AIChE ANNUAL Meeting, 2006 San Francisco

Linking 3-D Electrical Tomography Imaging to Fluid Flow Patterns in an Annular Fixed-Bed Reactor

Hristo Hristov¹, David Stephenson¹, Reginald Mann¹, Gary Bolton² and Hugh Stitt³ 1 School of Chemical Engineering & Analytical Science, University of

Manchester, Manchester M60 1QD UK

2 ITS Ltd, 47 Newton St, Manchester, UK

3Johnson Matthey Catalysts, PO Box 1

r.mann@manchester.ac.uk

VCIPT

3-D Model for Annular Bed Catalytic Reactor

Contents

- Prior experimental work
- Creating a 3D model using networks-of-zones
- Some typical results
 - flow maps
 - -RTD curves
 - theoretical 3D images
- Conclusions

CFD Analysis by Synetix

The University of Manchester

Experimental 3D tomographic images

Response to a pulse injection

The Virtual Centre

NDUSTRIAL PROC TOMOGRAPHY

The University of Manchester

Flow map created from experimental images

MANCHESTER

Velocity vectors from differentiating tomographic fronts

3D network of zones model

Networks-of-zones flow configuration for the annular fixed-bed reactor

The general *i,j,k* zone showing flows and dispersive exchanges

Reactor as 3D network

3-D network-of-zones

VCIPT

The University of Manchester

Inlet flows?

Uniform input flow distribution

Inlet flows?

Inlet flow increases towards the outside

The University of Manchester

Inlet flows?

Zonal flow maps

Inlet flow distribution and zonal flow redistribution rules determine the zonal flow pattern

Software is fully flexible allowing any possibility.

Slice flow map showing preferred flow towards the outside

Zonal flow maps

Slice flow map showing more uniform flow

What do you see at the exit?

Residence time distribution!

Pulse response predictions in 3D

Model predictions composed into tomographic format

VCIPT

The University of Manchester

Exit concentrations for semi-batch injection

VCIPT

MANCHESTER 1824

ANTAL OF CONTRACT

The Virtual Centre for

TOMOGRAPHY

Semi-batch tracer injection for 45 seconds

JM FEASIBILITY STUDY by VCIPT

CONCLUSIONS

- Generalised software has been written to analyse flows and mixing in an annual flow reactor
- The software has in-built flexibility making it useful for "deconstructing" the interior 3D patterns
- The capability has been demonstrated to predict
 - residence time distributions (at the exit)
 - interior concentration fields
- The predictions can be presented in equivalent tomographic
 3D formats using see-through solid-body qraphics

VCIPT