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Abstract— Linear matrix Inequalities (LMIs) have had a
major impact on control but formulating a problem as an LMI
is an art. Recently there is the beginnings of a theory of which
problems are in fact expressible as LMIs. For optimization
purposes it can also be useful to have “lifts” which are
expressible as LMIs. We show here that this is a much less
restrictive condition and give methods for actually constructing
lifts and their LMI representation.

I. INTRODUCTION

Recently, there is a lot of work [Las01], [ND05], [NDS06],
[Par00], [ParStu03] in solving global polynomial optimiza-
tion problems by using sum of squares (SOS) methods or
semidefinite programming (SDP) relaxations. The basic idea
is to approximate a semialgebraic set S by a collection of
convex sets called SDP relaxations each of which has an
SDP representation. This leads to the fundamental problem
of which sets can be represented with LMIs or projections
of LMIs.

A set S is said to have an LMI representation or be LMI
representable if

S = {x ∈ Rn : A0 +
n∑

i=1

Aixi º 0} (I.1)

for some symmetric matrices Ai. Here the notation X º
0 (Â 0) means the matrix X is positive semidefinite (def-
inite). Obvious necessary conditions for S to be LMI rep-
resentable are that S must be convex and S must have the
form

S = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0} (I.2)

where gi(x) are multivariate polynomials; such are called
basic closed semialgebraic sets.

It turns out that many convex sets are not LMI repre-
sentable, see Helton and Vinnikov [HV07]. For instance, the
convex set

{x ∈ R2 : 1− (x4
1 + x4

2) ≥ 0}
does not admit an LMI representation. However, the set S
is the projection onto x-space of the set

Ŝ :=
{

(x,w) ∈ R2 × R2 :
[

1 x2

x2 w2

]
º 0

[
1 + w1 w2

w2 1− w1

]
º 0,

[
1 x1

x1 w1

]
º 0

}

in R4 which is representable by an LMI.
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More generally a set S ⊆ Rn is said to be semidefinite
representable or SDP representable if S can be described
as

S =
{

x ∈ Rn : ∃w ∈ RM s.t.

A +

n∑
i=1

xiBi +

M∑
j=1

wjCj º 0
}

.

Here A, Bi, Cj are symmetric matrices of appropriate di-
mensions. Conceptually, one can think of S as the projection
into Rn of a set Ŝ in R(n+M) having the LMI representation:

Ŝ =
{

(x, w) ∈ R(n+M) :

A +

n∑
i=1

xiBi +

M∑
j=1

wjCj º 0
}

. (I.3)

The representation (I.3) is called a semidefinite representation or
SDP representation of the set S. We refer to the wj as auxillary
variables.

The key use of an SDP representation is illustrated by optimizing
a linear function `T x over S. Note that minimizing `T x over S is
equivalent to problem

min
(x,y)∈Ŝ

`T x,

which is a conventional LMI, so can be attacked by standard
toolboxes. Nesterov and Nemirovski ([NN94]) in their book which
introduced LMIs and SDP gave collections of examples of SDP
representable sets thereby leading to:

Question: Which convex sets S are the projection of a set Ŝ having
an LMI representation?

In §4.3.1 of his excellent 2006 survey [Nem06], Nemirovsky
commented “this question seems to be completely open”. Now
much more is known and this paper describes both qualitative theory
and SDP constructions.

Recently, Helton and Nie [HN1], [HN2] proved some sufficient
conditions that guarantee the convex set S is SDP representable.
For instance, one sufficient condition is called the so-called sos-
convexity or sos-concavity. A polynomial f(x) is called sos-convex
if its Hessian matrix ∇2f(x) = W (x)T W (x) for some matrix
polynomials (W (x) is not necessarily square). A polynomial g(x)
is called sos-concave if −g(x) is sos-convex. Helton and Nie [HN1]
proved the following theorem:

Theorem 1.1 ([HN1]): If every gi(x) is sos-concave, then S is
SDP representable.

An explicit construction of one SDP representation of S when
every gi(x) is sos-concave will be given in Section II. For general
polynomials gi(x), the constructed SDP representation in Section II
is usually very big. However, when polynomials gi(x) are sparse,
the SDP representation can be reduced to have smaller sizes. This
will be addressed in Section III.

There are also some sufficient conditions other than sos-
concavity that guarantee the SDP representability. For instance,
when the boundary of S is positively curved, then S is SDP
representable. This will be discussed in Section IV.
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II. GENERAL SDP REPRESENTATION

Suppose S is a convex set given in the form

S = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0}.
In this section, we assume every gi(x) is a sos-concave polynomial.
A natural SDP relaxation of S is

R =
{
x : ∃ y s.t. g(x, y) ≥ 0, Md(x, y) º 0

}
. (II.4)

Here g(x, y) is a vector valued linear function and Md(x, y) is a
matrix valued linear function defined in what follows. The integer
2d is the minimum upper bound of the degrees of gi(x). The vector
g(x, y) is of the form

g(x, y) = g̃0 +

n∑
i=1

xig̃i +
∑

1<|α|≤2d

yαg̃α

whose coefficients are such that


g1(x)
...

gm(x)


 = g̃0 +

n∑
i=1

xig̃i +
∑

1<|α|≤2d

xαg̃α.

The matrix Md(x, y) is the d-th order moment matrix constructed
as

Md(x, y) = A0 +

n∑
i=1

xiAi +
∑

1<|α|≤2N

yαAα. (II.5)

Here the symmetric matrices Aα are such that

md(x)md(x)T = A0 +

n∑
i=1

xiAi +
∑

1<|α|≤2d

xαAα.

The notation md(x) above denotes the column vector of mono-
mials with degree up to d, i.e.,

md(x) =
[
1 x1 · · · x2

1 x1x2 · · · xd
n

]T
.

This construction of SDP relaxations of the set S was proposed
by Parrilo [Par06] and Lasserre [Las06]. When every gi(x) is sos-
concave, Helton and Nie [HN1] proved R = S. This result lends
itself to implementation which we now illustrate with two examples.
After that we improve this SDP construction to exploit sparsity
structure when it is present in the defining polynomials gi.

Example 2.1: Consider the set S = {x ∈ Rn : g(x) ≥ 0}
where

g(x) = 1− (x4
1 + x4

2 − x2
1x

2
2).

Direct calculation shows

−∇2g(x) =

[
x1

x2

] [
12 −4
−4 12

]

︸ ︷︷ ︸
º0

[
x1

x2

]
.

So g(x) is sos-concave. Thus we know S can be represented by R
constructed in (II.4), which in this specification becomes

1− y40 − y04 + y22 ≥ 0,


1 x1 x2 y20 y11 y02

x1 y20 y11 y30 y21 y12

x2 y11 y03 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04



º 0.

The matrix above is the second order moment matrix. In this SDP
representation, there are 12 auxiliary variables yij .

Example 2.2: Consider the set S = {x ∈ Rn : 1 − p(x) ≥ 0}
where p is a homogeneous polynomial:

p(x) = [xd]T B[xd].

Here d > 0 is an integer and

B = (bij)1≤i,j≤n º 0

is a symmetric matrix, and [xd] denotes the vector

[xd] =
[
xd

1 xd
2 · · · xd

n

]T
.

Direct calculation shows

∇2p(x) = diag([xd−1]) ·W · diag([xd−1])

where the symmetric matrix W is defined to be

W = d2B + (3d2 − 2d)diag(B).

Since B º 0, we also have W º 0. So p(x) is sos-convex.
Therefore S can be represented as

{
x : ∃ y, 1−

n∑
i,j=1

bijyd(ei+ej) ≥ 0, Md(x, y) º 0

}
.

Here ei denotes the i-th standard unit basis vector of Rn and
Md(x, y) is the d-th order moment matrix.

III. SPARSE SDP REPRESENTATION

The SDP relaxations in [Las06], [HN1], [HN2], [Par06] have not
exploited the special structures of polynomials

g1(x), · · · , gm(x)

such as dependence of each polynomial on only a few variables
(termed sparsity). On the other hand, in polynomial optimization the
sparsity structure of polynomials can be exploited to improve the
computation efficiency of their semidefinite relaxations [KKW05],
[Las06spr], [Nie06], [ND06], [Par03], [WKKM06]. In this paper
we show that when the defining polynomials for S are sparse,
their structures can also be exploited to get a “sparser” SDP
representation.

This section gives a structured SDP relaxation and proves a suf-
ficient condition such that this structured SDP relaxation represents
S exactly.

Throughout this section, we assume every polynomial gk(x) is
sos-concave. Let

H = {x ∈ Rn : aT x ≥ b} ⊇ S

be a supporting half space and aT u = b for some u ∈ ∂S. When
S has nonempty interior, there exists Lagrange multipliers λ1 ≥
0, · · · , λm ≥ 0 such that

a =

m∑

k=1

λk∇gk(u), λigi(u) = 0, i = 1, · · · , m.

Helton and Nie [HN1] showed that the Lagrange function

aT x− b−
m∑

k=1

λkgk(x)

is an SOS polynomial when every polynomial gk(x) is sos-
concave.

Assume that there exists a partition {I1, · · · , IK} is a partition
of the index set {1, 2, · · · , n} such that Ii∩Ij = ∅ whenever i 6= j,
and suppose that for any a, b, λ there is a decomposition such that

aT x− b−
m∑

k=1

λkgk(x) = φ
(1)
λ (xI1) + · · ·+ φ

(K)
λ (xIK ),

where each φ
(i)
λ (xIi) is a polynomial in variables xIi . Here xIi

denotes the subvector of x whose indices are in Ii. In other words,
the polynomials

φ
(1)
λ (xI1), · · · , φ

(K)
λ (xIK )
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are uncoupled.
Given a polynomial p(x), denote by supp(p(x)) the support of

p(x), i.e., the set of exponents of existing monomials of p(x). If
p(x) is SOS and has decomposition p(x) =

∑
i q2

i (x), then it holds

supp(qi(x)) ⊆ convex hull
(1

2
supp(p(x))

)
,

by Theorem 1 in Reznick [Rez78]. So we define Fi to be the
maximum lattice set such that

Fi ⊆ convex hull
(1

2
supp(φ

(i)
λ )

)
.

Now define symmetric matrices M j
α as follows

mFi(xIi)mFi(xIi)
T

=M
(i)
0 +

∑
j∈Ii

xjM
(i)
j +

∑

1<|α|≤2N

xαM (i)
α .

Here mFi(xIi) denotes the vector of monomials whose exponents
lie in Fi. Then define linear matrices

MFi
(x, y) = M

(i)
0 +

∑

j∈Ii

xjM
(i)
j +

∑

1<|α|≤2d

x
α

M
(i)
α . (III.6)

Lemma 3.1: Let a, b, λ be the above. Then there are symmetric
matrices W1, · · · , WK º 0 such that

a
T

x− b−
m∑

k=1

λkgk(x) =

K∑

i=1

mFi
(xIi

)
T ·Wi ·mFi

(xIi
).

Proof: By the structure assumption, we have representation

La(x) := aT x− b−
m∑

k=1

λkgk(x)

= η1(xI1) + · · ·+ ηK(xIK )

for some polynomials η1(xI1), · · · , ηK(xIK ). We know La(x) is
nonnegative polynomial and u is one global minimizer such that
La(u) = 0. Let u(i) denote the subvector of u whose coordinates
correspond to the variables xIi . Then u(i) is one global minimizer
of ηi(xIi). So we know

La(x) =

k∑
i=1

(
ηi(xIi)− ηi(u

(i))
)

is SOS by Section 3 in [HN1]. In the above, fix one index i and set
x(j) = u(j) for j 6= i, then we can see ηi(xIi)−ηi(u

(i)) must also
be SOS in xIi . Furthermore, by Theorem 1 in Reznick [Rez78], the
polynomial ηi(xIi)− ηi(u

(i)) has the representation

ηi(xIi)− ηi(u
(i)) = mFi(xIi)

T ·Wi ·mFi(xIi),

for some symmetric matrix Wi º 0. Thus the Lemma is proven.

Theorem 3.2: Under the above assumptions, the convex set S
has the SDP representation

L =
{

x ∈ Rn : ∃ y, s.t. g(x, y) ≥ 0,

MFi(x, y) º 0, i = 1, · · · , K
}

. (III.7)

That is, S = L.
Proof: We have seen S ⊆ L. If L 6= S, then there must exist

some point x̂ ∈ L/S. By the Convex Set Separation Theorem, there
exists one supporting hyperplane of S

H = {x ∈ Rn : aT x ≥ b} ⊇ S

such that aT u = b for some u ∈ ∂S and aT x̂ < b. Consider the
linear optimization problem

b = min
x∈Rn

aT x

s.t. g1(x) ≥ 0, · · · , gm(x) ≥ 0.

Then u is one minimizer for the above. Let λ1 ≥ 0, · · · , λm ≥ 0
be the corresponding Lagrange multipliers. Then, by the previous
lemma, we have shown

aT x− b−
m∑

i=1

λkgi(x)

=
K∑

i=1

mFi(xIi)
T ·Wi ·mFi(xIi)

for some symmetric matrices W1, · · · , WK º 0. So we have

b = max γ s.t.

aT x− γ −
m∑

i=1
λkgi(x) =

K∑
i=1

mFi
(xIi

)T ·Wi ·mFi
(xIi

)

λ1, · · · , λm ≥ 0, W1, · · · , WK º 0.

The dual of the above SOS program is

min aT x s.t. x ∈ L.

Since x̂ ∈ L, by weak duality, it holds b ≤ aT x̂, which contradicts
the previous assertion aT x̂ < b.

Now let us show some examples for the sparse SDP representa-
tion constructed in (III.7).

Example 3.3: Consider the convex set

S = {x ∈ Rn
+ : g(x) := 1− (x8

1 + x2
1 + x1x2 + x2

2) ≥ 0}.

Obviously g(x) is sos-concave. The convex hull of
(

1
2

supp(g)
)

contains only the following integer points:

(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (0, 1).

By the sparsity theorem, S can be represented as

1− y80 − y20 − y11 − y02 ≥ 0,


1 x1 x2 y20 y30 y40

x1 y20 y11 y30 y40 y50

x2 y11 y02 y21 y31 y41

y20 y30 y21 y40 y50 y60

y30 y40 y31 y50 y60 y70

y40 y50 y41 y60 y70 y80



º 0.

The matrix above is the sparse moment matrix constructed in (III.6).
There are totally 11 auxiliary variables yij .

Example 3.4: Consider the set S = {x ∈ Rn : 1 − p(x) ≥ 0}
where

p(x) =

n∑
i=1

pi(xi), pi(xi) =

2d∑

k=1

xk
i

k!
.

Obviously p(x) is sos-convex, because each univariate polynomial
pi(xi) is convex and hence sos-convex. Thus S can be represented
as

1−
n∑

i=1

2d∑
k=1

y
(i)
k
k!

≥ 0

H1(x1, y
(i)) º 0, · · · , Hn(xn, y(n)) º 0

where Hi(xi, y
(i)) are defined as

Hi(xi, y
(i)) =




1 xi y
(i)
2 · · · y

(i)
d

xi y
(i)
2 y

(i)
3 · · · y

(i)
d+1

y
(i)
2 y

(i)
3 y

(i)
4 · · · y

(i)
d+2

...
...

...
. . .

...
y
(i)
d y

(i)
d+1 y

(i)
d+2 · · · y

(i)
2d




.

The symmetric matrices Hi(xi, y
(i)) are sparse moment matrices

constructed in (III.6). There are totally 2n(d−1) auxiliary variables
y
(i)
k .
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IV. POSITIVE CURVATURE CONDITION

Section II and Section III show the explicit construction of SDP
representation when all the defining polynomials gi(x) are sos-
concave. If some gi(x) is not sos-concave, these constructions
usually do not represent S. However, there are other sufficient
conditions that guarantees S is SDP representable, which is called
positive curvature.

Assume S in (I.2) is convex, compact and has nonempty interior.
Denote by ∂S the boundary of S. Let Zi = {x : gi(x) = 0}
and note ∂S ⊂ ∪iZi. We say the defining functions of S are
nondegenerate provided ∇gi(x) 6= 0 for all x ∈ Zi ∩ ∂S. The
boundary of S is said to have positive curvature provided that there
exist nondegenerate defining functions gi for S such that at each
x ∈ ∂S ∩ Zi

−vT∇2gi(x)v > 0, ∀ 0 6= v ∈ ∇gi(x)⊥, (IV.8)

in other words, the Hessian of gi compressed to the tangent space
(the second fundamental form) is negative definite. A standard fact
in geometry is that this does not depend on the choice of gi(X).

Obviously, necessary conditions for S to be SDP representable
are that S must be convex and semialgebraic (describable by a
boolean combination of of polynomial equalities or inequalities over
the real numbers). The following, Theorem 3.3 of [HN2], goes in
the direction of the converse.

Theorem 4.1: Suppose S is a convex compact set with nonempty
interior which has nondegenerate defining polynomials S = {x ∈
Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0}. If the boundary ∂S is positively
curved, then S is SDP representable.

If S is convex with nondegenerate defining functions, then its
boundary has nonnegative curvature. Thus the positive curvature
assumption is not a huge restriction beyond being strictly convex.
The nondegeneracy assumption is another restriction.

Finally comes an example where the defining polynomial is not
concave but the boundary has positive curvature.

Example 4.2: Consider the set

S = {x ∈ Rn
+ : g(x) := x1x2 · · ·xn − 1 ≥ 0}.

We can easily see that S is convex but the defining polynomial
g(x) is not concave. Note that

∇g(x)
g(x)+1

=
[ 1

x1

1
x2

· · · 1
xn

]T

∇2g(x)
g(x)+1

=




0 1
x1x2

· · · 1
x1xn

1
x1x2

0 · · · 1
x2xn

...
...

. . .
...

1
x1xn

· · · 1
xn−1xn

0




.

We claim that the boundary ∂S has positive curvature, which is
justified by the following observation:

−∇2g(x) +∇g(x)∇g(x)T

º (g(x) + 1)diag
(

1
x2
1
, 1

x2
2
, · · · , 1

x2
n

)
Â 0, ∀x ∈ ∂S.

Since ∂S has positive curvature, Theorem 4.1 guarantees S has an
SDP representation whose construction was in Section 5 in [HN1].

V. CONCLUDING REMARKS

This paper gives an explicit construction, (II.4), of an SDP
representation for a convex set S and a sparser one (III.7) when
polynomials gk(x) are sos-concave. There are also some other
constructions of SDP relaxations [Las06], [HN1], [HN2] for S,
which are also SDP representations of S when gk(x) are strictly
concave on the boundary ∂S of S or when the boundary ∂S has
positive curvature.

In theory a hierarchy of SDP relaxations converging to S within
finitely many steps can be constructed when the boundary ∂S
has positive curvature (weaker than our hypothesis). However,

these refined constructions of SDP representations are usually more
complicated than (II.4) or (III.7), for example, usually it is difficult
to predict which step of their hierarchy of relaxations represents
S exactly. In contrast, the size of construction (II.4) or (III.7) is
explicit. We refer to [HN1], [HN2] for more details.
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