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Abstract— This paper uses the operation of a pulp bleaching control design with respect to a nonsymmetric/nonquadratic

reactor as a platform for the illustration and discussion of expectation-type objective function is approximated. The
several ideas involving use of the stationary probability density e of data distribution in determining the quality of
function in process control. A computer simulation of the - - .

partial differential equations, derived from first-principles, emplrlcal_ plant models is dlscussgd in [4]. .
describing the bleaching reactor is used to represent the true ~ 1he aim of the present work is to apply these ideas
process. Empirical, discrete-time models of the reactor are to the modelling and control of a pulp bleaching reactor.
then constructed using sampled input and output time series. A nonlinear continuous time model is assumed as the
In the model building phase, the influence of data distribution underlying true process from which measurements are made

on final model quality is emphasized. Once the discrete-time d ibulated iabl diusted at di te i
model has been derived, two control laws are synthesized. One and manipulated variables are adjusted at discreie ume

law is based on established design techniques while the other intervals. The study begins with the goal of improving the
takes advantage of less recognized probabilistic concepts. The control of product quality (pulp brightness as inferred
controllers are then applied to the true process model the from lignin content) with respect to minimum brightness
relative performances discussed. specifications. For analysis and design purposes a discrete-
I. INTRODUCTION time model_is developed to accurately capture the behaviour
of the nonlinear process across the entire region of oper-
Viewing process behaviour in a probabilistic frameworkgtion, The identification relies on generating data that is
allows for the inclusion of random disturbances and calniformly distributed across the region of operation so that
culation of expected long term process frends. Stochasiigodel accuracy remains constant for the entire region. An
process models allow for uncertainty to be recognized ipjective function reflecting the economic value of the pulp
control designs and compensated foror at least accom- pyrightness is the main performance indicator and used as
modated— in process operations. The standard approagRe goal for controller synthesis. Two control designs are
to these situations, as reported in the process control litgferformed with respect to this objective. Simulations for
ature, uses linear process models, Gaussian disturbangg two control strategies demonstrate the relative strengths
and assumes quadratic objectives. These strategies fogsach.
on reduction of variance about a setpoint or reduction of Thjs case study illustrates a number of points. The control
variance so that mean process operation can be movgflindustrial processes can be much more challenging than
closer to constraints. If any of the assumptions underlying often reflected in the control literature. In this case, the
this approach do not hold in practice then there is thgrocess is distributed in nature, inducing long delays in the
potential for inadequate system performance and economifyyt-output data. It is also nonlinear, and subject to random
losses. variability, which makes it difficult to model using standard
Some recent works have investigated a probabilistic anear model identification approaches. Likewise, industri-
proach that includes nonlinear process models and Nnogiy relevant economic cost functions are often nonquadratic
quadratic objective functions. In [1], an approximation ofand nonsymmetric, so standard control designs based on
the integral equation governing the relationship betweegyadratic costs are inappropriate. As a result of these
process nonlinearity and the stationary probability densityhallenges, different approaches must be sought. This case
function (PDF) is described. In [3] this approximation techstudy demonstrates potential success to be realized through
nique is applied to design control laws for first-order procesgsing probabilistic techniques for process modelling and
so that stationary PDF of the closed-loop process tak@gntrol. In both the identification and the design stage,
a pre-specified Gram-Charlier form. Another applicatiogmprovements over the standard approaches are made, so
of this technique is presented in [2], where the optimahat the end result is better process performance due to a
M.G. Forbes and J.F. Forbes are with the Department oPetter control des_lgn based on a be.tter model. .
Chehiéal & Materials E.n.gineering, University of Alberta, Edmon- In 81l the equations used to describe the ‘true’ bleaching
ton, AB T6G 2G6, Canadamike.forbes@ulberta.ca, reactor are given along with information on the numerical
fraﬁer-gges@i@sua\'ﬁ;rtatﬁg Sesartment of Chemical Enaineer. SMUIation technique used in their solution. §iil time
ing, Quee’,'fs University, Kingston’ ON K7L 3N6, Cganada series data from the reactor is used to construct a discrete-
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control laws are designed based on the identified discrete
PARAMETERS FOR THEBLEACHING REACTOR

time model. These are then tested through simulation of the
‘true’ bleaching reactor and the relative merits of each are

. Parameter, Value
discussed. - 0.05
D 5x 10~6
II. THE BLEACHING REACTOR ko 55 x 10-°
kr, 5.7 x 107

The bleaching reactor model used as the true plant for
this investigation is taken from [8]. It consists of two partial
differential equations describing the evolution through dis-
tance,z, along the reactor and timeg, of the lignin, L(z, t), In the subsequent section, values of the inlet and outlet
and bleach((z,t), concentrations, as well as appropriateconcentrations of the lignin and the bleach are periodically
boundary conditions. The complete model, as used in th&ampled. These are denoted as follows:
paper, is:

oC oC 0?C ,
— = —v—+4+D— — kcC3L? 1 n_ .
o = Vas T Pam keCL @) i = Lin (EAY), (11)
out __
oL OL L\ ars @ Oy = C (L kAL, 12)
et e ’
ot 9z 92 L™t = L(1,kAt), (13)
8La(gvt) _ % (L(0,t) — Lin (1)), ©) where At is the sampling interval.
oC (0.4) 1. MODEL IDENTIFICATION
= Z(C(0,8) = Cin (1)), 4) For the purposes of this case study, it is assumed that
0z D . .
measurements of the inlet and outlet concentrations of the
OL(1,t) 0 ®) lignin and bleach may be made at periodic intervals, but
0z that no other measurements are available. The goal of this
oC (1,1) section of the paper is to build a discrete-time model based
—— 2 =0, (6) on input-output data from the plant. Initial step tests reveal
9z that there is a delay of 20 minutes between input and output
L(2,0)=1.7, (7) changes in the lignin and bleach concentrations and that the
time constant for the process is approximately 1 minute.
C(z,0)=0, (8) Based on these observations, process input changes and

outlet measurements are made every 0.1 minufes £
0.1). To generate data for identification a PRBS input

X . sequence for the inlet bleach concentration is used, with the
The equations have been normalized to a reactor length d

1 met d th i . i Table 1. With tha0sen value (either 40 or 120) held over the time interval.
_meter and the parameters are given in able 1. Wi Since lignin inlet concentration cannot be manipulated, it is
given convection and diffusion terms the Peclet number ISilowed to drift. as described in the previous section

4
10|\i ical simulat £ thi ¢ del Based on the data obtained (see Figure 1), the following
umerical simulations of this reactor model were pery "« ioc model is constructed:

formed using the sequencing method proposed in [8], wit

where C;,, is the concentration of bleach (in %) ard,,
is the concentration of lignin (in g/l) in the inlet streams,

spatial discretization 0f.005 meters and temporal dis- Ot = 1O + oL 4+ e3Ci™y + es L™y, (14)
cretization of0.1 minutes . It is assumed, for the purposes of = out ~in in ~in =i
this case study, that inlet lignin concentration is a measured ~ Lkib = 1 C" + Ly + 1300 +laLity, (195)

disturbance variable varying over a range[bf,2.4]. To  whereh = 201 is the delay before the output response.
give this ?nput _varigble a drifting-type nature, the followingpere the tilde notatione(g. C) refers to a centered and
sum of sinusoids is used: scaled variable. The centering is performed by removing
A (T t the mean, while the scaling is done by dividing by half of
Lin =2+0.3sin (527TT) +0.2sin (5167TT) 00201, the spread of the variable. Prediction error methods, such as
(9) are given in [7], are used to calculate the parameter values.
wherev, is the normal random variable sampled and held In [4], it is demonstrated that to ensure that model errors
at each time step. This same inlet sequence is used for ate equally weighted for all areas of the operating region,
of the simulations in this paper. While this is not possiblét is necessary to have uniformly distributed identification
in a real plant situation, it provides a method for ensuringlata. In this case the operating region [is6,2.4] for
that identification and control benchmarks are uniformlyhe lignin inlet concentration anfll0, 120] for the bleach
assessed. concentration. Since the model structure determined from
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Fig. 1. Time series data and predictions used for the initial model buildingig. 2.  Time series data and predictions used for the second model
attempt. The predictions are given by the heavier lines. building attempt. The predictions are given by the heavier lines.

TABLE I
NORMALIZING VALUES FOR THESECOND DATA SET

Variable || Mean [[ Spread/2 &
cm 80 40 “é
L 2.0 0.39 g

Ccout 12 5.1 g
Lout 1.4 0.42 @

I I I
50 60 70 80 90 100 110 120

the first set of data is not autoregressive, the distribution of °s
the outlet data is unimportant.

Nothing can be done to affect the distribution of the ~
inlet lignin concentration, since it is a disturbance variable,s °f l
although it is hoped that it will drift through a full range
of values during the plant experiment. The distribution of
the chlorine inlet concentration can easily be made uniform ©** = % 70 % w0 100
simply by adjusting the input sequence. ‘

To generate a second data set, the inlet bleach concentrar 3. Time series data used for model validation. The solid line gives
tion is again randomly adjusted at each time step; howevéhpe (unscaled) errors for the first model, and the dotted line gives the
in this case it is allowed to vary uniformly over the region ""scaed) erors for the second model.

[40, 120] This data is given in Figure 2.

The parameters obtained in each case are given in Table

Il

put Errors

Lignin o

I I
110 120

In Figure 3 the prediction errors for the outlet concentra-

TABLE Il tions of bleach and lignin are compared for the two models.
PARAMETERS FOR THELINEAR MODELS While the two sets of errors are similar, the errors for the
second model are almost always smaller than those of the
Parameter Model 1 Model 2 first. Comparing the sums of the squares of the errors (SSE)
Vvalue 30 Value 30 shows that the SSE for the first model48% higher for
2 9‘8;87 10692126 9‘&2& i%?f; outlet bleach predictions areB% higher for outlet lignin
s 0073 1 To.016 I 0094 1 £0.023 predictions. This shows that although the difference is not
cq —0.39 +0.22 —0.42 +0.19 visually striking, consistent better predictions add up to
h —0.072 ]| £0.013 || —0.089 || £0.017 better performance over time.
B 0.39 +0.18 0.51 +0.14
I3 —0.068 || £0.013 || —0.084 ]| +£0.017 For the second data set, the centering and scaling values
Iy 0.41 +0.18 0.42 +0.14

for the variables are given in Table Il. The second model



TABLE IV 40
PARAMETERS FOR THENONLINEAR MODEL

35

Parameter|| Value

c1 0.097 or

co —0.52

c3 0.094 25f 8
ca —~0.36

occurences
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6 1.7 24

s —0.076 ,
6 —0.062
cr 0.16 |
I —0.088
Is 0.57
I3 —0.084 .
I 0.41
| |
1.8 1.9 2 21 2.2 23

o

inlet lignin concentration
can be refined by adding some nonlinear terms: Fig. 4. A histogram of the inlet lignin concentration.
Ot =i+ e L+ a0l i,
~. 4 ~. 4 ~. 4 C
+ O + Oy + oLy +wy, (16) IV. CONTROL DESIGN

The objective for controller synthesis is the nonsymmet-
- .. - .. - ric, nonquadratic objective function:
Lty =0 Oy + LT + 13057 + LWLy

n 2
FIs B+ wk. (17) J—E Gy —40)°

out
L) + om0 ; (18)

These parameter values are given in Table IV. It is intefyhere:

esting to note that in attempting to add nonlinear terms out out

to the models using the different sets of data, the type ¢ (fout) { L= Ly Ligp <14 (19)
of nonlinearity that is significant varies between the data bt 5+ (szb — 1.4) Ly, > 1.4

sets. This suggests that depending on the input signal us%'j_f

. . i is reflects the goal of keeping outlet lignin concentration
different aspects of nonlinear plant behaviour are revealeg g ping 9

elow its maximum acceptable value, but without using
excessive quantities of the bleach. Since this objective is

A. Disturbance Distributions written in terms of the unscaled variables, it must be
rewritten in the scaled variables as:

To complete the modelling process, and provide all the _ o o 2
information necessary to the controller design portion of J=F [8( ‘,;'itb) +0.4 (C}f + 1) } , (20)
this study, it is necessary to estimate the distributions of the
model data. By inspection of their histograms, the predictiowith:
errors ¢ andw?) for the outlet bleach and lignin concen- ) _0.42izutb izutb <0
tration models appear to be normally distributed. The mean ¢ (izgrtb> — { + +
of each variable is calculated to be zero and the variances
are0.014 and0.0087, respectively.

For the measured input disturbancg’”, it is not as
clear how it can be statistically described. The sum-o
sinusoids signal used in the simulations is meant to emul
a drifting type variation over the operating regidné, 2.4].
For this reason, inlet lignin concentration is modelled as C,i" = 406‘,1” + 80. (22)
being uniformly distributed. A histogram of the inlet lignin
concentration, as it varies over one cycle of the dominant Estimations of process performance for a given control
sinusoid, confirms that this is a reasonable model. Th&rategy can be made from the sampled input-output data

- 2 . (21)
5+ (0.420p,) Ipy, >0
Only the lignin outlet concentration is of interest for this
fgase study. Controller design is then based on equation (17).
The actual control law is then implemented for the true
aggerocess, by reversing the scaling and centerirag,

histogram is given be Figure 4. using:

Throughout this paper, the PDF of a specific variable N (cin — 40)2
will be identified with the variable written as a subscript. J= <£ (L34h) + k) . (23)
For example, the PDF ab“ is p,c (w®). k=1 4000
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A. Modified-Objective Design

Bleach Input

Even with a purely linear process model, the objective” o L = - - - . —
(20) cannot be directly minimized with respect to the input _2s : ‘ e : :
to yield any closed-form solution for the control law. One £ 2W |
paper where this type of problem has been addressed i§
[5]. The idea is to replace expectation with conditional % 2 20 P P 00 0 0

i
o

Bleach Output
N
o u o
T T
I I

expectation to yield the modified problem:

- -~ . 2
JMO — E* |:€ (infb)} 4 04 (C;;;n + 1) , (24) 2.50 20 40 60 . 8‘0 1?0 1?0 140

Lignin Output
Ll N
f
I

1.

where E* [-] represents expectation conditioned on the

[

available data 0 20 40 60 80 100 120 140
) t
Rewriting the process equation (17) as. Fig. 5. Time series for the process governed by the first control law.
LYty = LYY, + wy, (25
give:
allows for the following control law derivation. The modi- — 0.21erf (0.667@,1” — 4.320%" 4+ 0.637C3"

fied objective is expanded to: - . -
—3.11LI" | + 0.644Li" ) —9.30 — 9.13C"

+0.239L" — 0.0353C5" | + 0.172L" |

—L7,
Juro = / ) —0.42 ( Fou 4 wﬁ) Puy (wh) duwl (26) 0.0357L{" — 0.42 (—0.088@@" +0.57L}"
e —0.084C]" | +0A41L" | — 0.085i§€”3> erf (0.667(?,2"
+ / <5 4 (0.42 (im i w,f)f) Dy () dut —4.32L1" 4 0.637C{" | — 3.11L" | + 0.644@"3)
~Lg, +21.dexp (—57.5 (—0.088Ci" + 0.57L"

IS 2
< ~ . ~ . ~ . ~. 3
Lyt — Ly — Gy — L — I Ly

1
I T

+0.4

~ . - ~. 2
—0.084C™ | +0.41L3" | — 0.085L;_"3) ) =0. (28)

This control law cannot be further simplified. It is im-
plemented by numerically solution at each time step. A
and then differentiated with respect to the b-step aheafimulation of this control strategy is illustrated in Figure
prediction, L%, as follows 5.
The value of the objective function for this control law
and simulation isJ = 3221.

B -Lgy,
:M? _ / —0.42p., (w]%) dw? B. An Approximate Probabilistic Design
OLYL, Zto As discussed in [1], very few closed-form analytical
oo R results for optimal control design with respect to the ob-
+ / 0.84 (Eg’jfb + wz?) Puy, (wF) dwk jective _func_tlon (20) are ayallable. An important part of t_he
- approximation of the optimal solution is to parameterize
—L3, the input. In this case, the parameterization is designed to
+ 5P, (—izqu) 27) linearize the dynamics:
2 ~. ~ . - - ~ . . - ~. l= ~.
40 SLZ% —LL" =B — L Ly — l5L}€"3 +14 Cy'=ag+a1Ci" | + oLt | + azLy — le;”S, (29)
. . 1

i
where thea; are constants to be determined. In order to
evaluate the objective function, the PDF's &f%, and

This is set equal to zero, and the integration performed in are required. For both, it is necessary to consider the



control law. To do so the control law (29) is rewritten as ;zzz |
the augmented dynamic system: 1°°W 1

Bleach I

. . . S 0 ‘ ‘ ‘ ‘ w w
C]’Lfn — Oé() + alc;;:’ril + aQ-X]inil + a3L;€n _ ﬁL;,Cn 2.50 2‘0 4‘0 6‘0 \ 8‘0 1?0 1?0 140
This system has one random input and two states; therefore's 20 20 50 %0 100 120 140

some manipulations are required to derive the joint PDF. 3 ‘ ‘ ‘ ‘ ‘ ‘
The change of variables:

Bleach Outp
e
o o
T
I

. . - I= ~. - -
lecn — C}lcn _ a3L§cn + léLGS =g+ alc’;gil + O‘2Xllgri1 2o 20 40 o e 100 120 140
1 ; : : : : ; :
~in ~in in l5 -in> g
=L =240 a3 Xy, — ka_1 (B1) ¢ 1.5M |
1 g
is introduced and the system becomes: o 20 40 o % 100 120 140
Z}z@n =ap +a; (Zi;n L+ 0435(12” |- l5)~(]in31) + 025(12” L Fig. 6. Time series for the process governed by the second control law.
_ _ I, k= _
Xit =Ly (32)
It is clear that these two states are independent, with PDFs: 07 = (15a3l3 + 3507031} — 4203 aslsh
g g +70a1a3a2l% — 4207 l5a0l1 + 3504%1%)
cin \(Xi") =ppin (X2 37
and o)
o rout = liag + (11041 + 13) (38)
Pzin (Z]in) 1-

~in in <in ls =3 The expression fos? is quite large. The objective function
= /5 Zy' —ao — Ty —onaglyly + @17 M1 is expanded and the change of variables is used to obtain:

T 41 Zin Tin Tin i j = ¢ ( Lot
_042Lkri1) Pzin (qu) Prin ( kq) dLy"dZ" J=E V( k“’)}
~ . ~ . l5 ~ 03 2
1 1 /-~. -, +F (04 (Z,ﬁf" +asly’ — =L + 1) , (39)
— s . Zzn _ _ . L”i
T EY Y h
I and the definition of expectation is then applied, yielding:
5 7in? Tin Tin
“rala k—1 — a2Lk—1>) d k—1- (34) 0

The controller parameterization (29) and the change of/ = / —0.42 (W%) Prout (Lﬁlfb) dLgy,
variables (31) are substituted into the process model (17)to0 -

give: o0 . 5 B B

T out ~Zin Tin l5 7in3 + / <5 + (042 (intb)) ) Prov (quﬁb) dLgitb
k+b =l1a0+l10£1Zk_1 +l10¢10¢3Lk_1 —lloql— k1 0

1

~. ~. ~. ~ . 2 2
+ 1102[/2"71 =+ llagLZl + ZQLZI + lSZ]?il + 0.160Z —+ 016 + 032,LLZ + 0053(13
- Is - - asls 12
+laslity — b7 i’ L 4wk (35) —0.064== + 00229% (40)
1

Therefore the PDB: .., (L°*') can be written as a func- Evaluating this objective function assuming Gaussian
tion of independentLva’riabIes PDFs with the calculated parameters leads to an algebraic

In both this case, and for equation (34), there is no way fynction of the controller parameters. This is then mini-

manipulate this equation to get the PDF in an explicit form[,nlzed to give the parameter valuasy = 3.1601, 01 =

however, approximation techniques, such as those describ68'84_36’ a2 = 2.0942, a3 = 2.7699. ) i
in [1] can be used. Here the PDF’s are approximated as A simulation of the process under this control strategy is

Gaussian by calculating the mean and variance of eadperformed and the resulting time series are given in Figure
6.

These are:
Qo (36) The value of the cost function for this set of dataJis=

T l-m 2497.

14



C. Discussion tem identification and control, there are many open and

The behaviours of the two different control strategieotentially fruitful research areas. The idea of shaping
are quite different. In the first case, the modification ofh€ distribution of identification data- to improve the
the objective function leads to a bounded control lawParameter value estimates is a continuing interest of
Additionally this control law tends to take no action if the authors. The unusual properties of the control design
the predicted result is costly for the perceived benefit (d&ased on the modified objective function deserve further
each time step). By using the conditional expectation, tegPnsideration. Somehow, this type of design, based on
designed control strategy tends to be myopic. While it igondmo.nal expectation, pIaF:es unnecessary hard constraints
good that the controller is conservative in the control actiorP" .the input. As well, the impact of random feedforward
this is somehow inadvertently imposed by the modificatio§ariables on the PDF of a process output can be analyzed

of the control law. No such constraints on the control werd general.
imposed as part of the problem specification. VI. ACKNOWLEDGMENTS
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B. Future Works

While there has been increased activity in recent years
investigating the use of probabilistic concepts for sys-



