s(k)
ψ̃s(k)







ϕ̃s(1, k)
φ̃s(k)
ψ̃s(k)



>

,

where the subscript s denotes the value of the subscripted
quantity obtained in the s-th simulation. By the law of large
numbers, the above quantities tend to the actual expectations
with probability one as N goes to infinity. In practice, they
may represent good approximations of the actual expecta-
tions, for sufficiently large N . Notice that, although simula-
tions are used in order to estimate these model parameters,
the quantities to be estimated do not depend on the decision
variables and can be estimated a-priori, that is before the
actual optimization is run. Therefore, this approach does not
require the construction of exponentially growing scenario

trees. For example, using this proposed sampling approach,
the multi-stage problems (17), (18) are directly approximated
by substituting the sampled quantities in the expressions for
the portfolio expectations and covariances (11), (12).

We observe that this approximate formulation is to be used
when a full stochastic model for return dynamics is available,
and that this setting allows for consideration of completely
general inter-temporal statistical dependence in the return
process. In the next section we show that under the widely
accepted hypothesis of efficient markets we can actually
obtain exact expressions for the portfolio expectations and
covariances and hence exact and explicit convex formulations
of the multi-period allocation problem.

V. THE EFFICIENT MARKET CASE

In this section we introduce a standard “efficient market”
hypothesis (EMH, see [13], [16]) on the return process, that
is we assume that gains over different period are statistically
independent.

Assumption 1 (Independent returns): Gain gi(k1) is sta-
tistically independent of gj(k2), ∀ i, j and ∀ k2 6= k1. ?

As we shall see, acceptance of this hypothesis permits
analytic recursive expressions for the portfolio expectations
and covariances, thus avoiding to resort to the sampling
approximation of Section IV-A. Also, we shall verify that
these expressions only depend on the first two conditional
moments of the gain vectors g(k), k = 1, 2, . . .:

ḡ(k) .= E {g(k)} , k = 1, 2, . . .

Σ(k) .= var {g(k)} = M(k)− ḡ(k)ḡ>(k), k = 1, 2, . . . ,

with M(k) .= E
{
g(k)g>(k)

}
, k = 1, 2, . . .,

where the expectations in the previous equations are condi-
tional to past history up to decision time k = 0.

The following key lemma states explicitly the dynamic
equations for expectation and covariances of the controlled
portfolio, under the independence hypothesis in Assump-
tion 1. The proof of this lemma is lengthy and it is therefore
skipped here for space reasons.

Lemma 3: (Dynamics of portfolio expectation and covari-
ance) Let Assumption 1 be satisfied, and consider the affinely
controlled portfolio equations (8), (9). Then, the controlled
portfolio expectation x̄(k) = E {x(k)}, for k = 0, . . . , T−1,
obeys to the recursion

x̄(k + 1) = Ḡ(k + 1)x̄+(k), with x̄+(k) = x̄(k) + ū(k),

while the portfolio covariance Γ(k) .= E
{
x̃(k)x̃>(k)

}
follows the recursion

Γ(k + 1) = x̄+(k)x̄+>(k)¯ Σ(k + 1) +

(
Γ(k) + Ω(k)Θ>(k)

+ Θ(k)Ω>(k) + Θ(k)D(k)Θ>(k)

)
¯M(k + 1),

initialized with Γ(1) = x̄+(0)x̄+>(0)¯Σ(1), where D(k) .=
diag(Σ(1), . . . , Σ(k)), and Ω(k) .= E

{
x̃(k)g̃>(k)

} ∈ Rn,kn
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is given for k = 1, . . . , T − 1 by a parallel recursion

Ω(k) =
[
Ḡ(k)

(
Ω(k − 1) + Θ(k − 1)D(k − 1)

)∣∣∣
diag(x̄+(k − 1))Σ(k)

]
,

initialized with Ω(1) = diag(x̄+(0))Σ(1). For the total
wealth variance var {w(k)}, it holds that

var {w(k + 1)} = 1>Γ(k + 1)1 =
x̄+>(k)Σ(k + 1)x̄+(k) +

Tr
(
Γ(k) + Θ(k)D(k)Θ>(k) + 2Θ(k)Ω>(k)

)
M(k + 1)

?
Remark 2: The expressions of x(k) and var {w(k)} re-

sulting from the recursions in Lemma 3 can be used in
the problem formulations of Section IV to obtain exact
and explicit convex formalizations of the MAP problem.
These explicit recursions clearly produce a great gain in
terms of pre-processing time and absence of approximation
errors with respect to the sampling approach discussed in
Section IV-A. Also, application of these recursions only
requires knowledge of the first and second moments of the
return vectors, which are indeed the quantities that are usu-
ally available from return time series analysis. These exact
recursions should therefore be used in place of the sampling
approximations, whenever the efficient market hypothesis
can reasonably be assumed to hold (that is, most of the times
in practical asset allocation applications). ♦

VI. NUMERICAL EXAMPLES

Examples could not be included here for space reasons.
However, the interested reader may find some numerical tests
in an extended version [8] of this paper (available on line). I
thank Dr. Alberto Cattaneo at ERSEL, Torino, for providing
some of the data used in the tests.

VII. CONCLUSIONS

In this paper we presented a mean-variance computational
model for dynamic asset allocation over multiple discrete-
time periods. The main features of the model are (a) the
flexibility of dealing with inter-period and end-of-horizon
constraints on portfolio expectations and covariances, (b) the
inclusion of proportional transaction costs, (c) the generality
of stochastic return models that can be used with the method
(for instance, non-stationary and possibly time-correlated
return processes), and (c) the efficiency in numerical solution,
which derives by the finite-dimensional convex representa-
tion of the problem. The method completely avoids scenario
trees and stochastic approximations. Also, in the efficient
market case, the proposed approach provides explicit analytic
recursions for the statistics of the controlled portfolio.

The mentioned strong points are achieved at the expense
of a degree of sub-optimality of the method, since an affine
restriction on the class of reaction functions is imposed
a priori. It should however be remarked that a method
for efficient and exact computation of the actual optimal
solution of the considered problem is to date unavailable.
Also, approximate techniques such as stochastic program-
ming currently appear to be able to deal only with problems

with few assets and very few periods. It is thus expected
that the proposed technique could be employed with success
in practical medium-sized problems involving a number of
assets and periods of the order of tenths.
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