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Abstract— We address a discrete-time, pursuit-evasion game
with alternate moves played between two kinds of players: the
pursuer and the evader. The pursuer wishes to capture the
evader while the evader’s goal is to avoid capture. By capture,
we mean that the distance between the players is no greater
than 1 unit. We assume simple, first-order motion kinematics
for the players. The pursuer can move with a step size of at
most 1 unit while the evader can move with a maximum step
size of β < 1 units. The pursuer is able to measure only its
distance from the evader, before and after the evader’s move.
We propose a capture strategy and first show that for the game
played in R

2, if β < 0.5, then a single pursuer captures the
evader in finite time. Next, we show that if the game is played in
R

3 and if β < 0.5, then with a modified strategy, two identical
cooperative pursuers capture the evader in finite time. Finally,
we shed light on the performance of the capture strategy in
the case of β ∈ [0.5, 1[ and the case of sensing errors via
simulations. We also present a simulation study of a version of
this game with simultaneous moves.

I. INTRODUCTION

The game of pursuit can be posed as to determine a

strategy for a pursuer to capture an evader in a given

environment. By capture, we mean that the evader and the

pursuer are within a specified distance after a finite time. The

aim of the pursuer is to capture the evader for any evader

strategy. The evader wins the game if it can avoid capture

indefinitely. Capture strategies are important in surveillance

where the goal is to detect and capture intruders that move

unpredictably. Another application is search-and-rescue op-

erations where a worst-case capture strategy guarantees a

rescue, in spite of any unpredictable motion of the victim.

A. Related Work

There has been tremendous interest in pursuit-evasion

games ever since their formal introduction [1]. Various

versions of these games have been studied over the past four

decades - for instance [2], [3] and [4] to cite a few. Recently,

there has been a surge of interest in the algorithmic approach

to the game in discrete-time. [5] gives sufficient conditions

and a strategy for a single pursuer to capture an evader

in a semi-open environment. [6] and [7] analyze pursuer

strategies of moving towards the current and towards the

last position of the evader respectively. [8] and [9] address

visibility-based pursuit evasion. With respect to multiple

cooperative pursuers, [10] addresses capturing an equally fast
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evader in a boundaryless environment while [11] deals with

locating and capture in polygonal environments.

With respect to sensing constraints, [12] deals with a

version of pursuer’s visibility limited to a cone. [13] con-

siders a graph environment, with the visibility limited to

adjacent nodes, while [14] proposes a framework assuming

probabilistic models for sensing. [15] addresses the case in

which the pursuer only knows an approximate location of the

evader. [16] and [17] present a solution to the game under

bounded measurement uncertainty in sensing the evader.

Other areas of research related to the problem we address,

are target tracking and localization. Using distance-only

measurements, [18] determines optimal motions for multiple

mobile sensors to minimize the error in the posterior estimate

of the target position. Using the Fisher Information Matrix,

[19] characterizes a condition for local system observability

of tracking a moving target in a plane with range-only mea-

surements. [20] and [21] present an established estimation

method to track targets moving with bounded speeds. We

refer to this method as the Grow-Intersect algorithm.

B. Contributions

We address a discrete-time alternate-motion pursuit-

evasion game played between two kinds of players, the

pursuer and the evader. The pursuer wishes to capture the

evader while the evader’s goal is to avoid capture. By capture,

we mean that the distance between the pursuer and the evader

is no greater than 1 unit. The game is played in R
2, i.e.,

the unbounded plane. We assume simple, first-order motion

kinematics for both players. The pursuer can move with

a step size of at most 1 unit while the evader can move

with a maximum step size of β < 1. The pursuer is able

to measure its distance from the evader before as well as

after the evader’s move, while the evader is assumed to have

complete information of the pursuer’s location. In continuous

time, this is analogous to the pursuer being equipped with

a sensor that measures the distance to the evader as well as

the rate of change of this distance. [22] presents an example

of one such sensor.

In the proposed game, we present a strategy inspired by

the Grow-Intersect algorithm for the pursuer and show that:

(i) if the maximum evader step size β < 0.5, then the pursuer

captures the evader in finite time, (ii) for the game played

in R
3: if β < 0.5, then two identical, cooperative pursuers

capture the evader in finite time, and (iii) we provide upper

bounds on the time taken to capture the evader in parts

(i) and (ii). Finally, we present simulation studies in the

planar case to address: (i) the case of β ∈ [0.5, 1[, (ii) the

effect of additive, zero-mean Gaussian noise with variance

proportional to the square of the distance between the evader
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and the pursuer on the outcome of the game, and (iii) a game

with simultaneous moves.

C. Organization

The problem formulation is described in Section II. The

capture strategy and main result is presented in Section III.

A cooperative pursuit version of this game is presented in

Section IV. Due to space constraints, the proofs of the main

results in Sections III and IV are provided in our online

technical report [23]. Simulations that address the case of

evader speed β ∈ [0.5, 1[ and sensor noise are presented in

Section V. A version of the present game with simultaneous

moves and a simulation study of the application of a modified

capture strategy are presented in Section VI.

II. PROBLEM SET-UP

We assume a discrete-time model with alternate motion

of the evader and the pursuer. The game is played in the

unbounded plane. We assume simple, first-order motion

kinematics for both players. The pursuer can move with a

step size of at most 1 unit while the evader can move with

a step size of β < 1. The pursuer is equipped with a range-

only sensor that measures its distance from the evader. The

evader is assumed to know exact information of the pursuer’s

location. Further, we assume that at each time instant, the

players take measurements before and after the pursuer’s

move. A sequence of the game consists of the following:

(i) the evader moves, (ii) players take measurements, (iii)

the pursuer moves, (iv) the players take measurements. This

is shown in Figure 1. Capture is defined when the distance

between the players is less than or equal to unity.

Measure Measure

Pursuer moves to p[t]

At time t ≥ 1

Evader: p[t − 1]

Pursuer: yt−1[t]

Evader: p[t]

Pursuer: yt[t]

Evader moves to e[t]

Fig. 1. A sequence at each time t ∈ {1, 2, . . . } in our alternate motion
model. The players take measurements before and after the pursuer’s move.

Let e[t] ∈ R
2 and p[t] ∈ R

2 denote the positions of the

evader and the pursuer respectively, at time t ∈ Z≥1. The

discrete-time equations of motion are

e[t] = e[t − 1] + ue(e[t − 1], {p[τ ]}t−1
τ=0),

p[t] = p[t − 1] + up(p[t − 1], yt−1[t − 1], yt−1[t]),
(1)

where {p[τ ]}t−1
τ=1 denotes the set {p[0], p[1], . . . , p[t−1]}. For

the pursuer, at the tth time instant , yt−1[t − 1], yt−1[t] ∈
R≥0 are the distances of the evader’s position from the

pursuer before and after the pursuer’s move respectively.

Thus, yt−1[t−1] = ‖e[t−1]−p[t−1]‖ and yt−1[t] = ‖e[t]−
p[t− 1]‖. The functions ue : R

2 ×R
2 × · · · × R

2

︸ ︷︷ ︸

t times

→ R
2 and

up : R
2×R×R → R

2 are termed as strategies for the evader

and pursuer respectively. Notice that in this formulation,

we allow the evader the access to the entire history of the

pursuer’s motion, while we allow the pursuer the access to

only two of the most recent evader measurements. The lack

of symmetry between the number of arguments in strategies

of the evader and the pursuer is due to the alternate motion

model and due to the assumptions on the measurement

models of the players.

Since the step sizes of each player are bounded, we have

‖ue‖ ≤ β, and ‖up‖ ≤ 1, (2)

where β < 1. Capture takes place when for some Tcap ∈
Z≥0,

‖e[Tcap] − p[Tcap − 1]‖ ≤ 1 or ‖e[Tcap] − p[Tcap]‖ ≤ 1.
(3)

The problem is to determine a pursuer strategy up that

guarantees capture for any evader strategy ue.

Remark II.1 (Continuous-time analogy) Such a model

arises when one discretizes the continuous time pursuit-

evasion game in which the pursuer is equipped with a sensor

that continuously measures the distance to the evader as well

as the rate of change of this distance.

III. THE CAPTURE STRATEGY AND MAIN RESULT

In this section, we describe our capture strategy and the

corresponding main result. Our capture strategy has two

phases: Initialization and Pursuit, described as follows.

A. Initialization phase

This phase lasts for only the first sequence. In the first

sequence,

(i) The evader moves to e[1].
(ii) The pursuer gets the measurement y0[1] and it con-

structs ∂By0[1](p[0]) which is a circle of radius y0[1]
around the point p[0].

(iii) The pursuer randomly selects a direction to move and

moves along it with unit step size.

(iv) The pursuer gets the measurement y1[1] and it con-

structs ∂By1[1](p[1]) and computes the estimate

Ê[1] := ∂By1[1](p[1]) ∩ ∂By0[1](p[0]). (4)

Since Ê[1] is an intersection of two non-concentric cir-

cles described in the right hand side of (4), Ê[1] =
(êa[1], êb[1]) ∈ R

2 × R
2 is an estimate of e[1]. If êa[1] =

êb[1], then the pursuer has accurately determined e[1]. In

general, the pursuer is unable to distinguish between the two

estimates.

1) Pursuit phase: We now present our pursuit strategy.

Until the evader is not captured, at time t ≥ 2,

(i) the pursuer selects a point ê[t−1] ∈ Ê[t−1] at random

and moves towards it with full step size. Thus,

p[t] = p[t − 1] +
ê[t − 1] − p[t − 1]

‖ê[t − 1] − p[t − 1]‖
. (5)
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(ii) The pursuer updates the estimate of the evader’s posi-

tion using

Ê[t] := ∂Byt−1[t](p[t − 1])∩
(

Ê[t − 1] ⊕ Bβ(0)
)

∩ ∂Byt[t](p[t]), (6)

where Bβ(0) ⊂ R
2 denotes the closed circular region

of radius β around the origin 0 ∈ R
2 and the operation

⊕ denotes the Minkowski sum in the plane.

p[t − 1]
p[t]

ê[t]

êb[t − 1]

êa[t − 1]

Fig. 2. An instance of the pursuit strategy. The dotted circles have radii
equal to β and denote the region where the evader can step at time t. This
figure illustrates the case when the pursuer moves towards êa[t − 1] while
the evader was actually at êb[t− 1] and consequently exactly localizes the
evader at time t.

An instance of this strategy is shown in Figure 2. A simple

induction argument gives the following result.

Lemma III.1 (Evader estimate) At every instant t ∈ Z≥1,

(i) The evader’s position e[t] ∈ Ê[t], where Ê[t] is

recursively defined using (4) and (6).

(ii) The set Ê[t] contains at most two points (êa[t], êb[t]) ∈
R

2×R
2. Further, ‖êa[t]−p[t]‖ = ‖êb[t]−p[t]‖, for every t.

We now present the main result of this section.

Theorem III.2 (Capture in R
2) If β < 0.5, then a single

pursuer captures the evader using our capture strategy and

in at most ⌈ 2(‖e[0]−p[0]‖+(1+2β))
(1−2β) ⌉ time steps.

Remark III.3 (Single pursuer in R
3) In R

3, it is not clear

whether it is possible to guarantee capture with a single

pursuer using the proposed strategy. At each time instant t,
the set of evader estimates Ê[t] in general contains more than

just two points. This motivates the use of another cooperative

pursuer in R
3, which we address in the next section.

Remark III.4 (Other Sensor-based formulations) The

Grow-Intersect algorithm can also be adapted to design a

pursuit strategy when the evader is a transmitter device

and the pursuer is equipped with a sensor that determines

only the line that contains their positions, without the

orientation sense. Our strategy guarantees that the pursuer

simultaneously captures the evader as well as ascertains

that it is within unit radius if the maximum evader speed

β < 0.25.

IV. COOPERATIVE PURSUIT IN R
3

We now present the pursuit problem in R
3 played with

two cooperative pursuers.

A. Problem statement and notation

The problem formulation is almost identical to the planar

case except that now we have two identical pursuers which

move simultaneously at their turn. The game is played in

R
3. Akin to (1), the equations of motion are given by

e[t] = e[t − 1] + ue(e[t − 1], {p[τ ]}t−1
τ=0),

pi[t] = pi[t − 1] + upi(pi[t − 1], yi
t−1[t − 1], yi

t−1[t]),

where for the ith pursuer, pi[t] ∈ R
3 denotes its position at

time t, yi
t−1[t], y

i
t[t] ∈ R≥0 are the distances of the evader

from it before and after the pursuers’ move respectively and

upi is its strategy. The strategies satisfy (2) and capture is

defined when for some i ∈ {1, 2}, (3) is satisfied.

The problem is to determine pursuer strategies upi that

guarantee capture for any evader strategy ue.

B. Capture strategy and Main result

We present our solution to the cooperative pursuit game

played in R
3. Again, our capture strategy has two phases:

Initialization and Pursuit. These are described as follows.

1) Initialization phase: This phase lasts for only the first

sequence. In the first sequence,

(i) The evader moves to e[1].
(ii) For i = {1, 2}, pursuer pi gets the measurement yi

0[1]
and it constructs ∂Byi

0
[1](pi[0]) which is the surface of

a sphere of radius yi
0[1] around the point pi[0].

(iii) Pursuer pi selects a direction to move ensuring that

p1[1] 6= p2[1] and moves along it with unit step size.

(iv) Each pursuer pi gets the measurement yi
1[1] and it

constructs ∂Byi

1
[1](pi[1]) and computes the estimate

Ê[1] :=
⋂

i∈{1,2}

(

∂Byi

1
[1](pi[1])∩∂Byi

0
[1](pi[0])

)

. (7)

For each i ∈ {1, 2}, the term in the outer parentheses in

(7) is an intersection of the surfaces of two spheres in R
3

and hence is a circle. Hence, Ê[1] is an intersection of two

non-concentric circles and thus contains at most two points.

2) Pursuit phase: We now present our pursuit strategy.

Until the evader is not captured, at time t ≥ 2,

(i) If Ê[t − 1] contains only one point ê[t − 1], then the

pursuer closer to it, say p1 moves towards it with full step

size. The other pursuer p2 moves:

a) towards ê[t − 1] with maximum step size, if the three

points ê[t − 1], p1[t − 1] and p2[t − 1] are not collinear.

b) anywhere inside except on the axis of a cone with half-

angle equal to arcsin (β/‖e[t − 1] − p2[t − 1]‖), vertex at

p2[t − 1] and with e[t − 1] − p2[t − 1] as the axis, with

maximum step size, if the points ê[t − 1], p1[t − 1] and

p2[t − 1] are collinear. Refer to Figure 3 for an illustration.

In case both pursuers are equidistant, then pursuer p1 is

the one that moves directly towards the evader.
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p2[t − 1]

p2[t]

e[t]

p1[t]

p1[t − 1]

e[t − 1]

Fig. 3. The shaded region is the cone described in part (b) of item (i) of
the Pursuit phase.

Otherwise, for i = {1, 2}, each pursuer pi is assigned a

unique point êi[t − 1] in Ê[t − 1] and it moves towards it

with full step size. Thus,

pi[t] = pi[t − 1] +
êi[t − 1] − pi[t − 1]

‖êi[t − 1] − pi[t − 1]‖
. (8)

(ii) The pursuer updates the estimate of the evader’s position

using

Ê[t] :=
(

Ê[t − 1] ⊕ Bβ(0)
) ⋂

i∈{1,2}

(

∂Byi

t
[t](pi[t])∩

∂Byi

t−1
[t](pi[t − 1])

)

. (9)

where Bβ(0) ⊂ R
3 denotes the closed sphere of radius β

around the origin 0 ∈ R
3 and the operation ⊕ denotes the

Minkowski sum in R
3.

p1[t − 1]

p2[t − 1]

C2

C1

p1[t]

p2[t]
ê2[t − 1]

ê1[t − 1]

Fig. 4. An instance of the cooperative pursuit in R
3. The dotted circles

have radii equal to β and denote the region where the evader can step at
time t. Circles C1 and C2 (shown as ellipses here) are the intersections
of the two spheres (not shown to preserve clarity) associated with each

measurement for each pursuer. The lightly shaded dots is the set Ê[t].

An instance of this strategy is shown in Figure 4. Akin

to Lemma III.1 in the single pursuer problem, we have the

following result.

Lemma IV.1 (Evader estimate) At every time instant t ∈
Z≥1,

(i) Using the proposed cooperative pursuit strategy, the

two pursuers are at distinct locations in R
3.

(ii) The set Ê[t] contains at most two points (ê1[t], ê1[t]) ∈
R

3×R
3. Further, for each i ∈ {1, 2}, ‖ê1[t]−pi[t]‖ =

‖ê2[t] − pi[t]‖, for every t.
(iii) The evader’s position e[t] ∈ Ê[t], where Ê[t] is

recursively defined using (7) and (9).

We now present the main result of this section.

Theorem IV.2 (Capture in R
3) If β < 0.5, then two pur-

suers capture the evader using the cooperative capture

strategy and in at most ⌈‖e[0]−p1[0]‖+‖e[0]−p2[0]‖+2(1+2β)
(1−2β) ⌉

time steps.

V. SIMULATION STUDIES

We now present simulation studies that address the case

of evader speed β ∈ [0.5, 1[ and the case of the pur-

suer measurements being corrupted with additive, zero-mean

Gaussian noise, with variance proportional to the square of

the distance to the evader. All simulations were run using

MATLAB R©.

A. The case of β ∈ [0.5, 1[

We ran simulations for ‖e[0]−p[0]‖ = 20, 30 and 40 units.

An upper limit of 1000 time steps was set to decide whether

the capture strategy terminated into capture or evasion.

It is unclear as to what is the optimal evader strategy in

this problem. This is because if the evader decides to always

move directly away from the pursuer with full step (i.e.,

greedy move), then it would reduce the uncertainty in its

position for the pursuer. If it does not make a greedy move,

then the distance from the pursuer may reduce. So we adopt

the following reasonable evader strategy for simulations -

with full step, move to a point selected uniformly randomly

in a sector with angle 0.2 radians. This sector is placed

symmetrically along the line e[t]p[t] and away from the

pursuer. The plots of probability of success of the strategy

versus the evader speed β are presented in Figure 5.

B. Noisy measurements

We now assume that the pursuer measurements are cor-

rupted with zero-mean, additive Gaussian noise whose vari-

ance proportional to the square of the distance to the evader.

This implies σt−1[t] = ν‖e[t]−p[t−1]‖ and σt[t] = ν‖e[t]−
p[t]‖, where ν > 0 is the noise parameter. Thus, in the

notation of Section II, yt−1[t] ∼ N (‖e[t]−p[t−1]‖, σt−1[t])
and yt[t] ∼ N (‖e[t] − p[t]‖, σt[t]), where given a, b ≥ 0,

N (a, b) denotes the Gaussian distribution with mean a and

standard deviation b.

Since it is unclear as to what is the optimal evader strategy

in this problem, we adopted the evader strategy in Section V-

A. We ran simulations for β = 0.2, 0.3 and 0.4 units. The

initial distance was set to 20 units. An upper limit of 2000
time steps was set to decide whether the capture strategy

terminated into capture or evasion. The plots of probability

of success of the strategy versus the noise parameter ν are

presented in Figure 6.

VI. A GAME WITH SIMULTANEOUS MOVES:

SIMULATION STUDY

We now consider a discrete-time version of the game

in the plane in which the pursuer and the evader move

simultaneously. In this version, at each instant of time, each

player gets only one measurement of its opponent. This is

equivalent to a game in which the pursuer receives only the

distance to the evader at each instant in continuous time.

Thus, (1) becomes

e[t] = e[t − 1] + ue(e[t − 1], {p[τ ]}t−1
τ=0),

p[t] = p[t − 1] + up(p[t − 1], y[t− 1]).

We modify the capture strategy in Section III as follows.
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(c) Initial distance: 40 units

Fig. 5. Estimate of capture probability versus evader step size β. The vertical bars give a 95% confidence interval about the probability estimate P (β)

which is given by
h

P (β) − 2
q

0.25
n

, P (β) + 2
q

0.25
n

i

, where n = 100 is the number of trials [24]. For a particular evader strategy, we study how the

capture strategy performs for evader step size β ∈ [0.5, 1[.
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(a) Evader step size: β = 0.2
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(b) Evader step size: β = 0.3
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(c) Evader step size: β = 0.4

Fig. 6. Estimate of capture probability versus noise parameter ν. The vertical bars give a 95% confidence interval about the probability estimate P (ν)
computed as described in Figure 5. For a particular evader strategy, we study how the capture strategy performs under noisy measurements.
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Fig. 7. Estimate of capture probability versus evader step size β, in the game with simultaneous moves. The vertical bars give a 95% confidence interval
about the probability estimate P (β), computed as described in Figure 5. For a particular evader strategy, we study the performance of a modified capture
strategy presented in Section VI.

Initialization phase: The following happens simultaneously

for only the first time step:

(i) The evader moves to e[1].

(ii) The pursuer randomly selects a direction to move and

moves along it with unit step size.

(iii) The pursuer gets the measurement y[1] and the evader

estimate is given by

Ê[1] := ∂By[1](p[1]).

Pursuit Phase: Until the evader is not captured, at time

t ≥ 2,

(i) If Ê[t − 1] is a circle, then denote any point in it as

ê[t−1]. Otherwise, denote as ê[t−1] a point chosen uniformly

randomly from one of the end points of the arcs in Ê[t−1].
The pursuer moves towards ê[t − 1] with full step size.

(ii) The pursuer updates the estimate of the evader’s

position using

Ê[t] :=
(

Ê[t − 1] ⊕ Bβ(0)
)

∩ ∂By[t](p[t]).

The strategy is illustrated in Figure 8. Since it is unclear

as to what is the optimal evader strategy in this problem,

we adopted the same evader strategy as in Section V-A. We
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p[t]p[t − 1]

Fig. 8. Illustration of the pursuit strategy in the game with simultaneous

moves. The dotted line is the estimate Ê[t − 1]. The bean-shaped region
around it is its Minkowski sum with Bβ(0) and the darkly shaded arc is

the estimate Ê[t].

ran simulations for ‖e[0]− p[0]‖ = 20, 30 and 40 units. An

upper limit of 5000 time steps was set to decide whether the

capture strategy terminated into capture or evasion. The plots

of probability of success of the strategy versus the evader step

size β are presented in Figure 7.

VII. CONCLUSION AND FUTURE DIRECTIONS

We addressed a discrete-time alternate-motion pursuit-

evasion game in the plane in which the pursuer is equipped

with a range-only sensor that measures its distance from

the evader. We propose a capture strategy based on the

established Grow-Intersect algorithm, and show that if the

evader’s maximum step size β < 0.5, then the evader is

captured. We then posed a variant of this game in R
3 and

showed that two cooperative pursuers capture the evader

with a modified capture strategy if β < 0.5. We gave upper

bounds on the capture times in both games.

We then presented simulation studies that addressed the

case of β ∈ [0.5, 1[ and the case of noisy measurements

in the planar game. We deduce that the proposed capture

strategy performs fairly well against a reasonable evader

strategy in the former case while in the latter case, we

observe some amount of robustness to small values of the

noise parameter. Finally, we presented a simulation study of

a variant of this game with simultaneous moves. Based on

simulation results, we deduce that the appropriately modified

capture strategy succeeds with probability of more than 97%
in the regime of β ∈ [0, 0.3].

In future, we plan to design a provably-correct capture

strategy for the game with simultaneous moves. We also

plan to shed more light on whether capture can be enforced

with any arbitrarily small capture distance. With respect to

alternate sensor formulations, we have been able to adapt the

Grow-Intersect algorithm to design a pursuit strategy when

the evader is a transmitter device and the pursuer is equipped

with a sensor that determines only the line that contains their

positions, without the orientation sense. Details of this case-

study will be a part of future work.
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