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1. Introduction 
Previous work has suggested that localized extension of the vortex lines in the 
upstream daughter tube is responsible for the generation of vorticities in the grand-
daughter tubes [1]. This indicated that it may be possible to have a simple physical 
explanation for the secondary flow structures in the grand-daughter tubes.  
 
The purpose of this work is to make use of simple conceptual ideas in order to 
rationalize the vorticity generation and transport that is occurring in the daughter tubes 
of a double bifurcation model. This provides the groundwork for the eventual 
understanding of how transient effects can influence the nature of such flows. 
 
 
2. Scaling Laws 
We first begin with the vorticity transport equation. 
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For steady state analysis, we can neglect the temporal term, and that leaves us with the 
remaining three other terms to work on. Even though there are three scalar component 
equations of the vorticity transport vector equation (1), we can think of the flow as 
consisting of the main flow along of the axis of the tube (axial component) and the 
secondary flow perpendicular to the axis (secondary component), which we denote as x 
and y respectively.  
 
In this way, the convective term in the axial and secondary directions can be written as 

y
v

x
u xx

∂
∂

+
∂

∂ ωω
   

y
v

x
u yy

∂
∂

+
∂

∂ ωω
  (2) 

where u and v are the components of the velocity vector in the axial (x) and secondary 
(y) directions; and ωx and ωy are the respective components of the vorticity vector. 
 
Similarly, the vortex stretching term can be written as 
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And finally, the viscous term can be written as 
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where ν is the kinematic viscosity of the fluid. 
 
 
 
 
 
 
 



Notations used: 
 
Cartesian coordinates for symmetric-planar bifurcation model  (see Fig. 1) 
x refers to the axial component of the daughter tube (x = x’); 
y refers to the component orthogonal to both the axial component and bifurcation axis; 
z refers to the component parallel to the bifurcation axis; 
U is the velocity scale for the axial velocity u; 
V is the velocity scale for the secondary velocity v; 
L is the length of the DT; 
a is the radius of the DT; 
R is the radius of curvature; 
θ is the half-bifurcation angle; 
 

 
 

Fig. 1 Schematic Diagram of Planar Symmetric Bifurcation Model in Top-down 
view (Left) and Cartesian Coordinates used (Right) 

 
 
If the axial component of the vorticity is the sole consideration, the inertial term can be 
estimated as 
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And the viscous term can be scaled as 
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Where δ is an unspecified viscous length-scale (or boundary layer thickness) 
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Consider the secondary flow problem. Based on what was previously observed in the 
numerical simulation, the vortex line (or ring) is distorted and stretched by the 
secondary flow as shown in the schematic diagram below in Fig. 2. This in turn led to 
an increase in the vorticities along the vortex line with respect to the grand-daughter 
tubes. 

 
Fig. 2 (Left) Schematic Diagram of Vortex Line in Cross-section of DT.  

(Right) Same Vortex Line at an arbitrary distance L downstream. 
Dashed lines are secondary flow streamlines. Bold lines are vortex lines. 

 
Hence, in the absence of secondary flow, there is no stretching of the vortex line in the 
cross-section of DT. In the case of the bifurcation geometry, the secondary flow is 
generated by the centrifugal acceleration, which is caused by the fluid having to 
negotiate a curvature to reach the daughter tube. Hence, secondary flow is insignificant 
without centrifugal acceleration (it is assumed that displacement effect caused by new 
intervening wall surface at the carinal ridge is negligible). 
 
The secondary flow equation of motion and the order of magnitude estimates are then 
specified in the following manner: 
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Since the scales for the convective and viscous terms (7, 9) are functionally dependent 
on V, a hypothetical scaling argument can be made about the centrifugal acceleration 
term, in an analogous way as [2]. It is in fact balanced by the dominant term from the 
remaining three other terms (7) and (9). 

X = 0 X = L 

Vortex line 

Inner 
wall 

Inner 
wall 

Outer 
wall 

Outer 
wall 

Vortex line 



Two key parameters are identified, namely ⎟
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is used to scale the secondary flow. As a result, three separate transport regimes (axial 
convective, radial convective and viscous) are demarcated as shown in Fig. 3 below. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Schematic Diagram of Flow Regimes Based on Scaling Arguments 

(Vorticity transport equation for secondary vorticity) 
 
 
With the general scaling laws at hand, more specific cases can be examined. Two 
separate cases are presented here: 
 
 
3. Case One: Pure Convective-Diffusive Transport 
In this assumed case, the generation of secondary vorticity occurs instantaneously over 
a very short time-scale, so that the secondary vorticity generation profile resembles a 
Dirac delta. This allows us to neglect the vortex stretching term from the vorticity 
transport equation (since the bulk of the transport is convective-diffusive). The 
simplification is substantial because vorticity only enters the problem as a transportable 
scalar quantity to be specified as an initial condition. 
 
 
Taking the curl of the momentum equation and simplifying, 
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The boundary conditions for the secondary vorticity yω are 
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The first boundary condition (11) is based on the condition of null shear stress at the 
plane of symmetry (z = 0). The second boundary condition (12) requires the assumption 
that the boundary layer thickness of the upper wall is thin ( av <<δ ), so that the 
stationary point of the velocity profile ( 0/ =∂∂ zu ) is positioned at az ≅ , where 

az ≤≤0 . The last boundary condition (13) is an entrance condition and also the upper 
limit of the vorticity without further vortex stretching along Lx ≤≤0 . 
 
The solution obtained (via FFT) is 
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where the variables on overbars indicate that they have been rendered dimensionless 
via 

( )Uayy /ωω = , Lxx /=  and azz /=  
 
 
4. Case Two: Generation of Secondary Vorticity and Convective Transport 
In the attempt to resolve the convective-diffusive development of secondary through 
analytical means, the generation process of secondary vorticity has been neglected in 
Case One. An attempt is made here to rationalize the generation of secondary vorticity 
in the daughter tubes 
 
How is secondary vorticity generated in the daughter tube? As previously mentioned, 
the pair of counter-rotating vortical secondary flow structure found in daughter tubes is 
mainly caused by the centrifugal acceleration of the fluid having to negotiate a segment 
of finite curvature. Although these vortices are predominantly axial in direction, the fluid 
shear distorts and extends the vortex lines along the cross-sectional plane, thus 
increases the secondary vorticity by stretching. 
 
The upper symmetrical half of the cylinder cross-section is now considered as shown in 
Fig. 4. Several assumptions have to be made. First, a characteristic secondary flow 
streamline is defined with the center positioned at the center of the upper half of the 
cross-section, or a distance of  2/' aZ = , where a is the radius of the tube. The 



characteristic minor semi-axis of the ellipse is Z’ and the characteristic major semi-axis 
is Y’, where 2/2'2' aZY == . 
 

 
Fig. 4 Schematic Diagram of Vortex Lines in Cross-section of DT (Left) and the 

characteristic secondary flow streamline (Right) 
 
 
The stretching of vortex line in the y-component is of interest. The ellipse as shown in 
Fig. 4 (Right) can be expressed in polar coordinates as  
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The analysis is restricted to a parametric angle of 2/0 πθ ≤≤ . The time scale 
parameter is defined as Uxt /~  where x is the axial component. The derivative of y with 
respect to time t (in subscripts) is written as 
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Now the angular velocity can be expressed as a function of the secondary velocity 
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Therefore, 
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For this assumed case with negligible viscous effects, the vorticity transport equation is 
simplified in the same way as was shown in Case One. 
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It is assumed that the radius of curvature depends weakly on x. For the case of 0→θ  
which occurs near the bifurcation point 0→x , eqn (16) simplifies to 
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which implies exponential dependence of the secondary vorticity on early axial distance. 
 
On the other hand, for 2/πθ →  which occurs at some unknown axial distance x = L’, 
eqn (16) simplifies to 
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which indicates that the rate of vortex stretching tends to zero at that point. 
 
5. Conclusion 
From the earlier arguments, it is recognized that in the absence of viscous effects, a plot 
of secondary vorticity as a function of axial distance in fact suggests a sigmoidal trend, 
i.e. an early exponential growth (22) followed by decreasing growth rates and eventually 
a stationary point (23).  
 
Subsequently, at larger values of axial distance x, vorticity generation due to vortex 
stretching becomes insignificant and the viscous effects become dominant (14). In this 
case, the earlier presented result for Case 1 applies. Numerical simulation through the 
solution of the momentum equations has shown qualitative agreement with the 
predicted trends. 
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