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Introduction 
 
 Breakage of small suspended aggregates (clusters, flocs) due to hydrodynamic 
stresses induced by fluid flow is crucial to both aggregation (coagulation, flocculation) and 
dispersion processes. The former finds broad application in solid-liquid separation where the 
transformation of particles in the colloidal size range into aggregates of a few micrometers to 
millimeters in size improves the performance of any separator. Aggregation is thereby usually 
performed in an agitated device where vigorous stirring leads to aggregate breakage which 
limits the formation of large aggregates. Regarding the reverse process, i.e., dispersing a 
solid into a liquid, aggregate breakage by vigorous stirring becomes the controlling 
mechanism. 
 
Breakage Model 
 
 In this contribution we address the modeling of breakage kinetics of solid aggregates 
in a homogeneous turbulent flow [1]. It is generally assumed that breakage is a first order 
kinetic process. Accordingly, the population balance equation describing the evolution of the 
cluster mass distribution (CMD) reads as 
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where c(x,t) is the CMD, x is the cluster mass normalized by the mass of the primary particle 
that forms the aggregate, KB(x) is the breakage rate function, and g(x,y) is the fragment mass 
distribution (FMD). Hence, the number of fragments of mass (x, x+dx) formed by the 
breakage of a cluster mass y is g(x,y) dx. 
 A modeling strategy is proposed that allows us to derive expressions for KB(x) and 
g(x,y) in a physically sound framework. It is believed that the first order breakage kinetics are 
governed by the turbulent fluctuations where only turbulent events that are violent enough 
lead to breakage. The magnitude of a turbulent event required to cause breakage is thereby 
determined by the properties of the aggregate and depends in particularly on the aggregate 
mass. To describe the turbulent fluctuations a multifractal model is adopted which provides a 
sufficient description of the fine scale turbulence [2,3]. The multifractal model accounts in 
particular for fine scale intermittency defined here as the strong and irregularly appearance of 
fluctuations in an else homogeneous flow. Further, a power law relation is used to relate the 
critical magnitude of a turbulent event that causes breakage to the mass of the aggregate.  



 

 The resulting breakage rate function differs substantially when compared to existing 
models (i.e., the power law breakage rate function [4] and exponential breakage rate function 
[5,6]) in as such that KB(x)=0 and KB(x) → ∞ below and above a certain limiting aggregate 
size, respectively. Further, KB(x) exhibits a Reynolds number dependency due to 
intermittency that is missing in the present models [4-6]. It will be shown that when turbulence 
is modeled using a Gaussian velocity gradient, the presented modeling framework leads to 
an expression for KB(x) that in the limit of x → 0 and x → ∞ reduces to an exponential 
function and a power law that are formally identical to the breakage rate functions used in Ref 
[4] and [6], respectively. 
 
 

 
Figure 1. Breakage rate function KB(x) as a function of the aggregate mass x. Curve 1 and 2 
refer to the novel model using a multifractal description for the fine scale turbulence whereas 
curve 3 and 4 are based on a Gaussian description. For the former, solid and dashed lines 
refer to Rλ = 137 and Rλ = 660, respectively (in normalized variables the Gaussian model 
exhibits no dependency on Rλ). Curve 1 (and 3) and curve 2 (and 4) refer to different 
aggregate strength exponents. In the axis, x0 is a reference aggregate mass, c is a constant 
and τη = (〈ε〉/ν)1/2. 
 



 

 
Figure 2. Asymptotic values of the mean aggregate mass x  (a) and the mean radius of 
gyration ρ (b) as a function of the mean energy dissipation rate resulting from a pure 
breakage process. In both panels, the solid lines refer to the asymptotic values of the 
corresponding quantity. The dashed and the dotted line in (a) refer to asymptotic mass of the 
largest aggregates and the reference mass, respectively. In (b) the dashed and the dotted 
line refer to the corresponding aggregate sizes, respectively. The open symbols in (b) refer to 
the experimental values reported in Ref [7]. 
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