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Abstract— This paper generalizes the cross-entropy (CE)
method to a population-based setting, where a population of
probabilistic models is maintained/updated and subsequently
propagated from generation to generation. One of the key
questions in the proposed approach is how to efficiently dis-
tribute a given sample budget among different models in a
population to maximize algorithm performance. We formulate
this problem as a Markov decision process (MDP) model
and derive an efficient dynamic sample allocation scheme
to adaptively allocate computational resources. We carry out
numerical studies to illustrate the method and compare its
performance with existing procedures.

I. INTRODUCTION

We consider deterministic global optimization problems

over real vector-valued domains. The general solution meth-

ods to solve these problems can be broadly classified into two

categories (cf. e.g., [13]): the instance-based methods and

the model-based search (MBS) methods. In instance-based

methods, the search for new candidate solutions depends

directly on previous generated solutions. Some well-known

instance-based methods are simulated annealing (SA) [6],

genetic algorithms (GAs) [11], tabu search [4], the adaptive

partitioned random search (APRS) [12], and the nested par-

titions (NP) method [10]. On the other hand, in model-based

methods, new solutions are generated via an intermediate

probability model over the solution space that is iteratively

updated. Thus, each iteration of a model-based algorithm

usually involves a solution generation step, which randomly

samples candidate solutions from the current probability

model, and a model updating step, which updates the current

probability model based on the generated solutions to bias

the future search toward regions containing high quality

solutions. Some examples of model-based methods are ant

colony optimization (ACO) [2], estimation of distribution

algorithms (EDAs) [7], the cross-entropy (CE) method [9],

and the recently proposed model reference adaptive search

(MRAS) [5], see e.g., [3] and [13] for a recent review.

In this paper, we focus on the CE method, and propose

a heuristic extension we call Population-based CE with

Dynamic Sample Allocation (PCEDSA) that aims to improve

both the efficiency and robustness of the original CE method

by maintaining and updating a population of probabilistic

models rather than just a single model. This generalization

has given rise to a key question as to how to allocate a

J. Hu is with the Department of Applied Mathematics and Statis-
tics, State University of New York, Stony Brook, NY 11794, USA
jqhu@ams.sunysb.edu

H. S. Chang is with the Department of Computer Science and Engineer-
ing, Sogang University, Seoul, Korea hschang@sogang.ac.kr

given sample budget (function evaluations) to a population

of distribution models so that the expected performance

of the algorithm is optimized in some sense. We study

this question from a decision-theoretic point of view, and

formulate the problem as a Markov decision process (MDP)

model with a terminal reward function. However, because

obtaining the exact optimal policy for the MDP model is

intractable, a sub-optimal one-step look-ahead policy that

myopically optimizes at each step a lower bound of the

optimal value function is derived. The sample allocation

policy dynamically assigns to each model in the population

a performance index and suggests that the next distribution

model to sample from is the one with the current best per-

formance index. These performance indices are then further

used in conjunction with the CE method to update the current

population to obtain a new population of distribution models.

We show that the new generation of distributions improves

upon the previous generation in the sense that each of the

models in the new generation has a better performance index

than its corresponding predecessor.

The rest of the paper is organized as follows. In Section II,

we begin with the problem setting and derive a sample

allocation policy to adaptively distribute computational re-

sources. We give a detailed description of the algorithm

in Section III, where the idea of Section II is efficiently

combined with the CE method to update the distribution

population. Some implementation issues of PCEDSA are

discussed in Section IV and numerical examples are given

in Section V. Finally we conclude this paper in Section VI.

II. DYNAMIC SAMPLE ALLOCATION

A. Background

Consider solving the global optimization problem

x∗ ∈ arg max
x∈X

H(x), (1)

where the solution space X is a non-empty set in ℜn, and

H(·) : X → ℜ is a deterministic real-valued function. We

assume that problem (1) has at least one global maximizer

x∗ that achieves the maximum of H . Note that the function

H is not necessarily convex or continuous, and there could

be many local optimal solutions.

In this paper, we approach this problem by using an

evolutionary, population- and model-based random sampling

approach, i.e., by explicitly specifying a set or population

of potentially good probability distribution models, and then

iterating on this set to produce improving models. In partic-

ular, let Λf = {fθ1
, . . . , fθK

} be a set of K parameterized
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probability density/mass functions (p.d.f./p.m.f.) on X. We

assume that fθi
, i = 1, . . . ,K belong to some common

parameterized distribution family {fθ, θ ∈ Θ}, where Θ is

the parameter space. We remark that the use of parameterized

distributions is mainly of practical convenience, as they

can generally be efficiently sampled from and represented

relatively compactly by their associated parameters. The

general outline of the approach consists of the following two

steps: at each iteration k,

1) Sample N candidate solutions from the population

Λk
f := {fθk

1
, . . . , fθk

K
} and evaluate the objective

function value at each of those points;

2) Iterate on the current population Λk
f by using the

N solutions collected in the first step to produce

an improving population of distributions Λk+1
f :=

{f
θ

k+1

1

, . . . , f
θ

k+1

K
}.

The above procedure resembles that of a typical model-

based algorithm, but generalizes it by allowing candidate

solutions to be generated from K different distributions.

This generalization immediately leads to the following two

questions: (1) how to allocate the N random samples to the

K distributions at each iteration of the algorithm? (2) how

to update the population of distributions in a synergetic way

to obtain an improving population?

Throughout this paper, we use Pθi
(·) and Eθi

[·] to denote

the probability and expectation taken with respect to fθi
, and

I{·} to denote the indicator function.

B. Dynamic Sample Allocation Rule

In this section, we formulate the sample allocation prob-

lem as a Markov decision process (MDP) model and derive

an efficient decision rule for that problem.

Given a total of N samples (function evaluations), at step

t = 0, we start by generating a small number of i.i.d.

samples, say m, from each of K distribution models, where

mK ≤ N . We denote by Λ0
X = {X1

0 , X2
0 , . . . ,XmK

0 } the set

of mK samples generated and Λ0
H = {H1

0 , H2
0 , . . . ,HmK

0 }
the set of corresponding function values evaluated at those

points, i.e., Hi
0 = H(Xi

0) for all i = 1, . . . ,mK. We assume

that both Λ0
X and Λ0

H are multisets so that they may contain

the same element more than once. Order the mK function

values from smallest to largest, i.e., H
(1)
0 ≤ H

(2)
0 ≤ · · · ≤

H
(mK)
0 , and let

−→
Λ0

H ∈ ℜ1×mK be a row vector whose ith

entry is given by the ith order statistic H
(i)
0 . For a given

integer 0 < L ≤ mK, we also define γℓ
0 =

−→
Λ0

H(mK−L+ℓ)
for all ℓ = 1, . . . , L. In other words, γℓ

0, ℓ = 1, . . . , L are

the L largest function values obtained out of mK samples.

For example, γ1
0 is the Lth largest function value and γL

0 is

the largest function value.

At each step t = 1, . . . , N − mK, exactly one candidate

solution will be generated from one of the K distributions.

Let Ht be the function value corresponding to that candidate

solution, and let {γℓ
t , ℓ = 1, . . . , L} be the set of largest

L function values obtained at step t. We define a vector

Wt = (γ1
t , . . . , γL

t , nt), where nt is a counter that counts the

total number of improvements in the set of best L function

values obtained up to time t, i.e., nt = nt−1+I{Ht ≥ γ1
t−1}

with n0 = 0.

Now consider a (possibly non-stationary) sample alloca-

tion rule/policy π which determines, based only on Wt, at

each step t, whether at least one more sample should be

taken or the entire sampling process should be terminated;

in the former case, the policy π also specifies which of K
distribution models should be sampled from and then takes

exactly one sample from that distribution. We let πt(Wt) be

the decision or action chosen by policy π at step t, which

takes values from the set A = {0, 1, . . . ,K}, where

πt(Wt) :=

{
0 stop sampling at step t,
i take one sample from fθi

, i = 1, . . . ,K.

When πt(Wt) 6= 0, we let X
πt(Wt)
t+1 be the sample obtained

at step t + 1, and define Λt+1
X = Λt

X ∪ {Xπt(Wt)
t+1 }, Λt+1

H =

Λt
H ∪{H(X

πt(Wt)
t+1 )}, and γℓ

t+1 =
−−→
Λt+1

H (mK + t+1−L+ℓ)

for all ℓ = 1, . . . , L and t = 0, . . . , N−mK−1, where
−−→
Λt+1

H

is constructed in the same way as described above. We also

define a termination state T , and whenever the stop action is

chosen at step t, i.e., πt(Wt) = 0, we define nr+1 = T and

γℓ
r+1 = T for all ℓ = 1, . . . , L and r = t, . . . , N −mK − 1.

Lemma 2.1: For every sample allocation policy π de-

scribed above, the process {Wt} is a Markov chain with

absorbing state T , where T is an 1-by-(L + 1) vector with

all elements equal to T , i.e., T = (T , T , . . . , T ).

Proof: It is easy to verify that the following recursion

holds whenever πt(Wt) 6= 0: for all ℓ = 1, . . . , L − 1,

γℓ
t+1 = γℓ

t +
(
H(X

πt(Wt)
t+1 ) − γℓ

t

)+

−
(
H(X

πt(Wt)
t+1 ) − γℓ+1

t

)+
,

γL
t+1 = γL

t +
(
H(X

πt(Wt)
t+1 ) − γL

t

)+
and

nt+1 = nt + I{H(X
πt(Wt)
t+1 ) ≥ γ1

t }, (2)

for all t = 0, . . . , N − mK − 1, where Z+ := max{0, Z}.

Thus, the claim follows by the construction of {Wt}.

Now consider the process {Wt} with some associated cost,

in which when in state Wt = w at step t we may either stop

sampling (i.e., πt(Wt) = 0) and receive a termination reward

nt, or choose to generate a sample from the distribution

fθi
at the expense of paying a cost C ∈ [0, 1). Note that

C may also include the function evaluation cost at the

sampled point. Thus, the above becomes an (N −mK +1)-
horizon Markov decision process with the following one-

stage-reward function

Rt(w, a) :=

{
nt if a = 0,
−C if a = 1, . . . ,K.

(3)

Thus, for a given sample allocation policy π and an initial

state W0 = w, the total reward accumulated before termina-

tion is given by

V π(w) = E

[ N−mK∑

t=0

Rt

(
Wt, πt(Wt)

)∣∣∣W0 = w

]
, (4)

where E[·] is understood with respect to the probability law
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induced by policy π. The objective is to find an optimal

sample allocation policy π∗ to maximize the total reward

accumulated before termination for all given initial states. In

view of (3) and (4), it is easy to see that we are essentially

maximizing, less the sampling and function evaluation cost,

the expectation of the total number of improvements that can

be achieved before the process terminates.

We define the set

S =
{

w : max
1≤i≤K

{
Pθi

(
H(X) ≥ w(1)

)
− C

}
≤ 0

}
, (5)

where w(1) indicates the first component of the state w,

i.e., the current Lth best function value obtained. Roughly

speaking, S is the set of states so that the maximum proba-

bility of generating a solution that is at least as good as the

current Lth best solution is less than the cost of generating

such a solution. Let Vt be the optimal reward function of the

(N −mK − t)-stage tail problem of the original MDP. The

following theorem provides a lower bound to the optimal

value function.

Theorem 1: For any state w 6= T , the optimal sample

allocation policy π∗ satisfies π∗
t (w) = 0 whenever w ∈ S .

Moreover

Vt(w)

{
= w(L + 1) if w ∈ S

≥ w(L + 1) if w /∈ S ,

for all t = 0, 1, . . . , N − mk, where recall that w(L + 1) is

the L + 1th element of w.

Note that when C = 0, S becomes an empty set, in which

case, Theorem 1 suggests that it is never optimal to stop

sampling until all the available sample budget is exhausted.

Proof: Follows from the dynamic programming algo-

rithm (e.g., [1]).

Unfortunately, since obtaining the exact optimal sample

allocation policy is intractable even when the horizon length

is small, we focus on the one-step look-ahead sample allo-

cation policy given by

π̂t(w) =

{
0 if w ∈ S

arg max
1≤i≤K

{
Pθi

(H(X) ≥ w(1))
}
− C if w /∈ S .

At each time t, it is easy to observe that π̂t(w) allocates

the next sample to myopically maximize the expected im-

provement Eθi
[nt+1] after the additional allocation. From

the proof of Theorem 1, this is essentially equivalent to

maximizing at each stage the sum of the current one-stage

reward and the lower bound of the optimal reward-to-go

given in the theorem. Note that the allocation policy π̂t(w) is

in fact stationary (i.e., independent of t). This feature makes

the allocation policy convenient to implement. Consequently,

for any given observation w(1) = γ, if we associate to each

distribution model fθi
a performance index

Ii(γ) := Pθi
(H(X) ≥ γ),

then the policy suggests that if at least one more sample

is needed, then that sample should be generated from the

distribution having the current best performance index.

III. POPULATION-BASED CE WITH DYNAMIC SAMPLE

ALLOCATION

We now describe the PCEDSA algorithm that uses the

dynamic sample allocation idea to adaptively distribute com-

putational resources in a population-base setting. A high-

level description of the algorithm is provided in Figure 1,

where for ease of exposition, we have assumed that C = 0,

i.e., no early stopping can occur.

PCE with Dynamic Sample Allocation

• Initialization: Specify N > 0 allowed at each iteration and
an initial population Λ0

f = {fθ0
1
, . . . , fθ0

K
}. Choose the

algorithm parameters L ≥ 1 and m ≥ 1 with mK ≤ N . Set
iteration counter k = 0.

• Repeat until a specified stopping rule is satisfied:

– Dynamic Sample Allocation:

∗ Generate m i.i.d. samples from fθk
i

for all

i = 1, . . . , K. Denote the set of generated solutions
and their function values by ΛX = {X1

0 , . . . , XmK
0 }

and ΛH = {H(X1
0 ), . . . , H(XmK

0 )}, respectively.

Set γ0 =
−→
ΛH(mK − L + 1). Calculate performance

indices Ii(γ0) for all i = 1, . . . , K, and let

i
∗ = arg max

1≤i≤K

Ii(γ0).

∗ for t = 0 to N −mK − 1
Take one sample Xt+1 from fθk

i∗
. Set

ΛX = ΛX ∪ {Xt+1},
ΛH = ΛH ∪ {H(Xt+1)}, and

γt+1 =
−→
ΛH(mK + t + 2− L).

Calculate performance indices Ii(γt+1) for
all i = 1, . . . , K.
Let i∗ = arg max

1≤i≤K Ii(γt+1).
end

– Distribution Population Construction:

∗ Update all K distributions individually to obtain the
next generation Λk+1

f = {f
θ

k+1

1

, . . . , f
θ

k+1

K

}.

∗ k ← k + 1.

Fig. 1. A high-level description of PCEDSA

We start by specifying a computational budget N , the

initial number of samples m to be generated from each

distribution model, and a constant L ≥ 1. As we will see in

Section IV, L is the number of candidate solutions that will

be used in updating the distribution models. Once chosen,

these parameters are fixed throughout the algorithm. We then

select an initial population of distributions. In practice, the

initial population can be chosen according to some prior

knowledge of the problem structure; however, in cases where

no such information is available, one simple choice is to

uniformly/equally distribute the K distributions over the

solution space so that each subregion will have a good chance

of being sampled. For example, one possibility is to roughly

partition the solution space into K equal subregions, and

then place a distribution over each of these K regions.

A. Distribution Population Construction

The overall idea of distribution construction in PCEDSA

is based on the intuition that once a set of good sampling
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distributions have been identified based on the past sampling

history, we should exploit this fact and concentrate more

future computational effort on these distributions. However,

in practice, persistent improvements will be increasingly

difficult to achieve as the number of sampling instances

increases, since the performance index I(γ) is a decreasing

function of γ, which implies that the probability of finding

improving solutions becomes smaller. This suggests that

we should find a viable way to constantly update these

distribution models so that their corresponding performance

indices can be improved from time to time.

In PCEDSA, an individual distribution model is updated

by using the CE method. In an optimization context, the

basic idea of CE is to work with a parameterized distribution

on the solution space and try to find an optimal parameter

of the distribution that assigns maximum probability to the

set of near optimal solutions. For a detailed description, the

reader is referred to [9]. An alternative interpretation of CE

is also given in [5], where it has been shown that there

is a sequence of intermediate distribution models referred

to as reference models implicit in CE, and each step of

the algorithm minimizes the Kullback-Leibler (KL) distance

between the parameterized distribution and the reference

distribution. The above rationale has resulted in the following

distribution updating procedure.

Distribution Population Updating:

Upon termination of the Dynamic Sample Allocation

step of the algorithm, we obtain a random variable γN−mK ,

which is the Lth best function value among the total N
samples obtained. Given the current observation γN−mK =
γ, define reference distributions

gk+1
i (x) = (1 − α)

I{H(x) ≥ γ}fθk
i
(x)

Ii(γ)
+ αfθk

i
(x) (6)

for all i = 1, . . . ,K, where α is a specified constant between

0 and 1.

• Update the parameters associated with the K distribu-

tions by minimizing the KL-distance

θk+1
i = arg min

θ∈Θ
D

(
gk+1

i , fθ

)
for all i = 1, . . . ,K.

(7)

• Set the next population Λk+1
f = {f

θ
k+1

1

, . . . , f
θ

k+1

K
}.

In Equation (7), the KL distance between two probability

distribution g and f is defined as follows:

D(g, f) =

∫

x∈X

ln
g(x)

f(x)
f(x)ν(dx), (8)

where ν(·) is the Lebesgue/discrete measure on X. We note

that the sequence of reference distributions gk+1
i is only used

implicitly to guide the parameter updating procedure and

there is no need to build them explicitly at each iteration of

the algorithm. Clearly, the above distribution updating proce-

dure follows that of the standard CE method. Consequently,

it is easy to see that PCEDSA degenerates to the standard

CE method when the population size K = 1.

We now present the main result of this section, which

states that the performance indices of the K updated dis-

tributions are improving. We begin with some regularity

conditions.

Assumptions:

A1. The parameterized density/mass functions fθ, ∀ θ ∈
Θ have the same support.

A2. fθ1
(x) 6= fθ2

(x) almost surely for all θ1 6= θ2.

Theorem 2: For a given γ < H(x∗), let I∗
i (γ) be the

performance index of the ith distribution obtained via Equa-

tion (7) for all i = 1, . . . ,K. If Assumption A1 is satisfied,

then the K new distributions generated by the “Distribution

Population Construction” step of PCEDSA are improving, in

the sense that

I∗
i (γ) ≥ Ii(γ) for all i = 1, . . . ,K.

Moreover, if Assumption A2 is also satisfied and θk+1
i 6= θk

i ,

then

I∗
i (γ) > Ii(γ) for all i = 1, . . . ,K.

Proof: From Equation (7), since θk+1
i minimizes the

KL distance D(gk+1
i , fθ), we have

0 ≤ D
(
gk+1

i , fθk
i

)
− D

(
gk+1

i , f
θ

k+1

i

)

= E
g

k+1

i

[
ln

f
θ

k+1

i
(X)

fθk
i
(X)

]
≤ E

g
k+1

i

[f
θ

k+1

i
(X)

fθk
i
(X)

− 1
]
,

where E
g

k+1

i
[·] is the expectation taken with respect to gk+1

i ,

and the last inequality follows because lnx ≤ x − 1 for all

x > 0. Consequently, it follows from the definition of gk+1
i

(cf. Equation (6)) that

1 ≤ E
g

k+1

i

[f
θ

k+1

i
(X)

fθk
i
(X)

]
= (1−α)E

θ
k+1

i

[I{H(X) ≥ γ}
Ii(γ)

]
+α

Therefore, we have

Ii(γ) ≤ E
θ

k+1

i

[
I{H(X) ≥ γ}

]
= I∗

i (γ). (9)

Note that (9) becomes equality if and only if f
θ

k+1

i
(x) =

fθk
i
(x) almost surely on X. Thus, if Assumption A2 is sat-

isfied, then (9) becomes strict inequality. Hence, the second

claim in Theorem 2 follows.

Theorem 2 also implies that the expected performance of

the original CE method with smoothed parameter updating is

improving, in the sense that the probability of generating an

improving solution (i.e., a solution whose function value is

better than γ) under the new distribution f
θ

k+1

i
is greater than

the probability of generating an improving solution under the

old distribtuion fθk
i

.

IV. IMPLEMENTATION ISSUES

In this section, we consider the problems of estimating

performance indices and updating distribution models based

on the actual observed data.

A. Estimating Performance Index

The key question to address is how to use a single sample

trajectory (i.e., the N samples generated by the sample
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allocation policy) to efficiently estimate the performance

indices of all K distribution models.

Here, we propose an approach that is based on the

importance sampling idea. Specifically, let Λi
X be the set of

candidate solutions sampled from distribution fθi
, and define

Λ̄i
X := Λi

X ∩ {x ∈ ΛX : H(x) ≥ γN−mK}, i.e., Λ̄i
X is the

set of samples generated from fθi
with performance better

than γN−mK .

Lemma 4.1: For any γN−mk := γ < H(x∗), if Assump-

tion A1 is satisfied, then

Îi(γ) =
1

N

K∑

j=1

∑

x∈Λ̄j

X

fθi
(x)

fθj
(x)

(10)

is an unbiased estimator of Ii(γ) for all i = 1, . . . ,K.

Proof: The result follows from Wald’s identity [8]

because |Λi
X | (the cardinality of the set Λi

X ) depends only

on the past sampling history.

B. Updating Distribution Models

We focus our discussion on a particular family of distribu-

tions called the Natural Exponential Family (NEF). For such

a distribution family, it has been shown (cf. e.g., [9]) that

the optimization problem (7) can be solved analytically in

closed form.

Definition 1: A parameterized family of p.d.f’s/p.m.f’s

{fθ, θ ∈ Θ ⊆ ℜm} on X is said to belong to the natural

exponential family (NEF) if there exist functions h(·) :
ℜn → ℜ, c(·) : ℜn → ℜm, and Υ(·) : ℜm → ℜ such

that

fθ(x) = exp
{
θT c(x) − Υ(θ)

}
h(x), ∀ θ ∈ Θ, (11)

where Υ(θ) = ln
∫

x∈X
exp

{
θT c(x)

}
h(x)ν(dx), and the

superscript “T ” denotes the vector transposition.

The following result generalizes Lemma 2 in [5].

Lemma 4.2: For any given distribution function g, let

θ∗ = arg minθ∈Θ D(g, fθ). Assume that

1) supθ∈Θ ‖eθT c(x)c(x)h(x)‖ is integrable/summable

with respect to x, where c(·) and h(·) are given by

Definition 1.

2) Both Eg[c(X)] and Eθ[c(X)] ∀ θ ∈ Θ are finite.

3) θ∗ is an interior point of Θ.

Then

Eθ∗ [c(X)] = Eg[c(X)].
Proof: Note that θ∗ satisfies the first order necessary

condition for optimality. The result follows by using an

argument similar to that of [5].

Given the current observation γN−mK = γ, Lemma 4.2

states that the optimal parameter θk+1
i obtained in (7) is the

solution to the system of equations

Eθ[c(X)] = E
g

k+1

i
[c(X)]

= (1 − α)
Eθk

i
[I{H(X) ≥ γ}c(X)]

Ii(γ)
+ αEθk

i
[c(X)].

Therefore, given Λk
f = {fθk

1
, . . . , fθk

K
}, it follows from (10)

that an estimate θ̂k+1
i of θk+1

i can be obtained by solving

the stochastic counterpart of the above equation

Eθ[c(X)] = (1 − α)

1
N

∑K

j=1

∑
x∈Λ̄j

X

f
θk

i
(x)

f
θk

j
(x)c(x)

Îi(γ)

+ αEθk
i
[c(X)].

V. NUMERICAL EXAMPLES

In this section, we illustrate the performance of PCEDSA

on several continuous multi-extremal optimization problems

and compare its performance with that of standard CE

and a population-based CE referred to as PCE with equal

sample allocation (PCEESA). In PCEESA, a population of

K distributions is also maintained/updated from generation

to generation, and at each iteration of the algorithm, a given

sample budget N is equally split into K parts and assigned

to each of the K distributions.

The following three benchmark problems are used in our

experiments. Function H1 is a low dimensional problem with

a few local optima; however, the maxima are separated by

plateaus and are relatively far apart. Both H2 and H3 are

highly multimodal and the number of local optima increases

exponentially with the problem dimension.

(1) Shekel’s function (n = 4)

H1(x) = −
5∑

i=1

(
(x − ai)

T (x − ai) + ci

)−1

,

where a1 = (4, 4, 4, 4)T , a2 = (1, 1, 1, 1)T , a3 =
(8, 8, 8, 8)T , a4 = (6, 6, 6, 6)T , a5 = (3, 7, 3, 7)T ,

and c = (0.1, 0.2, 0.2, 0.4, 0.4), x∗ ≈ (4, 4, 4, 4)T ,

H1(x
∗) ≈ 10.153.

(2) Trigonometric function (n = 10)

H2(x) = −
n∑

i=1

8 sin2
(
7(xi − 0.9)2

)

+ 6 sin2
(
14(xi − 0.9)2

)
+ (xi − 0.9)2 − 1,

where x∗ = (0.9, . . . , 0.9)T , H3(x
∗) = −1.

(3) Griewank function (n = 10)

H3(x) = − 1

4000

n∑

i=1

x2
i +

n∏

i=1

cos
( xi√

i

)
− 1,

where x∗ = (0, . . . , 0)T , H4(x
∗) = 0.

In our experiments, we have used multivariate normal dis-

tributions with independent components. For both PCEDSA

and PCEESA, we take population size K = 5, and the

means µi’s of the initial population are uniformly selected

from [−40, 40]n; Σi’s are initialized as n-by-n diagonal

matrices with all diagonal elements equal to 100. For CE,

the initial mean vector is uniformly selected from [−40, 40]n,

and covariance matrix is an n-by-n diagonal matrix with all

non-zero elements equal to 100. We set m = 10 and α = 0.3
in PCEDSA, and L = 10 for all three algorithms.

For each test problem, we performed 100 independent

replication runs of all three algorithms. Tables I shows the

performances of these algorithms when the total number
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TABLE I

PERFORMANCE OF DIFFERENT ALGORITHMS ON TEST PROBLEMS H1 − H3 , BASED ON 100 INDEPENDENT REPLICATIONS (STANDARD ERRORS IN

PARENTHESES).

Test PCEDSA (N = 100) CE (N = 100) PCEESA (N = 100)

Prob. H̄∗
1 ρε H̄∗

2 ρε H̄∗
3 ρε

H1 6.20(0.37) 51% 3.66(0.31) 13% 6.12(0.37) 45%

H2 0.91(0.04) 94% -29.2(5.11) 19% 0.11(0.18) 78%

H3 -1.17e-2(1.3e-3) 54% -7.68e-2(7.3e-3) 5% -1.23e-2(1.7e-3) 45%

Fig. 2. Average performance of PCEDSA, CE, and PCEESA on test
problems H1 to H3.
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of samples allowed at each iteration is set to N = 100.

In the table, H̄∗
i indicates the averaged value of function

Hi evaluated at the best solution visited by the algorithm,

with standard error reported in parenthesis, and ρε is the

percentage of ε-optimal solutions (ε = 1e−3) obtained out of

100 trials. Here, we call a solution x ε-optimal if it satisfies

|Hi(x
∗)−Hi(x)| ≤ ε. The performance comparison is based

on the same amount of computational effort, where the total

number of samples allowed for H1 is set to 3000, and 4000
for H2 and H3. In Figure 2, we also plotted the average

function values of the current best solution as a function of

the number of samples generated.

It is easy to observe that the performance of PCEESA con-

sistently dominates the original CE method, which indicates

that a population-based approach may offer more efficiency

and robustness in a model-based search method. PCEDSA

represents a further enhancement of PCEESA via the use

of an intelligent allocation scheme to dynamically allocate

computational budgets among different distributions as the

sampling process proceeds.

VI. CONCLUSIONS

In this paper, we have proposed a population-based CE

method called PCEDSA as a first step to explore the possi-

bility of improving the efficiency and robustness of a typical

model based method. Our preliminary numerical results show

that PCEDSA offers promising performance. The focus of

this paper is on the CE method, however, it could be more

useful to view the proposed method as a general population-

based framework and apply the dynamic sample allocation

idea to other model-based algorithms such as EDAs and

MRAS. This avenue of investigation merits further research.
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