

Hydrolytic Degradation of Polylactide and Production of Water-Soluble Hydrolyzate Species

Richard Cairncross

Drexel University Chemical & Biological Engineering Philadelphia, PA 19104 cairncross@drexel.edu Shri Ramaswamy, Danielle Wojdyla & Ulrike Tschirner University of Minnesota Bioproducts & Biosystems Engineering St. Paul, MN 55108 shri@umn.edu

Collaborations / Acknowledgments

- UMN Bioproducts & Biosystems Engineering Dept.
 - Steve Severtson: QCM experiments
 - Lab Support from Bob Seavy
- UMN Food Science & Nutrition Dept.
 - Ted Labuza: DSC, Karl Fisher Titration, Sorption Analysis
 - Gary Reineccius, Katie Koecher, Zhengyu Luo: DVS experiments
- UMN Chemistry Dept.
 - Marc Hillmyer, Nate Lynd: PLA synthesis and modification
- Natureworks LLC Ryan O'Connor
- Masscal Corp.
 - Allan Smith and Fletcher Smith: QCM/HCC experiments

Funding:

- USDA Research Strengthening Award: this project was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 2004-35504-14636.
- Seed grant funding from U. Minnesota, *Initiative for Renewable Energy and the Environment (IREE)*
- NatureWorks, LLC

Polylactide (PLA)

- Polylactide (PLA) is an aliphatic polyester polymer derived from lactic acid.
 Controlled stereochemistry of lactides allows flexibility to control physical and mechanical properties.
- Applications of PLA:
- Textile fibers
- Rigid thermoforms
- Food and beverage containers
- Biocompatible medical devices

Conceptual Cycle for PLA from the Farm to a Commodity Plastic and Composting Back to Soil

A Critical Property Limiting PLA Applications is Moisture Permeation

• Why is Moisture Sorption/Transport in PLA Important?

Commercial PLA water bottle buckles due to water loss after storage in warehouse for several months!

PLA bottle loses about 1 g water/week

Mechanics of Moisture Transport in PLA

High MW PLA is Moderately Hydrophobic (absorbs 0.5-1% water)

Hypothesis:

Hydrophilic end groups critical for moisture sorption and transport:

- end groups excluded from crystalline regions of PLA
- # end groups increases
 with degradation

Hypothesis: Hydrophilic end groups critical for moisture sorption and transport

- Observations **Consistent** with Hypothesis
 - Sorption insensitive to crystallinity
 - Sorption increases with degradation
- Observations Inconsistent with Hypothesis
 - Low MW PEP-PLA block co-polymer absorbs only 30% less moisture
 - Sorption in Low MW PLA insensitive to end group composition (similar sorption to high MW PLA)

Degradation of PLA

- Why is Degradation important?
- Controlled Degradability of PLA Products
 - Minimize degradation during use
 - Maximize degradation during waste management (composting)
- Degradation is coupled to moisture sorption/transport

Experimental Methods for Monitoring Degradation of PLA

- Controlled Temp & RH
- Analysis
 - Weighing
 - Acid/Base Titration
 - HPLC & GPC
 - NMR (with D₂O)
 - Sorption Experiments
 - Thermal Mechanical Properties

Degradation of PLA Exposed to Humid Air

- Degradation of PLA in Controlled Environment
- Desiccator placed in oven at given temperature
- Water activity maintained via saturated salt solution in desiccator base
- Conditions studied:

85% RH and 30° C, 65° C and 80° C

Moisture Gain of PLA @ 85% Relative Humidity

Comparison of Changes in Crystallinity at 85%RH Two Temperature Regimes

Degradation of PLA

Figure 10: Degradation of PLA exposed to 85% relative humidity. Changes in molecular weight measured by GPC.

Effect of Degradation on Sorption

Degradation at 60°C

Degradation at 80°C

Degradation Causes Rapid Rise in Sorption

- After Induction Period

Degradation of PLA Immersed in Water

- Two time series of degradation experiments varying degrees of degradation deionized and deuterated water
- Analysis of the hydrolyzate containing the degraded products
 - Weighing
 - Acid/Base Titration
 - HPLC & GPC
 - NMR (with D₂O)

Degradation of PLA – Monitored by Mass Changes & Acid-Base Titration

Change in PLA Molecular Weight (Mn) from GPC

Degradation Reactions in PLA

Hydrolysis degrades PLA

By scission of ester bonds with water

Functional Group Kinetics for PLA Degradation

Analysis of Extent of Random and End Scission Reactions

Degradation of PLA immersed in Water at 80°C

- Random scission increases slightly the first two days -~1% random scission sufficient to more than half the Mn
 - Falling MW without Soluble Products (lactic acid)
 - No change in polymer pellets mass until 2 days
- End Scission Dominates after the first 2 days
 - Falling pH after 2 days
 →Rapid End Scission

Conclusions

- A Critical Property Limiting PLA Applications is Moisture Permeation
- Degradation is Coupled to Moisture Sorption/Transport
- PLA is Moderately Hydrophobic
- Hydrolytic Degradation creates additional hydrolytic sites causing rapid rise in sorption After Induction Period
- Functional Group Kinetics of PLA degradation indicate that end group scission dominates after the first 2 days creating an autocatalytic effect
- Random scission, albeit small (~1%), very active in the first two days causing more than 50% decrease in Mn