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Abstract

This paper presents an overview of the emerging tech-
niques for oscillation detection and diagnosis and in-
vestigate their efficiency through an industrial case
study. The recently proposed autocorrelation func-
tion based method [15] is used for detection of multiple
oscillations in process measurements and identifying sig-
nals having common oscillations. The signals having
common oscillatory behavior are analyzed for the pos-
sible presence of valve stiction using the Higher Order
Statistical method [1]. This method is helpful in identi-
fying the key variables that are most likely to be the root
cause of oscillations. We also present some issues perti-
nent to the diagnosis of oscillations, which are potential
directions for future research.

1. Introduction

Oscillations are a common form of plant wide dis-
turbance. The mass and energy integration in plants
facilitates the propagation of oscillations from one pro-
cess unit to another. It is important to detect and di-
agnose the causes of oscillations in a chemical process
because a plant running close to product quality lim-
its or operating constraints is more profitable than a
plant that has to back away due to the amplitude of
the oscillations [14].

The process under investigation is the plant at Mit-
subishi Chemical Corporation, Mizushima, Japan. The
plant personnel reported oscillations with large am-
plitude in the condenser level of a distillation col-
umn causing sub-optimal operation and large economic
losses. Previous attempts for oscillation diagnosis by

considering only the level and the variables directly af-
fecting them were not successful. It was believed by
plant personnel that the oscillations are caused due to
the mismatch in the model used for the Dynamic Ma-
trix Controllerr implemented on the distillation col-
umn. Desborough and Miller (2001) [4] have pointed
out that changes in operating conditions can some-
times cause the variables of model based predictive con-
trollers to oscillate. However, a thorough analysis of
the historical data revealed that the oscillatory behav-
ior of the process variables had largely remained un-
changed after the major operating condition changes
ruling out this possibility. The objective of this study
is to search for alternative causes and diagnose the root
cause of the oscillations in the condenser level.

Before a full scale diagnosis exercise is undertaken,
it is beneficial to find all signals oscillating with the
common period as the root cause generally lies within
this set. On the contrary, most of the available tech-
niques for detection focus on a loop by loop analy-
sis [5, 12, 9]. It is largely due to the efforts of Thorn-
hill and co-workers that some detection tools are now
available that consider the plant-wide nature of oscil-
lations. To detect and cluster signals with common os-
cillatory behavior use of spectral principal component
analysis [16] or autocorrelation functions (acf) [15] is
suggested. Recently, Xia and Howell (2003) [17] have
also proposed a technique that takes the interactions
between control loops into account. In this paper, we
use the acf based method as it reduces the effect of
noise, handles multiple oscillations in the same mea-
surement easily and also provides the time periods of
the different oscillations.

In a control loop, oscillations may arise due to var-
ious reasons including poorly tuned controllers, pres-
ence of oscillatory disturbances and nonlinearities.



Generally, the oscillations arising due to poor con-
troller tuning have a time period of the order of a few
minutes [13], which is much smaller than the time pe-
riod of the oscillations detected in the measurements of
the present case study. With this observation, the sig-
nals having common oscillatory behavior are analyzed
for possible valve problems using the Higher Order Sta-
tistical method [1]. This method is found to be help-
ful in identifying the key variables that are most likely
to be the root cause of oscillations. We also present
some insights and limitations of the available meth-
ods useful for detection and diagnosis of oscillations, as
observed during this case study, showing scope for im-
provement.

2. Detection

In this section, the acf based method is briefly re-
viewed followed by the results obtained by its applica-
tion to the industrial data set.

2.1. Methodology

The power spectrum (spectra) of a signal shows
peaks at underlying fundamental frequencies. Where
as presence of peaks in the spectra is sufficient for ad-
judging whether a signal is oscillatory or not, calcula-
tion of time period can be difficult due to presence of
noise. For this purpose, Thornhill et.al. [15] proposed
the use of acf. The acf oscillates at same frequency as
the signal, but the effect of noise is reduced. The time
period of the oscillation is easily determined by con-
sidering the zero crossings of the acf. However, the in-
terval between successive zero crossings of acf of sig-
nals from real processes are rarely constant and statis-
tical tests are required.

Let T
(1)
p · · ·T (k)

p be the time elapsed for completion
of each of the first k cycles of acf and T̄p, σTp be their
mean and standard deviation. Then the signal is con-
sidered to be oscillating with time period T̄p if

T̄p > 3σTp (1)

The ratio T̄p/3σTp denotes the regularity r of the
signal and a signal is consider regular, if r > 1. Pres-
ence of multiple oscillations can destroy the regularity
of zero crossings and filtered acf is used. For every os-
cillation, the power spectrum of the signal is filtered
using a band pass filter having zero gain outside the
selected frequency range. The time period of each os-
cillation is determined using the filtered acf and (1).

Remark 1 Practical considerations require that only
signals with significant activity in the chosen frequency

band be considered. This is taken into account by calcu-
lating the fractional power of the signalP in the frequency
band [ωn1 ωn2 ] as

P =

∑ωn2
n=ωn1

Φ(iωn)
∑π

n=0 Φ(iωn)
(2)

where Φ(.) is the power spectrum. Thornhill et.al. [15]
suggest a threshold value of 1% for P , but higher values
can used to avoid detection of insignificant oscillations.

To ascertain the plant-wide nature of the oscillations
detected in individual signals, a simple heuristic clus-
tering algorithm is used to find all signals containing
an oscillation of same period. Let the two signals un-
der consideration have mean time periods T̄p,i, T̄p,j and
standard deviations σTp,i , σTp,j respectively. These sig-
nals are considered to be oscillating with a common pe-
riod if the distance metric

di,j =

∣∣T̄p,i − T̄p,j

∣∣
max(σTp,i , σTp,j )

< 1 (3)

The two signals satisfying (3) form a cluster and the
mean time period and standard deviation of the more
regular signal (with higher value of r) represents the
statistics of the cluster. The process is repeated by re-
placing these signals with the cluster until no more
changes occur. In case of a conflict, the signal is as-
signed to the cluster with the smallest value of the dis-
tance metric.

The acf based oscillation detection and clustering
method can easily be automated. The underlying idea
is to remove the non-stationary trends of the data and
then detect and cluster the oscillations using the sta-
tistical tests discussed earlier. The search continues by
narrowing the filter ranges around the oscillations de-
tected in the previous step. The algorithm terminates
when at most one oscillation is detected in every fil-
ter range or the filter ranges become too narrow.

Remark 2 Presence of noise, non-stationary trends
andmultiple oscillationsmay destroy the regularity of the
zero crossings of acf. Then the automated algorithm may
detect (generally during first iteration) none or only one
oscillation causing premature termination, despite the
spectrum showing multiple distinct peaks. For the case,
when a single oscillation is detected, artificially narrow-
ing down the filter ranges around the detected oscillations
is found to be helpful. This limitation of the detection al-
gorithm is similar to the supersaturated solution, where
no crystallization occurs unless seeding is done.

2.2. Scope of analysis

There are a large number of variables in the present
case study and a sequential approach is used to de-
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Figure 1.Process flowdiagramshowing detected oscillations in low frequency range (88 - 183 samples/cycle)

fine the scope of the analysis. Starting from the con-
denser level, the scope of the study is expanded based
on mass, energy and information connectivity (based
on controller structure) of the process until no more
oscillations are detected. For this preliminary analy-
sis, visual inspection of time trends and spectra are
found to be sufficient. The final data set consists of 43
tags taken from various process units as shown in Fig-
ure 1. 15 of these variables are controlled using PID
controllers and the controller outputs for these vari-
ables are also included in the study. In Figure 1 and en-
suing discussion, the notation used for tags is standard
in process industries. AC, FC, LC, PC and TC repre-
sent composition, flow, level, pressure and temperature
tags respectively that are controlled. Similarly, FI, LI,
SI and TI represent the flow, level, rotor speed and tem-
perature tags respectively that are indicators only. We
denote the set point, process value and controller out-
put as sp, pv and op respectively.

2.3. Results

A sample data set consisting of 2880 samples is col-
lected at the rate of 1 sample/minute. The data set
is filtered to remove the low frequency non-stationary
trends and the acf based method is applied on the fil-
tered data set. The results of the detection analysis are
summarized in Table 1 and the key characteristics are
discussed below:

• The condenser level (LI1) oscillates with a pe-
riod of approximately 158 samples/cycle with
power (2) of 88% or more. Thus 158 sam-
ples/cycle is taken as the fundamental time pe-
riod for the purposes of this study.

• The algorithm also detects 26 other variables that
oscillate with a similar time period as the con-
denser level. Among these variables, 17 variables
have power of 40% or more, which require imme-
diate attention.

• 10 variables oscillate with a time period of approx-
imately 137 samples/cycle. Note that it is difficult



Tag High (4-44) Medium (44-88) Low (88-183) Tag High (4-44) Medium (44-88) Low (88-183)
Period P Period P Period P Period P Period P Period P

Process Variables:

FI1 - - 73± 18 12 168± 30 22 LC1 50± 9 9 82± 16 10 163± 32 52

FI2 - - 62± 5 29 - - TI1 - - 74± 2 6 137± 18 38
FC1 - - - - - - AC1 - - 75± 2 11 157± 14 65
FI3 - - - - - - LI1 - - - - 159± 7 90
PC1 - - 75± 2 7 160± 13 90 LC2 - - 75± 2 14 161± 13 56
AC2 - - 75± 2 14 161± 12 60 TC1 41± 10 9 75± 3 42 140± 37 42
LI2 - - 75± 4 11 141± 27 50 FC2 - - - - - -
TI2 - - 73± 5 17 160± 27 11 TI3 43± 5 63 73± 3 16 144± 28 18
LC3 - - 63± 16 9 157± 26 10 PC2 - - - - 160± 12 77
TI4 - - 73± 7 9 158± 8 54 PC3 - - 80± 8 6 159± 7 62
TI5 44± 3 48 73± 16 15 124± 36 21 LC4 - - 63± 18 8 161± 28 31
PC4 - - 75± 7 9 160± 19 51 LC5 - - 63± 18 14 162± 25 56
LI3 - - - - 158± 8 90 PC5 - - - - 157± 7 39
TI6 - - 73± 5 5 155± 9 28 FI4 4± 1 81 - - 141± 45 12
SI1 - - 75± 3 8 144± 42 28 LI4 - - - - 157± 6 13
LC6 - - 73± 23 25 - - LI5 - - 63± 7 42 108± 36 31
TC2 - - 62± 7 22 172± 34 29 FC3 - - - - - -
FC4 - - 86± 7 17 - - LC7 - - 89± 19 7 158± 17 44
FC5 - - - - 158± 44 6 LC8 - - 65± 17 17 159± 16 19
FC6 - - 65± 17 11 159± 13 26 LC9 - - - - - -
FC7 - - - - 159± 20 10 LC10 26± 8 86 - - - -
FC8 - - - - - -
Controller Outputs:

FC1 - - - - - - PC1 - - - - 160± 12 77

FC2 - - 75± 4 10 139± 19 20 LC3 - - 75± 8 10 157± 10 37
PC2 - - 75± 3 8 143± 41 28 LC4 - - 63± 18 7 161± 21 65
LC5 - - 76± 15 8 162± 20 76 LC6 - - 69± 22 10 160± 36 26
TC2 - - 63± 6 37 - - FC3 - - 86± 23 6 - -
FC4 44± 6 9 85± 8 17 - - FC5 - - - - 157± 10 15
FC6 - - 65± 20 11 159± 20 26 FC7 - - - - 158± 39 15
FC8 - - - - - -

Table 1. Oscillation detection summary for controller outputs

to distinguish these variables with those oscillating
with the time period of 158 samples/cycle through
direct visualization of power spectrum.

• Considering 158 samples/cycle to be the funda-
mental time period, it is noted that a number of
the variables exhibit harmonics (approximately 79
samples/cycle). This indicates the presence of non-
linear elements (e.g. valve stiction, deadband) in
the process.

Remark 3 It is pointed out that though useful, the acf
based method is prone to false detections. Since the algo-
rithm uses ideal band pass filters, the filtered data may
be oscillatory misleading the algorithm. This difficulty
can be overcome by using Hanning window, but this in-

creases the complexity of the algorithm [13]. In this pa-
per, the oscillations detected close to the filter boundaries
are verified against the peaks present in the spectra. We
also widen the filter range and repeat the analysis to dis-
tinguish between a false detection and a true oscillation
present close to filter boundaries during every iteration.

The variables affected by low frequency oscillations
with a power of 10% or more are shown in Figure 1,
where the plant wide nature of the oscillations should
be noted. Due to presence of high heat integration and
a multivariable controller, which acts as a supervisory
controller, it is difficult to diagnose the root cause of
oscillations through a cause-effect analysis and a sys-
tematic analysis is presented in the next section.



3. Diagnosis

There are several reasons that may cause a control
loop to oscillate, for example poorly tuned controllers,
presence of oscillatory disturbances and nonlinearities.
Closed Loop Performance Assessment (CLPA) [3] is a
convenient method to assess the goodness of controller
tuning. A controller is termed as well tuned if the con-
troller error signal has little or no predictable compo-
nent and vice versa. For the present case study, use
of CLPA provides no clear indications that the oscilla-
tions are caused due to poorly tuned controllers. This is
also expected as generally the oscillations arising due to
poor controller tuning have a time period of the order
of a few minutes [13], which is much smaller than the
fundamental time period of the oscillations detected in
the condenser level. In the remaining discussion, we dis-
cuss methods aimed at detecting nonlinearities in the
control valves and show their application.

3.1. Nonlinearity Detection

Oscillations produced by the nonlinearities present
in control valves (e.g., deadband, backlash, stiction)
are often responsible for plant wide oscillations. Re-
cently, Thornhill et.al.(2003) [14] showed that a dead-
band in the process valve can give rise to severe process
oscillations. Therefore, all the control valves, that oscil-
late with a time period similar to the condenser level,
were tested for possible presence of nonlinearities us-
ing the higher order statistics based method [1].

The method uses the sensitivity of the normalized
bispectrum or bicoherence to the presence of nonlin-
ear interactions in a signal. A distinctive characteristic
of a non-linear time series is the presence of phase cou-
pling such that the phase of one frequency component
is determined by the phases of others. These phase cou-
plings lead to higher order spectral features which can
be detected in the bicoherence of a signal defined as:

bic2(f1, f2) , |B(f1, f2)|2
E[|X(f1)X(f2)|2]E[|X(f1 + f2)|2] (4)

where B(f1, f2) is the bispectrum calculated at fre-
quencies (f1,f2) and is given by

B(f1, f2) , E[X(f1)X(f2)X∗(f1 + f2)], (5)

Here, X(f1) is the discrete fourier transform of the
time series x(k) calculated at the frequency f1, X∗(f1)
is the complex conjugate and E is the expectation op-
erator. A key feature of the bispectrum is that it has a
non-zero value if there is significant phase coupling in
the signal x between frequency components at f1 and

f2. The bicoherence gives the same information but is
normalized as a value between 0 and 1.

In [1], two indices - the Non-Gaussianity Index
(NGI) and the Non-Linearity Index (NLI) - have been
defined as

NGI , ˆbic2 − bic2
crit (6)

NLI , | ˆbic2
max − ( ˆbic2 + 2σ ˆbic2) | (7)

where ˆbic2 is the average squared bicoherence and
ˆbic2

max is the maximum squared bicoherence, σ ˆbic2 is
the standard deviation of the squared bicoherence and
bic2

crit is the statistical threshold/critical value ob-
tained from the central χ2−distribution of squared bi-
coherence. When both NGI and NLI are greater than
zero, the signal is described as non-Gaussian and non-
linear and it is inferred that the loop in question ex-
hibits significant non-linearity. For a control loop, this
test is applied on the error signal (sp-pv) to the con-
troller because the error signal is often more station-
ary than pv or op signal, which is specially true for cas-
caded loops.

Assuming that the process is linear and no nonlin-
ear disturbance is entering the loop, the nonlinearity
can be attributed to the control valve. If the distur-
bance is measurable, the test can also be applied to
check the linearity of the disturbance.

Remark 4 Onemay argue that the valve itselfmay have
a nonlinear characteristic, e.g., a square-root or equal
percentage characteristic, which is definitely not a fault.
A careful observation of the nonlinear valve character-
istic curves reveals that the characteristics curves can
safely be assumed linear if themovement of the valve stem
or the change in input signal to valve is within 10% of the
full span (0 to 100%) of the valve travel.

3.2. Use of pv-op Plot

The long time practice in industrial studies has been
the use of pv-op plots for the detection of valve prob-
lems, especially stiction. But experience shows that this
type of method is successful only for a handful cases of
flow control loops. The use of pv-op plot for detect-
ing valve problems was not successful because it only
takes into account the qualitative trend information of
the time series which can be destroyed due to the pres-
ence of process dynamics, noise dynamics, disturbances
and tightly tuned controllers.

In our method, the pv-op plot is used as a second
step to diagnose the valve nonlinearity problem. The
detection of valve or process nonlinearity is first car-
ried out using higher statistical method-based NGI
and NLI indices. Once a nonlinearity is detected, only
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Figure 2. Results of condenser level oscillation diagnosis

then the pv-op plot is used to isolate its cause. It is well
known [5, 6, 11, 10] that the presence of stiction in con-
trol valve in a control loop produces limit cycles in the
controlled variable (pv) and the controller output (op).
For such a case, the pv-op plot shows cyclic or ellip-
tic patterns, which are taken as a signature of valve
stiction. If no such patterns are observed, it is con-
cluded that there are valve problems but these are not
due to the stiction.

3.3. Quantifying Stiction

It is important to be able to quantify stiction so that
a list of sticky valves in order of their maintenance pri-
ority can be prepared. A segment of the data that has
regular oscillations is used for the construction of the
pv-op plot. An ellipse in the least square sense can be
fitted to the pv-op plot and can be used for quantifying
stiction. Since apparent stiction is defined as the max-
imum width of the ellipse along the op axis, the dis-
tance between two points lying on the intersections of
the ellipse and a line parallel to the op axis and pass-
ing through the center of the ellipse will be the amount
of stiction present in the loop. If m and n are the length
of the major and minor axes of the fitted ellipse respec-
tively, and α is the angle of rotation of the ellipse from
positive x-axis, then the amount of stiction can be ob-
tained using the following expression [2]

stiction(%) =
2mn√

(m2 sin2α + n2 cos2α)
(8)

Remark 5 The quantified stiction is termed as appar-
ent stiction because the actual amount of stiction to be
obtained from the mv-op plot may differ from the esti-
mated quantity because of the role of the controller in at-
tempting to regulate the process variable.

3.4. Results

The higher order statistics based NGI and NLI in-
dices were calculated for the variables of control loops
that oscillate with same time period as condenser level
and the results are shown in Table 2. It is clear from Ta-
ble 2 that only three loops, namely FC5, PC1, and TC2
show nonlinear behavior. Figure 2 shows the bicoher-
ence plots for these loops. A large peak in the bicoher-
ence plot represents significant nonlinear interactions
between those two frequencies of the signal. It is clear
from the Figure 2 that in each of the loop there are sig-
nificant nonlinear interactions.

These nonlinear loops were further investigated us-
ing the pv-op plot. For the loop FC5, the pv-op plot
does not show any pattern (see the left plot of the
second row in Figure 2). As is confirmed by using
CLPA [3], this loop contains a hardware fault. Loop
PC1 shows that the valve has approximately 0.5% stic-
tion. The right plot in the second row of Figure 2 shows
the presence of 1.25% stiction in the valve for loop TC2.

Based on this analysis, we conclude that one or both
of the loops PC1 and TC2 is most likely to be the root
cause of the oscillations. These results have been com-



Tag NGI NLI Apparent Remarks
Stiction (%)

AC1 – – – No control valve
AC2 – – – No control valve
FC5 0.01 0.235 no stiction nonlinear
FC6 0 – – linear
FC7 0 – – linear
FC8 0 – – linear
PC1 0.01 0.12 0.5 nonlinear
PC2 – – – No control valve
PC3 – – – No control valve
PC4 – – – No control valve
PC5 – – – No control valve
LC2 0 – – linear
LC3 0 – – linear
LC4 0.021 0 – linear
LC5 0 – – linear
LC7 – – – cascaded (FC5)
LC8 – – – cascaded (FC6)
TC2 0.080 0.227 1.25 nonlinear

Table 2. Valve Stiction Diagnosis

municated to the plant personnel and the confirmation
through bump tests or by taking these loops off-line is
currently awaited.

4. Directions for future work

In the earlier sections, we demonstrated the utility
of some powerful methods for detection and diagnosis
of plant wide oscillations. Though useful, these meth-
ods show some limitations, which are discussed here.
In addition, we also discuss some important issues for
root cause diagnosis, which have received limited at-
tention, as observed during this application study.

For dealing with large scale systems, it is impor-
tant that the detection algorithm be implemented in
a fully automated form. Additional benefits can be
reaped when this algorithm is used as a stand alone
unit, that can infrequently collect data from historian
and analyze it independently. Such methods have been
available for some time for loop by loop analysis (see
e.g. [5]), but these methods do not take the plant wide
nature of oscillations into account. The acf based de-
tection algorithm [15] is a promising technique that ad-
dresses this issue, but is prone to premature termina-
tion (see Remark 2) and false detections (see Remark 3)
and further improvement is required.

The higher order statistics based methods are use-
ful for identifying nonlinear loops with the help of de-
tection of nonlinearity in process measurements. But
the method described in [1] currently works on sin-

gle loop basis. The method needs to be extended to
take into account the multivariate nature of the chem-
ical processes. Further, in its present form, the method
assumes that the only source of nonlinearity in the con-
trol loop is the valve. The nonlinearities present in the
external disturbances may also show elliptic patterns
in the pv − op plots and isolating the source of nonlin-
earity can be difficult.

As pointed out by Thornhill et.al.(2003) [14] that it
is necessary to find a feasible mechanism that explains
the oscillation propagation to different measurements.
For this purpose, use of process understanding can be
very challenging for systems with severe mass, energy
and information integration, such as the present case
study. Huang et.al.(2002) [7] have suggested using cor-
relation based signed digraphs for path analysis of plant
wide disturbances. This method requires that a clear
distinction be made between the variables that are af-
fected and variables causing the effect. In many indus-
trial processes, particulary under multivariate control,
such a distinction is difficult, which limits the applica-
tion of this method.

During the past few years, use of model based pre-
dictive controllers has increased rapidly in process in-
dustries. The success of these applications depends
heavily on the model accuracy and severe model mis-
match can also give rise to oscillations [4]. Assessing
the feasibility of oscillations due to model mismatch
is a difficult issue, primarily due to fact that the true
model is never known. To this end, Loquasto and Se-
borg (2003) [8] have proposed a method, where the
closed loop response of the model based controller is
simulated using different scenarios of disturbances and
plant changes to diagnose the fault. However, in prac-
tical scenarios, it may be difficult to find the appropri-
ate model mismatch to simulate the oscillatory behav-
ior of the measurements.

5. Conclusions

Despite its significant economic incentives, detection
and diagnosis of plant wide oscillations have received
limited attention from academia. This paper demon-
strated the utility of some emerging techniques useful
for root cause analysis of oscillations through an indus-
trial case study. It is pointed out however that many is-
sues need to be resolved before a systematic method re-
quiring minimal human interaction becomes available
for problems arising in this technically challenging area
having significant practical applicability.
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