316ag An Axisymmetric Single-Path Model for Reactive Gas Transport and Uptake in the Conducting Airways

Srinath Madasu, James Ultman, and Ali Borhan. The Pennsylvania State University, Department of Chemical Engineering, University Park, PA 16802

An axisymmetric single-path model (ASPM) for gas transport in the lower airways is developed and validated. A single airway path is represented by a series of straight tube segments interconnected by leaky transition regions that provide for flow loss at the airway bifurcations. The finite element method is used to solve the Navier-Stokes, continuity, and species convective-diffusion equations for the flow field and the species concentration distribution in the airways. The model is validated by comparing its predictions to the following experimental measurements: 1) dispersion coefficients for unsteady dispersion of an inhaled pulse of inert gas (benzene) along an airway path encompassing five generations in a scaled-up model of Weibel's symmetric airway geometry, and 2) mass transfer coefficients for steady inspiratory-directed flow of a reactive gas (formaldehyde) in both a single bifurcation and an airway path incorporating three generations of a symmetrically-branched physical model of the airways. For the latter problem, ASPM predictions are also compared with the results of three-dimensional finite element computations in the branched airway geometry. The ASPM results for the dispersion and mass transfer coefficients compare quantitatively well with both the experimental measurements and three-dimensional simulations.