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Abstract— This paper uses the operation of a pulp bleaching
reactor as a platform for the illustration and discussion of
several ideas involving use of the stationary probability density
function in process control. A computer simulation of the
partial differential equations, derived from first-principles,
describing the bleaching reactor is used to represent the true
process. Empirical, discrete-time models of the reactor are
then constructed using sampled input and output time series.
In the model building phase, the influence of data distribution
on final model quality is emphasized. Once the discrete-time
model has been derived, two control laws are synthesized. One
law is based on established design techniques while the other
takes advantage of less recognized probabilistic concepts. The
controllers are then applied to the true process model the
relative performances discussed.

I. INTRODUCTION

Viewing process behaviour in a probabilistic framework
allows for the inclusion of random disturbances and cal-
culation of expected long term process trends. Stochastic
process models allow for uncertainty to be recognized in
control designs and compensated for− or at least accom-
modated− in process operations. The standard approach
to these situations, as reported in the process control liter-
ature, uses linear process models, Gaussian disturbances,
and assumes quadratic objectives. These strategies focus
on reduction of variance about a setpoint or reduction of
variance so that mean process operation can be moved
closer to constraints. If any of the assumptions underlying
this approach do not hold in practice then there is the
potential for inadequate system performance and economic
losses.

Some recent works have investigated a probabilistic ap-
proach that includes nonlinear process models and non-
quadratic objective functions. In [1], an approximation of
the integral equation governing the relationship between
process nonlinearity and the stationary probability density
function (PDF) is described. In [3] this approximation tech-
nique is applied to design control laws for first-order process
so that stationary PDF of the closed-loop process takes
a pre-specified Gram-Charlier form. Another application
of this technique is presented in [2], where the optimal
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control design with respect to a nonsymmetric/nonquadratic
expectation-type objective function is approximated. The
role of data distribution in determining the quality of
empirical plant models is discussed in [4].

The aim of the present work is to apply these ideas
to the modelling and control of a pulp bleaching reactor.
A nonlinear continuous time model is assumed as the
underlying true process from which measurements are made
and manipulated variables are adjusted at discrete time
intervals. The study begins with the goal of improving the
control of product quality (pulp brightness− as inferred
from lignin content) with respect to minimum brightness
specifications. For analysis and design purposes a discrete-
time model is developed to accurately capture the behaviour
of the nonlinear process across the entire region of oper-
ation. The identification relies on generating data that is
uniformly distributed across the region of operation so that
model accuracy remains constant for the entire region. An
objective function reflecting the economic value of the pulp
brightness is the main performance indicator and used as
the goal for controller synthesis. Two control designs are
performed with respect to this objective. Simulations for
the two control strategies demonstrate the relative strengths
of each.

This case study illustrates a number of points. The control
of industrial processes can be much more challenging than
is often reflected in the control literature. In this case, the
process is distributed in nature, inducing long delays in the
input-output data. It is also nonlinear, and subject to random
variability, which makes it difficult to model using standard
linear model identification approaches. Likewise, industri-
ally relevant economic cost functions are often nonquadratic
and nonsymmetric, so standard control designs based on
quadratic costs are inappropriate. As a result of these
challenges, different approaches must be sought. This case
study demonstrates potential success to be realized through
using probabilistic techniques for process modelling and
control. In both the identification and the design stage,
improvements over the standard approaches are made, so
that the end result is better process performance due to a
better control design based on a better model.

In §II the equations used to describe the ‘true’ bleaching
reactor are given along with information on the numerical
simulation technique used in their solution. In§III time
series data from the reactor is used to construct a discrete-
time model of the plant behaviour. In§IV two different



control laws are designed based on the identified discrete
time model. These are then tested through simulation of the
‘true’ bleaching reactor and the relative merits of each are
discussed.

II. THE BLEACHING REACTOR

The bleaching reactor model used as the true plant for
this investigation is taken from [8]. It consists of two partial
differential equations describing the evolution through dis-
tance,z, along the reactor and time,t, of the lignin,L(z, t),
and bleach,C(z, t), concentrations, as well as appropriate
boundary conditions. The complete model, as used in this
paper, is:

∂C

∂t
= −v

∂C

∂z
+ D

∂2C

∂z2
− kCC3L3, (1)

∂L

∂t
= −v

∂L

∂z
+ D

∂2L

∂z2
− kLC3L3, (2)

∂L (0, t)
∂z

=
v

D
(L (0, t)− Lin (t)) , (3)

∂C (0, t)
∂z

=
v

D
(C (0, t)− Cin (t)) , (4)

∂L (1, t)
∂z

= 0, (5)

∂C (1, t)
∂z

= 0, (6)

L (z, 0) = 1.7, (7)

C (z, 0) = 0, (8)

whereCin is the concentration of bleach (in %) andLin

is the concentration of lignin (in g/l) in the inlet streams.
The equations have been normalized to a reactor length of
1 meter and the parameters are given in Table I. With the
given convection and diffusion terms the Peclet number is
104.

Numerical simulations of this reactor model were per-
formed using the sequencing method proposed in [8], with
spatial discretization of0.005 meters and temporal dis-
cretization of0.1 minutes . It is assumed, for the purposes of
this case study, that inlet lignin concentration is a measured
disturbance variable varying over a range of[1.6, 2.4]. To
give this input variable a drifting-type nature, the following
sum of sinusoids is used:

Lin = 2+0.3 sin
(

7
5
2π

t

T

)
+0.2 sin

(
7
5
16π

t

T

)
+0.02vt,

(9)
wherevt is the normal random variable sampled and held
at each time step. This same inlet sequence is used for all
of the simulations in this paper. While this is not possible
in a real plant situation, it provides a method for ensuring
that identification and control benchmarks are uniformly
assessed.

TABLE I

PARAMETERS FOR THEBLEACHING REACTOR

Parameter Value
v 0.05
D 5× 10−6

kC 5.5× 10−5

kL 5.7× 10−7

In the subsequent section, values of the inlet and outlet
concentrations of the lignin and the bleach are periodically
sampled. These are denoted as follows:

Cin
k = Cin (k∆t) , (10)

Lin
k = Lin (k∆t) , (11)

Cout
k = C (1, k∆t) , (12)

Lout
k = L (1, k∆t) , (13)

where∆t is the sampling interval.

III. MODEL IDENTIFICATION

For the purposes of this case study, it is assumed that
measurements of the inlet and outlet concentrations of the
lignin and bleach may be made at periodic intervals, but
that no other measurements are available. The goal of this
section of the paper is to build a discrete-time model based
on input-output data from the plant. Initial step tests reveal
that there is a delay of 20 minutes between input and output
changes in the lignin and bleach concentrations and that the
time constant for the process is approximately 1 minute.
Based on these observations, process input changes and
outlet measurements are made every 0.1 minutes (∆t =
0.1). To generate data for identification a PRBS input
sequence for the inlet bleach concentration is used, with the
chosen value (either 40 or 120) held over the time interval.
Since lignin inlet concentration cannot be manipulated, it is
allowed to drift, as described in the previous section.

Based on the data obtained (see Figure 1), the following
time series model is constructed:

C̃out
k+b = c1C̃

in
k + c2L̃

in
k + c3C̃

in
k−1 + c4L̃

in
k−1, (14)

L̃out
k+b = l1C̃

in
k + l2L̃

in
k + l3C̃

in
k−1 + l4L̃

in
k−1, (15)

where b = 201 is the delay before the output response.
Here, the tilde notation (e.g. C̃) refers to a centered and
scaled variable. The centering is performed by removing
the mean, while the scaling is done by dividing by half of
the spread of the variable. Prediction error methods, such as
are given in [7], are used to calculate the parameter values.

In [4], it is demonstrated that to ensure that model errors
are equally weighted for all areas of the operating region,
it is necessary to have uniformly distributed identification
data. In this case the operating region is[1.6, 2.4] for
the lignin inlet concentration and[40, 120] for the bleach
concentration. Since the model structure determined from
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Fig. 1. Time series data and predictions used for the initial model building
attempt. The predictions are given by the heavier lines.

TABLE II

NORMALIZING VALUES FOR THESECOND DATA SET

Variable Mean Spread/2
Cin 80 40
Lin 2.0 0.39
Cout 12 5.1
Lout 1.4 0.42

the first set of data is not autoregressive, the distribution of
the outlet data is unimportant.

Nothing can be done to affect the distribution of the
inlet lignin concentration, since it is a disturbance variable,
although it is hoped that it will drift through a full range
of values during the plant experiment. The distribution of
the chlorine inlet concentration can easily be made uniform
simply by adjusting the input sequence.

To generate a second data set, the inlet bleach concentra-
tion is again randomly adjusted at each time step; however,
in this case it is allowed to vary uniformly over the region
[40, 120] This data is given in Figure 2.

The parameters obtained in each case are given in Table
III.

TABLE III

PARAMETERS FOR THEL INEAR MODELS

Model 1 Model 2Parameter
Value 3σ Value 3σ

c1 0.078 ±0.016 0.100 ±0.023
c2 −0.37 ±0.22 −0.48 ±0.19
c3 0.073 ±0.016 0.094 ±0.023
c4 −0.39 ±0.22 −0.42 ±0.19
l1 −0.072 ±0.013 −0.089 ±0.017
l2 0.39 ±0.18 0.51 ±0.14
l3 −0.068 ±0.013 −0.084 ±0.017
l4 0.41 ±0.18 0.42 ±0.14
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Fig. 2. Time series data and predictions used for the second model
building attempt. The predictions are given by the heavier lines.
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Fig. 3. Time series data used for model validation. The solid line gives
the (unscaled) errors for the first model, and the dotted line gives the
(unscaled) errors for the second model.

In Figure 3 the prediction errors for the outlet concentra-
tions of bleach and lignin are compared for the two models.
While the two sets of errors are similar, the errors for the
second model are almost always smaller than those of the
first. Comparing the sums of the squares of the errors (SSE)
shows that the SSE for the first model is29% higher for
outlet bleach predictions and28% higher for outlet lignin
predictions. This shows that although the difference is not
visually striking, consistent better predictions add up to
better performance over time.

For the second data set, the centering and scaling values
for the variables are given in Table II. The second model



TABLE IV

PARAMETERS FOR THENONLINEAR MODEL

Parameter Value
c1 0.097
c2 −0.52
c3 0.094
c4 −0.36
c5 −0.076
c6 −0.062
c7 0.16
l1 −0.088
l2 0.57
l3 −0.084
l4 0.41
l5 −0.085

can be refined by adding some nonlinear terms:

C̃out
k+b = c1C̃

in
k + c2L̃

in
k + c3C̃

in
k−1 + c4L̃

in
k−1

+ c5C̃
in4

k + c6C̃
in4

k−1 + c7L̃
in4

k−1 + wC
k , (16)

L̃out
k+b = l1C̃

in
k + l2L̃

in
k + l3C̃

in
k−1 + l4L̃

in
k−1

+ l5L̃
in3

k + wL
k . (17)

These parameter values are given in Table IV. It is inter-
esting to note that in attempting to add nonlinear terms
to the models using the different sets of data, the type
of nonlinearity that is significant varies between the data
sets. This suggests that depending on the input signal used,
different aspects of nonlinear plant behaviour are revealed.

A. Disturbance Distributions

To complete the modelling process, and provide all the
information necessary to the controller design portion of
this study, it is necessary to estimate the distributions of the
model data. By inspection of their histograms, the prediction
errors (wC andwL) for the outlet bleach and lignin concen-
tration models appear to be normally distributed. The mean
of each variable is calculated to be zero and the variances
are0.014 and0.0087, respectively.

For the measured input disturbance,Lin, it is not as
clear how it can be statistically described. The sum-of-
sinusoids signal used in the simulations is meant to emulate
a drifting type variation over the operating region[1.6, 2.4].
For this reason, inlet lignin concentration is modelled as
being uniformly distributed. A histogram of the inlet lignin
concentration, as it varies over one cycle of the dominant
sinusoid, confirms that this is a reasonable model. The
histogram is given be Figure 4.

Throughout this paper, the PDF of a specific variable
will be identified with the variable written as a subscript.
For example, the PDF ofwC is pwC

(
wC

)
.
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Fig. 4. A histogram of the inlet lignin concentration.

IV. CONTROL DESIGN

The objective for controller synthesis is the nonsymmet-
ric, nonquadratic objective function:

J = E

[
`
(
Lout

k+b

)
+

(
Cin

k − 40
)2

4000

]
, (18)

where:

`
(
Lout

k+b

)
=

{
1.4− Lout

k+b Lout
k+b ≤ 1.4

5 +
(
Lout

k+b − 1.4
)2

Lout
k+b > 1.4

(19)

This reflects the goal of keeping outlet lignin concentration
below its maximum acceptable value, but without using
excessive quantities of the bleach. Since this objective is
written in terms of the unscaled variables, it must be
rewritten in the scaled variables as:

J̃ = E

[
˜̀
(
L̃out

k+b

)
+ 0.4

(
C̃in

k + 1
)2

]
, (20)

with:

˜̀
(
L̃out

k+b

)
=

{ −0.42L̃out
k+b L̃out

k+b ≤ 0

5 +
(
0.42L̃out

k+b

)2

L̃out
k+b > 0

(21)

Only the lignin outlet concentration is of interest for this
case study. Controller design is then based on equation (17).
The actual control law is then implemented for the true
process, by reversing the scaling and centering,i.e.,

Cin
k = 40C̃in

k + 80. (22)

Estimations of process performance for a given control
strategy can be made from the sampled input-output data
using:

Ĵ =
N∑

k=1

(
`
(
Lout

k+b

)
+

(
Cin

k − 40
)2

4000

)
. (23)



A. Modified-Objective Design

Even with a purely linear process model, the objective
(20) cannot be directly minimized with respect to the input
to yield any closed-form solution for the control law. One
paper where this type of problem has been addressed is
[5]. The idea is to replace expectation with conditional
expectation to yield the modified problem:

J̃MO = E∗
[
˜̀
(
L̃out

k+b

)]
+ 0.4

(
C̃in

k + 1
)2

, (24)

where E∗ [·] represents expectation conditioned on the
available data.

Rewriting the process equation (17) as:

L̃out
k+b = ˆ̃Lout

k+b + wL
k , (25)

allows for the following control law derivation. The modi-
fied objective is expanded to:

J̃MO =

− ˆ̃Lout
k+b∫

−∞
−0.42

(
ˆ̃Lout

k+b + wL
k

)
pwL

(
wL

k

)
dwL

k (26)

+

∞∫

− ˆ̃Lout
k+b

(
5 +

(
0.42

(
ˆ̃Lout

k+b + wL
k

))2
)

pwL

(
wL

k

)
dwL

k

+ 0.4




ˆ̃Lout
k+b − l2L̃

in
k − l3C̃

in
k−1 − l4L̃

in
k−1 − l5L̃

in3

k

l1
+ 1




2

,

and then differentiated with respect to the b-step ahead

prediction, ˆ̃Lout
k+b, as follows

∂J̃MO

∂ ˆ̃Lout
k+b

=

− ˆ̃Lout
k+b∫

−∞
−0.42pwL

(
wL

k

)
dwL

k

+

∞∫

− ˆ̃Lout
k+b

0.84
(

ˆ̃Lout
k+b + wL

k

)
pwL

(
wL

k

)
dwL

k

+ 5pwL

(
− ˆ̃Lout

k+b

)
(27)

+ 0.8
ˆ̃Lout

k+b − l2L̃
in
k − l3C̃

in
k−1 − l4L̃

in
k−1 − l5L̃

in3

k + l1

l21
.

This is set equal to zero, and the integration performed to
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Fig. 5. Time series for the process governed by the first control law.

give:

− 0.21erf
(
0.667C̃in

k − 4.32L̃in
k + 0.637C̃in

k−1

−3.11L̃in
k−1 + 0.644L̃in3

k

)
− 9.30− 9.13C̃in

k

+ 0.239L̃in
k − 0.0353C̃in

k−1 + 0.172L̃in
k−1

− 0.0357L̃in3

k − 0.42
(
−0.088C̃in

k + 0.57L̃in
k

−0.084C̃in
k−1 + 0.41L̃in

k−1 − 0.085L̃in3

k

)
erf

(
0.667C̃in

k

−4.32L̃in
k + 0.637C̃in

k−1 − 3.11L̃in
k−1 + 0.644L̃in3

k

)

+ 21.4 exp
(
−57.5

(
−0.088C̃in

k + 0.57L̃in
k

−0.084C̃in
k−1 + 0.41L̃in

k−1 − 0.085L̃in3

k

)2
)

= 0. (28)

This control law cannot be further simplified. It is im-
plemented by numerically solution at each time step. A
simulation of this control strategy is illustrated in Figure
5.

The value of the objective function for this control law
and simulation isJ = 3221.

B. An Approximate Probabilistic Design

As discussed in [1], very few closed-form analytical
results for optimal control design with respect to the ob-
jective function (20) are available. An important part of the
approximation of the optimal solution is to parameterize
the input. In this case, the parameterization is designed to
linearize the dynamics:

C̃in
k = α0 + α1C̃

in
k−1 + α2L̃

in
k−1 + α3L̃

in
k − l5

l1
L̃in3

k , (29)

where theαi are constants to be determined. In order to
evaluate the objective function, the PDF’s ofL̃out

k+b and
C̃in

k are required. For both, it is necessary to consider the



control law. To do so the control law (29) is rewritten as
the augmented dynamic system:

C̃in
k = α0 + α1C̃

in
k−1 + α2X̃

in
k−1 + α3L̃

in
k − l5

l1
L̃in3

k

X̃in
k = L̃in

k . (30)

This system has one random input and two states; therefore
some manipulations are required to derive the joint PDF.
The change of variables:

Z̃in
k = C̃in

k − α3L̃
in
k +

l5
l1

L̃in3

k = α0 + α1C̃
in
k−1 + α2X̃

in
k−1

⇒ C̃in
k−1 = Z̃in

k−1 + α3X̃
in
k−1 −

l5
l1

X̃in3

k−1 (31)

is introduced and the system becomes:

Z̃in
k =α0 + α1

(
Z̃in

k−1 + α3X̃
in
k−1 −

l5
l1

X̃in3

k−1

)
+ α2X̃

in
k−1

X̃in
k = L̃in

k . (32)

It is clear that these two states are independent, with PDFs:

pX̃in

(
X̃in

k

)
= pL̃in

(
X̃in

k

)
, (33)

and

pZ̃in

(
Z̃in

k

)

=
∫

δ

(
Z̃in

k − α0 − α1Z̃
in
k−1 − α1α3L̃

in
k−1 + α1

l5
l1

L̃in3

k−1

−α2L̃
in
k−1

)
pZ̃in

(
Z̃in

k−1

)
pL̃in

(
L̃in

k−1

)
dL̃in

k−1dZ̃in
k−1

=

1∫

−1

1
2|α1|pZ̃in

(
1
α1

(
Z̃in

k − α0 − α1α3L̃
in
k−1

+α1
l5
l1

L̃in3

k−1 − α2L̃
in
k−1

))
dL̃in

k−1. (34)

The controller parameterization (29) and the change of
variables (31) are substituted into the process model (17) to
give:

L̃out
k+b = l1α0 + l1α1Z̃

in
k−1 + l1α1α3L̃

in
k−1 − l1α1

l5
l1

L̃in3

k−1

+ l1α2L̃
in
k−1 + l1α3L̃

in
k + l2L̃

in
k + l3Z̃

in
k−1

+ l3α3L̃
in
k−1 − l3

l5
l1

L̃in3

k−1 + l4L̃
in
k−1 + wL

k . (35)

Therefore the PDFpL̃out

(
L̃out

)
can be written as a func-

tion of independent variables.
In both this case, and for equation (34), there is no way to

manipulate this equation to get the PDF in an explicit form;
however, approximation techniques, such as those described
in [1] can be used. Here the PDF’s are approximated as
Gaussian by calculating the mean and variance of each.
These are:

µZ =
α0

1− α1
(36)

0 20 40 60 80 100 120 140
0

100

200

300

t

B
le

ac
h 

In
pu

t

0 20 40 60 80 100 120 140
1.5

2

2.5

t

Li
gn

in
 In

pu
t

0 20 40 60 80 100 120 140
0

10

20

t

B
le

ac
h 

O
ut

pu
t

0 20 40 60 80 100 120 140
1

1.5

2

t

Li
gn

in
 O

ut
pu

t

Fig. 6. Time series for the process governed by the second control law.

σ2
Z =

(
15α2

1l
2
5 + 35α2

1α
2
3l

2
1 − 42α2

1α3l5l1

+70α1α3α2l
2
1 − 42α1l5α2l1 + 35α2

2l
2
1

)

105l21(1− α2
1)

(37)

µLout = l1α0 + (l1α1 + l3)
α0

1− α1
(38)

The expression forσ2
L is quite large. The objective function

is expanded and the change of variables is used to obtain:

J̃ = E
[
˜̀
(
L̃out

k+b

)]

+ E

[
0.4

(
Z̃in

k + α3L̃
in
k − l5

l1
L̃in3

k + 1
)2

]
, (39)

and the definition of expectation is then applied, yielding:

J̃ =

0∫

−∞
−0.42

(
L̃out

k+b

)
pLout

(
L̃out

k+b

)
dL̃out

k+b

+

∞∫

0

(
5 +

(
0.42

(
L̃out

k+b

))2
)

pLout

(
L̃out

k+b

)
dL̃out

k+b

+ 0.16σ2
Z + 0.16 + 0.32µZ + 0.053α2

3

− 0.064
α3l5
l1

+ 0.0229
l25
l21

. (40)

Evaluating this objective function assuming Gaussian
PDFs with the calculated parameters leads to an algebraic
function of the controller parameters. This is then mini-
mized to give the parameter values:α0 = 3.1601, α1 =
−0.8436, α2 = 2.0942, α3 = 2.7699.

A simulation of the process under this control strategy is
performed and the resulting time series are given in Figure
6.

The value of the cost function for this set of data isJ =
2497.



C. Discussion

The behaviours of the two different control strategies
are quite different. In the first case, the modification of
the objective function leads to a bounded control law.
Additionally this control law tends to take no action if
the predicted result is costly for the perceived benefit (at
each time step). By using the conditional expectation, the
designed control strategy tends to be myopic. While it is
good that the controller is conservative in the control action,
this is somehow inadvertently imposed by the modification
of the control law. No such constraints on the control were
imposed as part of the problem specification.

The second strategy gives a much more aggressive control
law that keeps the value of the lignin outlet concentration
lower at all times.

A major conclusion to be drawn from these examples
is that using a probabilistic technique that considers the
unconditional expectation leads to control designs that out-
perform designs based on conditional expectation. There is
a 22% decrease in the cost for the second control law in
this example.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

It has been demonstrated, through the study of a pulp
bleaching reactor, how probabilistic concepts can be used
to benefit identification and control in a process control
setting. For identification of process models, ideas based
on probabilistic concepts lead to improved experimental
designs for the generation of identification data. Data
generated in this way leads to improved process models.
For regulatory controller design for processes, such as the
bleaching reactor, where random variation is significant, the
use of unconditional expectation leads to better long term
performance.

B. Future Works

While there has been increased activity in recent years
investigating the use of probabilistic concepts for sys-

tem identification and control, there are many open and
potentially fruitful research areas. The idea of shaping
the distribution of identification data− to improve the
parameter value estimates− is a continuing interest of
the authors. The unusual properties of the control design
based on the modified objective function deserve further
consideration. Somehow, this type of design, based on
conditional expectation, places unnecessary hard constraints
on the input. As well, the impact of random feedforward
variables on the PDF of a process output can be analyzed
in general.
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