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1. Introduction  
 
Two-phase flows with dynamic interfaces are ubiquitous in daily life as well as in many 
industrial applications. Gas bubbles and liquid droplets are typical forms of these two-
phase flows. In chemical engineering, understanding the dynamics of these bubbles and 
droplets is crucial to the design and operation of the two-phase flow reactors, ranging 
from microfluidic devices to large systems such as bubble columns and three-phase 
fluidized beds. In recent years, advanced Computational Fluid Dynamics (CFD) 
simulation has been increasingly used to study the multiphase flow problems. In these 
CFD simulations, the interactions between different phases, including the various forces 
on the bubbles/droplets, need to be specified using closure models, which come from 
either experiment correlations, or more detailed numerical simulations. Direct numerical 
simulation (DNS) is capable of providing such closure relations, by detailed simulation of 
the motion of individual bubbles/droplets in which the motion of the gas-liquid interface 
is directly resolved.   Several types of DNS methods have been developed, and they can 
be largely put into three categories: the front tracking method, the front-capturing 
method, and the diffused interface method. The front tracking method uses Lagrangian 
tracking particles to form a surface mesh that represents the interface, and these particles 
are convected by the local flow field in each time step to update the location of the 
interface. The front-capturing methods include the Volume of Fluid (VOF) and the level 
set method, in which the interface is represented by the contour of a scalar field, which 
can be the volume fraction of the gas phase in the computational cell (in VOF), or the 
distance to the interface (in level set method). The interfaces in both the front-tracking 
and front capturing methods are considered “physically sharp” with zero thickness, 
although they are numerically smoothed to avoid the abrupt discontinuity which causes 
numerical problems. In contrast, the interface in the diffused interface method is 
physically diffused. In other words, it has a finite thickness, and the density distribution 
inside the interface is determined by the thermodynamic laws. 
 
Different from most fluid simulation methods that are rooted in the continuum Navier-
Stokes equation, the Lattice Boltzmann method (LBM) focuses on the density 
distribution function of the “molecules” that comprise the fluid. This makes LBM a 
mesoscale method and can simulate more complicated problems. In addition, the 
algorithm in LBM is much simpler than that in traditional CFD methods, and parallel 
computation can be implemented with easy. When simulating interface between two fluid 
phases, 3 types of LBM techniques have been developed. Both the interaction potential 
model (Shan and Chen, 1993) and the free-energy model (Swift et al, 1996) employ the 
idea of diffused interface methods, while the LBM based on color function (Gunstensen 
and Rothman, 1991) is in fact similar to the their counterparts in sharp interface methods. 
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The LBM based on interaction potential model has the advantage of clear physical 
background and simple algorithm. In addition, the interface is formed naturally due to the 
attractive-repulsive interactions between the fluid “molecules”, and therefore no interface 
tracking or capturing is required. In recent years, there have been several efforts that 
apply LBM to study the dynamics of bubbles. For example, Sankaranarayanan et al. 
(2002) used the interaction potential model to study the drag and virtual mass forces on 
bubbles.  
 
Regardless of the numerical approach used, the central problem in the direct simulation 
of bubble flows is the accurate representation of the gas-liquid interface. As already 
mentioned, all numerical approaches use a numerically diffused interface, which spans 
typically to a thickness of 3~5 grid spacing. In order to have sufficient accuracy, the 
bubble size must be significantly larger than the interface thickness, and this sets a 
limitation for the maximum grid spacing, or the minimum grid points across the bubble 
diameter. For bubbles with small deformation, usually at least 16 grid points across the 
diameter are required to faithfully represent the bubble surface. This minimum grid 
number increases when the bubble undergoes larger deformation, for example, in higher 
Reynolds number flows. At the same time, the simulation domain needs to be 
significantly larger than the bubble size to avoid boundary effect in simulation, and the 
computation time and memory usage increase rapidly with the increasing mesh resolution 
and domain size. However, under the current computation capability, this resolution 
requirement often has to be compromised. As the result, most simulations to date 
consider only spherical or ellipsoidal bubble, while simulations for spherical cap and 
skirted bubbles that frequently appear in engineering applications are scarcely reported. 
Moreover, in numerical studies which explore the bubble interactions, the number of 
bubbles that can be put into the simulation domain is restricted due to the computation 
power. There is a demand for a simulation technique that can simultaneously keep 
sufficient mesh resolution near the bubble surface, while keeping the total computation 
cost under control. 
 
Adaptive Mesh Refinement (AMR) technique seems to be a natural candidate for such 
requirement in resolution and computation cost. Using AMR technique, the mesh 
resolution varies in the computation domain. Fine mesh resolution is used near the bubble 
surface to ensure the accuracy, while coarse mesh is applied in the bulk fluid faraway 
from the interface to reduce computation cost. The mesh resolution is updated 
dynamically during the simulation to reflect the motion of the interfaces. AMR 
techniques have been integrated into both traditional Navier-Stokes based methods as 
well as LBM. Hua et al (2008) combined the front-tracking method with AMR and 
successfully simulated wide range of bubble regimes, in particular the spherical cap and 
skirted bubbles. Tolke et al. (2006) employed AMR with LBM for bubble simulation. 
However, their LBM was based on the color function model for the interface, and 
therefore the interface is essentially captured as in the interface capturing methods, and 
lost the advantage of clear physical picture and natural interface in LBM. Several other 
LBM simulations related to the idea of AMR in single-phase flows also uses variable 
mesh resolution, and the mesh resolution is either dynamically updated or stationary 
during the simulation (Fares, 2006; Rhode, et al., 2006; Peng et al, 2006). In these 

 2



simulations, fine mesh was applied near the irregular solid boundary to greatly enhance 
the accuracy of the boundary condition. However, there is no straightforward extension 
of their single-phase algorithm to two-phase flow problems. 
 
In this study, a new LBM approach with AMR capability is developed for the gas-liquid 
flows. The two-phase LBM is based on the interaction potential model developed by 
Shan and Chen (1993). The LBM-AMR algorithm will be introduced, followed by 
numerical examples of both single and two-phase flows. 
 
2. LBM algorithm on uniform grid  
 
The LBM algorithm is based on a special discretization of the Boltzmann equation in 
time, space, and velocity space. The main variable in LBM algorithm is the density 
distribution of the fluid “molecules”, , which is the density distribution of fluid 
“molecules” with velocity at location and time t. The evolution of the distribution 
function obeys the LBM equation: 
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The left hand side of equation (1) is often called “streaming” or “propagation”, and 
accounts for the migration of the fluid molecule from one grid point to the neighboring 
point. The right hand side is often named “collision”, and models the relaxation process 
of the molecules towards to the local equilibrium distribution , which is the truncated 
Boltzmann distribution: 
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The macroscopic variables such as density and momentum are related to the distribution 
function is such a way that  
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The pressure and kinematic viscosity are given as: 
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where τ is the relaxation factor in equation (1). 
 
In practice, the variables in LBM are non-dimensionalized using xΔ and  as the length 
and time scale. As the result, the non-dimensional mesh size and time step are both equal 
to 1. 

tΔ

 
3. Single phase LBM with AMR  
 
When using different mesh resolution across the computation domain, it is crucial to 
understand which variables change with mesh size and which are independent of the grid. 
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In order to achieve the same lattice speed of sound 
t

xcs Δ
Δ

=
3

across the entire domain, 

the time step needs to be proportional to the mesh size. Following the convention of 

LBM, the non-dimensional lattice speed of sound 
3

1ˆ =sc  is used throughout the entire 

domain. 
 
The fact that the time step varies with tΔ xΔ  has two consequences. Firstly, according to 
equation (5), to keep the fluid viscosity ν  independent of grid size, the relaxation factor 
τ also need to change with  and must be calculated from equation (5). Secondly, the 
LBM algorithm performs more steps on fine mesh which requires smaller  than on the 
coarser mesh. Therefore, interpolation/average operations need to be performed at the 
coarse/fine resolution boundary at different moments in a complete time cycle. 

xΔ
tΔ

 

 
Figure 1. Schematic plot showing the “explode” and “coalesce” operation at refinement 

jump 
 
The newly developed LBM-AMR approach is based on the multi-block structured grid. 
The entire computation domain is divided into a number of blocks that have identical grid 
structure but may have different grid resolutions. The blocks are categorized into 
different refinement levels, and grid sizes in each two consecutive levels differ by a 
factor of 2. At most one level difference in refinement levels is allowed at the boundary 
between two neighboring blocks. Inside each block, structured grid is used as in 
traditional LBM simulation. For the 2D computation in this study, the classical D2Q9 
lattice is employed. 
 
When a refinement level jump is presented between two neighboring blocks, special 
algorithm is devised to communicate information across block boundary. This process is 
shown schematically in figure 1.  The coarse grid cell at the boundary between the coarse 
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and fine grid is named “interface” cell, as shown in the shaded zone in figure 1.It acts as 
the transition between two blocks, and operations “explode” and “coalesce” take place in 
these interface cells. These operations can be considered as specially designed 
interpolation and averaging operations. 
 
The original “collide-propagate” algorithm is now complicated by the additional 
“explode” and “coalesce” operations. The flowchart of the computation procedure on two 
refinement levels is shown in figure 2. The computation on coarse level uses dt as its time 
step, while the fine grid has the time step of 0.5dt. Therefore, the “collide-propagate” 
operation happens twice on the fine level in each dt. The “explode” and “coalesce” steps 
each operate once during dt. 
 

 
Figure 2. Flowchart of the computation steps for two refinement levels 

 
The simulation code used in this study is developed using the open-source software 
package Paramesh. Paramesh provides the utilities for mesh generation and management, 
as well as the framework for parallel computation. The LBM algorithm has been 
integrated with Paramesh to realize the LBM-AMR technique. 
 
Simulation results for flows between parallel plates driven by either shear or pressure are 
shown in figure 3. The dots and curves in (a) and (c) presents the simulated velocity 
profile and the analytical solutions obtained by solving the Navier-Stokes equation, 
respectively. Figure 3(b) shows the velocity contour and the computation grid used for 
Couette flow simulation, while 3(d) shows the velocity vectors and the grid for 
Poisueillie flow. The numerical results matches the analytical results and this proves the 
accuracy of the LBM-AMR algorithm for single phase flows. 
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Figure 3. Simulation results using LBM-AMR for Couette and Poiseuille flow.  (a) 

Velocity profile for Couette flow. (b) Velocity contour and grid for Couette flow. (c) 
Velocity profile for Poiseuille flow. (d) Velocity vector and grid for Poiseuille flow. 

 
4. Multiphase LBM with AMR 
 
The multiphase LBM-AMR simulations in this study are based on the interaction 
potential model developed by Shan and Chen (1993). In reality, the attractive and 
repulsive interactions between the fluid molecules give rise to the non-ideal Equation of 
State (EOS) of the fluid, and the gas and liquid phases become separated according to the 
thermodynamics. Interaction potential based LBM simulations mimic the physics of 
phase separation by introducing a force term to account for the interactions between fluid 
molecules. The interaction force is written as: 

ψψψψ ∇−≈+−= ∑ GTG
i
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Where )(ρψ is the interaction potential and G is the interaction strength constant. The 
Equation of State of the fluid changes accordingly: 
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In order for the interaction potential model to be integrated with AMR technique, again it 
is important to understand how different variables in the model change with grid 
resolution. As demonstrated in the single phase LBM-AMR, the relaxation factor τ has 
different values in regions with different mesh sizes. One problem with the original 
formulation of the interaction potential model is that the equilibrium for the two stable 
phases varies when τ  changes. This problem is less important in LBM with uniform 
mesh size. However, for LBM on different mesh size, it causes the fluid to have different 
equilibrium point in different parts of the computation domain and no consistent phase 
properties can be achieve throughout the entire domain. In this work, the cause of the 
problem has been identified to be the way in which the interaction force is incorporated 
into LBM. While the approach proposed by Shan and Chen (1993) introduces an error on 
the order of O(F2), other approaches, although more complicated, can eliminate this error 
and achieve identical equilibrium point for different τ . 
 
Besides the effect of the force term, the equilibrium properties are also related to the 
structure of the interface between phases. This is a direct result of the diffused interface 
nature of the interaction potential LBM model. Once the formulation of the interaction 
force is specified, the density profile of the interface can be derived from the mechanical 
equilibrium condition, and properties such as equilibrium densities, interface thickness, 
and surface tension can be obtained analytically. The analytical approach to find these 
properties has been recently reported by Shan (2008). The approach has been tested 
extensively with different parameters in the current study, and the simulations prove the 
validity of the analysis by Shan.  
 

    
Figure 4. Ellipsoidal bubble. Eo=4.1, Mo=3.3*10-4.  
From left to right, time step=0, 1500, 3500, 5500. 

 
It is well known that the surface tension in the interaction model comes from the higher 
order term in the interaction force. More detailed analysis shows that the value of the 
surface tension in the original interaction model is proportional to the grid size . To 
compensate for the difference due to grid size effect, an additional higher order term must 
be included in the interaction force to achieve consistent surface tension throughout the 
domain. The new interaction force has the form 

dx
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ψψψψ 2∇∇+∇−= kGF     (8) 
where the second term is the correction to the grid size effect. 
 

    

 
Figure 5. Ellipsoidal cap bubble. Eo=62, Mo=135. 

Top: from left to right, time step =0, 200, 1000, 1800 
Bottom: mesh near bubble, t=3800 

 
The multiphase LBM-AMR technique is applied to simulate single gas bubble rising in 
liquid. Two typical cases are presented for the ellipsoidal bubble and the ellipsoidal cap 
bubble. 4 levels of grids are used for the ellipsoidal bubble, while 9 levels are used for the 
ellipsoidal cap bubble. The time sequences of the bubble rising are shown in figures 4 
and 5. The bubble shapes compare well with the experimental results obtained by Bhaga 
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and Weber (1980). An enlarged view of the hierarchical mesh near the bubble is included 
in figure 5. It can be concluded that the current LBM-AMR approach is able to simulate 
bubbles with moderate to large deformations. 
 
5. Conclusion 
 
In this work, the principle for LBM-AMR technique is discussed. The dependency of 
different variables on the grid size is analyzed. The newly developed method is applied to 
first study the single phase flows, and then multiphase flows in which a gas bubble rises 
in liquid is also presented. The results show that the LBM-AMR is an accurate and 
efficient method for direct simulation of both single phase and gas-liquid flows. 
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