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Abstract

The development of control-oriented decision policies for inventory management in supply chains
has received considerable interest in recent years, and demand modeling to supply forecasts for these
policies is an important component of an effective solution to this problem. Drawing from the prob-
lem of control-relevant identification, we present an approach for demand modeling based on data that
relies on a control-relevant prefilter to tailor the emphasis of the fit to the intended purpose of the
model, which is to provide forecast signals to a tactical inventory management policy based on Model
Predictive Control. Integrating the demand modeling and inventory control problems offers the oppor-
tunity to obtain reduced-order models that exhibit superior performance, with potentially lower user
effort relative to traditional “open-loop” methods. A systematic approach to generating these prefilters
is presented and the benefits resulting from their use are demonstrated on a representative produc-
tion/inventory system case study. A multi-objective formulation is developed that allows the user to
emphasize minimizing inventory variance, minimizing starts variance, or their combination.

1To whom all correspondence should be addressed. phone: (480) 965-9476 fax: (480) 965-0037; e-mail:
daniel.rivera@asu.edu



1 Introduction

Efficient supply chain management has become a significant imperative for many modern-day enterprises.
Properly characterizing and predicting demand plays a significant role in achieving high performance
from supply chain management systems. The presence of error in a demand forecast will adversely affect
decision-making in a supply chain. Inaccurate market research, customer order changes, out-of-date infor-
mation, and misreading product/business cycles may have a negative effect on the profitability of a supply
chain dependent corporation. While eliminating all sources of error from a demand forecast is impossible,
it may be possible to mitigate its detrimental effects. Therefore, it is important to understand the effects of
forecast error on a supply chain decision policy.

Control-oriented approaches have been recently proposed to deal with the inventory management
problems inherent in supply chains (Tzafestas et al., 1997; Dejonckheere et al., 2002; Perea-López et
al., 2003; Braun et al., 2003; Seferlis and Giannelos, 2004; Wang et al., 2004; Schwartz et al., 2006). In
these approaches, demand is treated as an exogenous “disturbance” signal that must be properly “rejected”
by a sensibly-designed control system. However, an understanding of how a demand forecast should be
properly developed for the sake of this class of supply chain management policies has not been exam-
ined. This paper attempts to gain a broader understanding of disturbance/demand modeling and the effects
of forecast error on a Model Predictive Control (MPC)-based tactical decision policy. The relationship
between demand forecast error and changes in inventory and starts are examined for a control-oriented
tactical decision policy in a single node of the manufacturing process. Understanding this relationship
represents one step towards a fundamental understanding that will allow planning personnel to deal with
inherently erroneous forecasts in an educated manner.

To accomplish this goal, we will draw from ideas in control-relevant identification (Rivera et al., 1992).
The result is a systematic framework for conducting control-relevant demand modeling in the case of
a standard production/inventory system. However, these ideas can be generalized to larger topologies.
Results from a case study will show that the use of the framework not only improves the performance of
the supply chain, but also enables planners to reduce the complexity of customer demand models.

Section 2 begins with a discussion of the modeling of a production/inventory system using a fluid
analogy and the development of a model-based inventory controller relying on Model Predictive Control.
In Section 3, the closed-loop transfer functions describing forecast error are developed and the effect
of erroneous forecasts is studied in both the time and frequency domains. A procedure for performing
control-relevant demand modeling is presented. Section 4 is a case study involving the use of an MPC
scheme to manage a production/inventory system. Section 5 highlights the important conclusions that can
be drawn from the analysis in this paper.

2 System and Controller

2.1 Inventory Control Fluid Analogy

A single node of a manufacturing supply chain can be modeled using a fluid analogy. The factory is
represented as a pipe with a particular throughput time θ and yield K. The inventory is represented as a
tank containing fluid. The dynamics relating fluid level (net stock, y(t)) to inlet pipe flux (fab starts, u(t))
and outlet pipe flux (d(t), composed of the forecasted customer demand, dF(t − θF), plus unforecasted
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Figure 1: Fluid analogy: a single manufacturing node represented as a system of pipes and a tank.

customer demand, dU(t)) is represented in (1). Note that θF is the forecast horizon. The underlying
dynamical system has delayed, integrating dynamics according to

y(t) =
Kz−θ u(t)

1− z−1 − z−θF dF(t)
1− z−1 − dU(t)

1− z−1 (1)

The operational goal of the system is to meet customer demand while maintaining the inventory level
at a specified target. This can be accomplished by adjusting the factory starts. An anticipated (forecasted)
demand signal can be used for feedforward compensation in this regard.

2.2 Model Predictive Control

Model Predictive Control (MPC) (Garcı́a et al., 1989; Camacho and Bordons, 1999) stands for a family
of methods that select control actions based on on-line optimization of an objective function. In MPC,
a system model and current and historical measurements of the process are used to predict the system
behavior at future time instants. A control-relevant objective function is then optimized to calculate a
sequence of future control moves that satisfy system constraints. The first predicted control move is
implemented and at the next sampling time the calculations are repeated using updated system states;
this is referred to as a Moving or Receding Horizon strategy. Fig. 2 is a useful visualization of the MPC
approach. The demand signal, which dictates the shipment of product to the customer, consists of two
components: 1) actual demand (which is only fully known as it occurs) and 2) forecasted demand, which is
provided to the planning function by a separate organization. As shown in Fig. 2, a demand forecast signal
is used in the moving horizon calculation to anticipate future system behavior, which plays a significant
role in the use of MPC for supply chain applications.
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Figure 2: Receding horizon representation of Model Predictive Control.

The Model Predictive Control strategy relies on a state-space form of Eqn. 1 to make predictions of
the future output (inventory level) and adjust the input (factory starts) according to the current state of the
system and a forecast of future disturbances (customer demand). This is captured in Eqn. 2 and Fig. 3,

x(t +1) = A x(t)+Bu u(t)+Bd d(t) (2)
y(t) = C x(t)+Du u(t)+Dd d(t)

where y, u, and d are as defined previously, x(t) is the state vector and A, Bu, Bd , Du, and Dd represent
constant-valued matrices.

There is significant flexibility in the form of the objective function that can be used in MPC. The
formulation considered in this paper is to minimize the following:

min
∆u(k|k)...∆u(k+m−1|k)

J

J =
p

∑
`=1

Qe(ŷ(k + `|k)− r(k + `))2 +
m

∑
`=1

Q∆u(∆u(k + `−1|k))2 (3)

subject to constraints on inventory capacity (0 ≤ y(t) ≤ ymax), factory inflow capacity (0 ≤ u(t) ≤ umax),
and changes in the quantity of factory starts (∆umin ≤ ∆u ≤ ∆umax). The objective function is a multi-
objective expression that addresses the main operational objectives in the supply chain. For an MPC
problem with an objective function per (3), relying on linear discrete-time state-space models to describe
the dynamics, and subject to linear inequality constraints, a numerical solution is achieved via a quadratic
program.
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Figure 3: Block diagram schematic of Model Predictive Control, highlighting the introduction of forecast
error, eF .

3 Control-Relevant Demand Modeling

3.1 Frequency-Domain Analysis of the Effects of Forecast Error on Control Per-
formance

Typically, system identification models are generated by minimizing the one-step ahead prediction er-
ror (Ljung, 1999). This classical approach does not take into consideration the end use of the model,
such as when the goal of the model is to support a control-oriented decision policy. In particular, we are
interested in understanding how forecast error affects the performance of the closed-loop system. It is our
contention in this paper that such systems are most responsive to forecast error within a certain frequency
bandwidth. Subsequently, the performance of the control system can be improved by utilizing demand
models that are most accurate within the frequency band of interest, resulting in the potential for arriving
at better demand models with less effort, which has important practical implications.

Given that unconstrained MPC is a linear control system and that linearity is assumed for the produc-
tion/inventory system, the frequency response of the closed-loop system can be adequately characterized
via nonparametric methods. Fig. 4 shows some representative results of the time-domain inventory and
starts responses to a forecast error impulse, which can be visualized schematically with Fig 3. The con-
troller anticipates the increased future demand and increases starts accordingly. When no demand change
is realized, starts are reduced to return the inventory level to the setpoint. These responses can be cap-
tured as Finite Impulse Response models, from which frequency responses are generated. Fig. 5 shows
the corresponding amplitude ratios of the MPC closed-loop system for the net stock and starts changes,
respectively.

5



0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

∆I
nv

en
to

ry

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

∆S
ta

rt
s

0 5 10 15 20 25 30 35 40 45 50

−1

0

1

∆F
or

ec
as

t E
rr

or

Time (Days)

Figure 4: Supply chain control system response to a unit forecast error pulse. Throughput time: θ = 5
days, prediction horizon: p and θF = 20 days, move horizon: m = 10 days, move suppression: Q∆u = 5,
control error weight: Qe = 1.
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Figure 6: Inventory response of the closed-loop production/inventory system to low frequency (a), inter-
mediate frequency (b), and high frequency forecast error (c).

Fig. 5 shows that the response of the MPC decision policy to forecast error is characterized by notch
filters, where high and low frequencies are attenuated, and only forecast error in an intermediate bandwidth
is amplified. The size of this bandwidth is determined by controller tuning, and for the case of starts
changes the bandwidth of emphasis lies at higher frequencies than for inventory. The filtering effect is
illustrated in the time-domain in Fig. 6 where bandlimited forecast error signals with unity variance are
introduced. Forecast error in the intermediate bandwidth causes the most change in the inventory, and it is
in this bandwidth that a high degree of goodness-of-fit in the demand model is desired.

3.2 Control-Relevant Modeling

Since the MPC decision policy amplifies forecast error only in a limited frequency bandwidth, it is desir-
able to systematically take advantage of the reduced bandwidth over which demand modeling accuracy
is necessary. Therefore, the goal is to emphasize the frequencies of interest when generating a model.
Prefiltering represents an important design variable for emphasizing the goodness-of-fit in system identi-
fication (Ljung, 1999; Rivera et al., 1992). Assume that true demand is described by a stationary process
pd(z) driven by the input signal ud(t) plus some unforecasted component H(z)a(t).

d(t) = pd(z)ud(t)+H(z)a(t) (4)

For the purposes of this analysis, the input signal ud(t) is known; in a univariate case this signal can be
reconstructed using a two-stage approach (Stoica and Moses, 1997). In practical applications, the input
signal could represent variables that influence demand such as interest rates, seasonal changes, and per
capita income. Our goal is to find a demand model p̃d(z) that describes the true process pd(z). For the
purposes of this analysis the demand is defined as the sum of the contributions from the transfer function
p̃d(z) and a noise model p̃e(z).

d(t) = p̃d(z)ud(t)+ p̃ee(t) (5)
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The forecast error, eF(t) is defined as the difference between the actual and forecasted customer demand,
as shown in Eqn. 6.

eF(t) = d(t)− d̃(t) = d(t)− p̃d(z)ud(t) = p̃ee(t) (6)

e(t) is the one-step ahead prediction error; if p̃e = 1 then e(t) = eF(t). The system identification problem
then involves minimizing the squared sum of the filtered one-step ahead prediction error, where L(z) is the
prefilter,

min
p̃d

V = min
p̃d

N

∑
t=1

[L(z)e(t)]2 = min
p̃d

N

∑
t=1

e2
L(t) (7)

and the filtered prediction error is comprised of:

eL(t) =
L(z)
p̃e(z)

[(pd(z)− p̃d(z))ud(t)+H(z)a(t)] =
L(z)
p̃e(z)

eF(t) (8)

The application of Parseval’s theorem allows an analysis of the problem in the frequency domain.

lim
N→∞

1
N

N

∑
t=1

e2
L(t) =

1
2π

∫
π

−π

∣∣∣∣ L(e jω)
p̃e(e jω)

∣∣∣∣2

ΦeF (ω)dω (9)

where

ΦeF (ω) =
∣∣pd(e jω)− p̃d(e jω)

∣∣2
Φud(ω)+

∣∣H(e jω)
∣∣2

Φa(ω) (10)

From Eqn. 9 we know that we can use L(z) to provide user-defined emphasis, although it is important to
note that the noise model p̃e(z) will also act to emphasize certain frequency regimes. The user choice of
an Output Error structure results in p̃e(z) = 1, eliminating the bias introduced by the noise model.

Our goal is to obtain estimates p̃d(z) of the true demand process pd(z) with emphasis in the frequencies
of interest defined by the control-relevant prefilter L(z). Emphasis can be applied for the purpose of either
decreasing inventory deviations from a setpoint r(t), starts variance, or some weighted combination of
both. First, the time-domain relationships and corresponding power spectra for the control error and
factory starts change signals are defined: as

ec(t) = y(t)− r(t) = Lec(z)eF(t) (11)
∆u(t) = (1− z−1)u(t) = L∆u(z)eF(t) (12)

Φec(ω) = |Lec(e
jω)|2ΦeF (ω) (13)

Φ∆u(ω) = |L∆u(e jω)|2ΦeF (ω) (14)

where Lec(z) and L∆u(z) are the transfer functions relating forecast error to inventory deviations and starts
changes, obtained using the nonparametric approach described previously. Φec(ω) and Φ∆u(ω) are their
corresponding power spectra.

A supply chain planner may choose to reduce either depending on the cost of inventory deviation,
stockout, or changing a factory setup. In essence, it is desirable to meet the following control objective

min
p̃d ,p̃e

[∫
∞

0
(1− γ)e2

c(t)dt +λ

∫
∞

0
γ∆u2(t)dt

]
(15)

where γ is used as a weight to emphasize either inventory deviation from setpoint (γ = 0) or factory
starts variance (γ = 1). The user-adjustable parameter λ is used to keep the variances of the two signals
equivalent.
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Rearranging Eqn. 15 and applying Parseval’s theorem results in Eqn. 16, which allows for the analysis
to be conducted in the frequency domain. The amplitude ratios represented by Lec and L∆u correspond to
those shown in Figure 5.

min
p̃d ,p̃e

[
(1− γ)

1
2π

∫
π

−π

Φec(ω)dω + γλ
1

2π

∫
π

−π

Φ∆u(ω)dω

]
(16)

Comparing Eqn. 16 with Eqn. 9 leads to the following relationship.

|L(e jω)|2

|p̃e(e jω)|2
ΦeF (ω) = (1− γ)|Lec(e

jω)|2ΦeF (ω)+ γλ |L∆u(e jω)|2ΦeF (ω) (17)

By assuming an output error model structure ( p̃e = 1), the control-relevant prefilter L(z) can be reduced to
the following form.

|L(e jω)|2 = (1− γ)|Lec(e
jω)|2 + γλ |L∆u(e jω)|2 (18)

A curve fitting procedure is then used to obtain an Infinite Impulse Response filter that matches the am-
plitude ratio of the control-relevant prefilter. A standard curve fitting algorithm for rational discrete-time
transfer functions can be used for this purpose, such as the output-error minimizing algorithm as imple-
mented in the MATLAB® function invfreqz.
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4 Case Studies

4.1 Representative Case Study

A representative production/inventory system with an MPC-based tactical decision policy will be used
to quantify the benefits achieved through the use of control-relevant demand modeling. The case study
involves the single node shown in Fig. 1 where the throughput time of the factory (θ ) is 5 days, the yield
is unity, the forecast horizon (θF , which is also the MPC prediction horizon p) is 20 days, the MPC
move optimization horizon (m) is 10 days, and MPC weights for penalizing starts changes and inventory
deviation (Q∆u and Qe) are 5 and 1, respectively. A data set was generated from the true demand process
pd(z) subject to a white noise input in ud(t).

d(t) =
1+ z−1 + z−2

1−0.4z−1 +0.5z−2 ud(t) (19)

In all analyses shown in this paper, the value of the parameter λ will be defined as the ratio of the maximum
squared amplitude ratio values of the control error and starts change transfer functions

λ =
supω |Lec|2

supω |L∆u|2
(20)

For the MPC production/inventory problem described the value of λ is approximately 48.

Figure 7 shows the inventory and factory responses that result when OE-[1 2 1] models of the form

d̂(t) =
b1 + · · ·+bnbz−nb+1

1+ · · ·+ fn f z
−n f

u(t−1)+ e(t) (21)

are obtained from either unfiltered or control-relevant filtered data. The data is tabulated in Table 1. Note
the substantial reduction in inventory variance compared to the case of no filtering for the simulation
where γ = 0, however starts variance increases by a factor of four. When γ = 1 there is a reduction in
starts variance, but inventory variance remains high. Figure 7(d) shows the result for γ = 0.3, where both
the inventory and starts variances are substantially reduced relative to the case where no filtering is applied.
Also note that starts variance is nearly equivalent to the γ = 1 case, but inventory variance is reduced by
40%.

Fig. 8 shows the minimum (or best case) inventory (a) and starts variance (b) that occur when estimat-
ing demand models of varying complexity (1≤ nb ≤ 10 and 0≤ n f ≤ 10). The number of OE parameters
is defined as the sum of nb and n f . Low order models (up to five parameters) obtained from prefiltered data
provide superior performance relative to the classical unfiltered approach. The use of the user-adjustable
parameter γ allows a supply chain planner to reduce inventory or starts variance. It is interesting to note
that when γ is set to an intermediate value, one can achieve a substantial reduction in inventory variance
with only a small corresponding increase in starts variance. This is shown in the case where γ = 0.1 and
nb + n f = 3, the inventory variance is comparable for the γ = 0 case, but starts variance is dramatically
lower. Conversely, a dramatic reduction in starts variance can be attained at the price of increased in-
ventory variance. This is demonstrated in the case where γ = 0.3 and nb + n f = 5. Starts variance for
both filters is approximately 3, but the use of the mixed objective filter allows the inventory variance to be
reduced from 80 to 50.
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OE121, γ = 0.0: Σ(y−r)2 = 32.83 Σ(∆u)2 = 8.04
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OE121, γ = 1: Σ(y−r)2 = 75.66 Σ(∆u)2 = 2.68
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OE121, γ = 0.3: Σ(y−r)2 = 52.16 Σ(∆u)2 = 3.03
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Figure 7: Time series for closed-loop responses of the production/inventory system where the demand
forecast is developed from (a) an OE-[1 2 1] fit to unfiltered data, (b) an OE-[1 2 1] fit to control-relevant
filtered data (γ = 0.0), (c) an OE-[1 2 1] fit to control-relevant filtered data (γ = 1.0), and (d) an OE-[1 2
1] fit to control-relevant filtered data (γ = 0.3).

Filter Type Σ(y− r)2 Σ(∆u)2 Time Series
No Filtering 136.1 3.6 Figure 8(a)

γ = 1.0 75.7 2.7 Figure 8(c)
γ = 0.3 52.2 3.0 Figure 8(d)
γ = 0.1 42.1 3.6 not shown
γ = 0.0 32.8 8.0 Figure 8(b)

Table 1: Results summary of OE121 demand models fit to unfiltered and control-relevant filtered data.
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Figure 8: Lowest inventory variance (a) and starts variance (b) for a variety of estimated OE demand
models. The plot shows the best performance for the group of models defined as having nb+n f parameters.
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Figure 9: Corresponding frequency responses where the demand forecast is developed from an OE-[1 2 1]
fit to unfiltered data and an OE-[1 2 1] fit to control-relevant filtered data obtained from the user defined
weighting function (γ = 0.3).

4.2 Case Study with High-Order Demand Model

For this case study, the true demand model (a 10th order Auto Regressive Moving Average model) is
characterized by unity gain and significant power at high frequencies. The demand model conforms to an
Output Error (OE-[nb n f 1]) structure as shown in Eqn. 21. The amplitude ratios of the actual demand
model, control-relevant prefilter L(e jω), and the resulting OE model fits are shown in Figure 9. The lack
of emphasis in the unfiltered data causes the OE fit to focus on the high frequency spike at approximately
3 radians per second. The control-relevant filter emphasizes the resonant peak while de-emphasizing the
high frequency components of the demand. Consequently, the OE fit to the control-relevant data captures
the dynamics of the true demand spectrum where the closed-loop system is most sensitive to forecast
error. Fig. 10 shows the time-domain responses obtained when OE-[1 2 1] models are developed from
unfiltered and control-relevant filtered data. For this particular low-order model structure the use of the
control-relevant prefilter leads to significantly lower inventory and starts variance.
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OE121, γ = 0.3: Σ(y−r)2 = 13.76 Σ(∆u)2 = 1.78
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Figure 10: Time series where the demand forecast is developed from (a) an OE-[1 2 1] fit to unfiltered data
(Σ(y− r)2 = 203, Σ(∆u)2 = 5) and (b) an OE-[1 2 1] fit to control-relevant filtered data (Σ(y− r)2 = 14,
Σ(∆u)2 = 2) obtained from the user defined weighting function (γ = 0.3).

5 Conclusions

Demand modeling is a critical problem in supply chain management. An analysis of an MPC-based deci-
sion policy associated with inventory control shows that these systems are most responsive to forecast error
in an intermediate frequency bandwidth. With this knowledge, historical demand data can be prefiltered to
emphasize the frequency regimes where the most accuracy is desired, resulting in improved control system
performance. The work also shows that the use of control-relevant prefiltering allows simpler, low-order
models to be used. This results in more efficient computation and greater insight into the most relevant
characteristics associated with customer demand. The formulation of multi-objective control-relevant fil-
ter allows a supply chain planner the flexibility to minimize inventory variance, factory starts variance, or
their weighted combination.

Future work will involve extending the analysis to forecasting problems involving Box-Jenkins-style
approaches (Box et al., 1994), and multivariable demand modeling problems.
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