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Rotating bioreactors such as the High Aspect Ratio Vessel (HARV) provide a low 

shear and gentle mixing environment, ideal for mammalian cell culture in 3D.  The HARV is 
a cylindrical “disc-shaped” batch culture vessel with no internal moving parts, that rotates 
about a single axis.  Oxygenation is provided by a permeable silicon rubber membrane, 
allowing the diffusion of gases to and from the medium [1].  Cell culture in this bioreactor 
may be carried out using microcarriers and/or encapsulating cells within hydrogel particles. 
In our lab, tissue engineering from Embryonic Stem cells is of interest, and this has been 
implemented by inoculating the vessel with cells that have been previously encapsulated 
within Calcium alginate particles (Figure 1). 
 

 
Figure 1.  Murine Embryonic Stem cells encapsulated within a Calcium alginate bead. 
 

For a single spherical particle suspended in the HARV, it has been shown that 
particle motion may be affected by: density difference between fluid and particle, vessel 
rotation rate, fluid viscosity and particle radius.  Particles denser than the fluid medium 
(heavy) migrate to the wall, whereas particles that are less dense (light) migrate towards 
the vessel’s centre [2].  In this study, a mathematical model describing the motion of a 
single particle has been developed.  The model is 2-dimensional, and takes into account 
weight, buoyancy, drag, and centrifugal forces, and is derived in a rotating frame of 
reference (Figure 2). 
 
Model Development and Results 
 

Consider a 2D model of the HARV in the rotating frame of reference, where the fixed 
coordinate system is denoted by (X, Y), and the rotating coordinate system is denoted by 
(x, y).  (x, y) rotates with angular velocity ω  about an axis perpendicular to x and y, that 



passes through the origin O (Figure 2).  The vessel is completely filled with liquid, and a 
solid spherical particle is suspended within the fluid-filled vessel [3].  

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  A 2D model of a solid spherical particle suspended in a rigidly rotating fluid [3]. 
 

The following assumptions are made: 
• Fluid rotates as a rigid body with an angular velocity ω  throughout the domain 
• Any effect on the flow field caused by particle motion through the fluid is negligible 
• Stokes flow is assumed 
• The fluid is isothermal and Newtonian, with viscosity μ  and density fρ  
• The particle, P, is solid and spherical, with density pρ  and radius a  

 
The forces acting on the particle are summarised in Table 1.  

 
Table 1.  Forces acting on the particle 

Force Expression Details 
Buoyancy 
corrected weight 

*m g  *m  is the buoyancy corrected mass 
given by: *Vρ , where V is particle 
volume, and *

p fρ ρ ρ= −  
Drag fv  v  is particle’s velocity and f  is Stokes 

drag coefficient given by: 6 aπμ , where 
a  is particle radius 

Centrifugal * 2m rω  r  is the particle’s radial position from 
the vessel’s centre 



 
The particle’s equations of motion in each coordinate direction are given by: 
 
 sin( )x Bx Cx D tω+ + =&& &  (1.1) 
 
 cos( )y By Cy D tω+ + =&& &  (1.2) 
 
Where pB f m= , * 2

pC m mω= − , and *
pD m g m= −  

 
Their solution is given by: 
 
 1 1 2 2 1exp( ) exp( ) cos( )x x t x t tλ λ γ ω ϕ= + + −  (1.3) 
 
and  
 1 1 2 2 2exp( ) exp( ) cos( )y y t y t tλ λ γ ω ϕ= + + +  (1.4) 
 
Where 2 2

1 2γ α α= + , ( )1 2 1tanaϕ α α= , and ( )2 1 2ϕ α α= .  The roots of the auxiliary 

equation are 1
C
B

λ ≈ −  and 2 Bλ ≈ − .  For a heavy particle, as t → ∞ , ( )1exp tλ → ∞ , ∴ x  and 

y→ ∞ .  However, if the product 1tλ  is small such that ( ) ( )1 1exp cost tλ γ ω ϕ≈ − , and 

( ) ( )1 2exp cost tλ γ ω ϕ≈ + , then 1 1 1exp( ) cos( )x x t tλ γ ω ϕ→ + − , and 

1 1 2exp( ) sin( )y y t tλ γ ω ϕ→ + + .  For a light particle, ( )1exp tλ  and ( )2exp 0tλ → , 

∴ ( )1cosx tγ ω ϕ→ − , and ( )2siny tγ ω ϕ→ + .   
For cases where the first exponential term doesn’t dominate, the parametric 

equations give a spiral trajectory, where a single revolution of the vessel corresponds to a 
single ring of the spiral traced out by the particle (Figure 3).  For a light particle, as time 
progresses, its trajectory migrates towards the vessel’s centre until finally, it orbits the 
centre.  
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Particle Trajectory in the Rotating Frame under the Influence of Buoyancy 
Corrected Weight, Drag, and Centrifugal Forces
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Operating Conditions:

ω  =2.62 s-1

µ  = 10-3 kg (ms)-1

a  =  500 µm

ρ * = 500 kg m-3

t = 0 s

t = 4.8 s

 
Figure 3.  Particle trajectory. As the particle is heavy, it spirals radially outward towards the 
vessel wall. 
 
 


