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Abstract 
 
In the previous work our research group introduced an exact solution 
to the Hammerstein system and is known as H-BEST (Hammerstein Block-
Oriented Exact Solution Technique). It was later expanded to multiple 
input, multiple output (MIMO) Hammerstein and Wiener (W-BEST) systems. 
This work is extends this approach to more complicated block-oriented 
systems, namely a Hammerstein-Wiener process. By exploiting a closed 
form solution, the proposed method has the major advantages of being 
simple to build and implement the model, and does not require a 
complex algorithm or solution to a difficult optimization problem. The 
method is evaluated and compared to another method. With a slower 
sampling rate, the proposed method is shown to provide a higher level 
of predictive accuracy.  
 
 

I. Introduction 

A continuous-time method, which results in a “ grey-box ” or semi-
empirical modeling has been first proposed by Rollins et al.1 by 
introducing an exact solution to the Hammerstein system and it is 
known as H-BEST (Hammerstein Block-Oriented Exact Solution Technique). 
Rollins et al.2 and Bhandari and Rollins3 extended this work into 
multiple input, multiple output (MIMO) Hammerstein and Wiener system 
(W-BEST), respectively. Because of the limitation of the proposed 
solutions, another algorithm is also developed to give a more accurate 
prediction to the process and a detail explanation can be found in 
Chin et al.5 In order to widen the scope of “BEST ”, the work here is 
to extent and apply it to a more complicated block-oriented system, 
namely a Hammerstein-Wiener process.   

According to Brillinger6, Greblicki and Pawlak7, Pearson and 
Ogunnaike8, Hammerstein-Wiener process is a type of a general 
“ sandwich model ” and in this case the linear dynamic block is 
“ sandwiched ” between two static nonlinearities models as shown in 
Figure 1. Thus, both Hammerstein and Wiener process are special cases 
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of this general model. The work done on system identification for 
Hammerstein-Wiener system can be found in the literatures.9-15 For 
example, Bai9 proposed a two-stage identification approach by first 
making assumptions of the model structure, then estimating an 
oversized parameter vector and finally using singular vector 
decomposition to reduce its dimension. He later improved his method by 
using a general structure of the nonlinearities instead and calling 
this a blind approach.10 However, the output nonlinear static function 
has to be an invertible function. This is also the key assumption for 
the case for Bloemen et al.11, Zhu12, Crama and Schoukens13, Lee et al.14 
and Park et al.4. Bolkvadze 15 applied recursive identification method 
in the context of stochastic systems but it was limited to discrete 
model.  

 

 

 

 

 

Figure 1. Description of a single input, single output Hammerstein-
Wiener process. 

But because of the nature of BEST method, one will not need to make 
any assumptions of the model structures and also not limited to using 
invertible nonlinear static functions. Thus, this work here presents 
the application of BEST to Hammerstein-Wiener process. In order to 
show its superiority, the case studies from Park et al.4 will be re-
simulated so that comparison can be made between their method and the 
BEST method but only one case study will be presented here due to 
space limitation.  Also, not many of the work done in this area had 
dealt with MIMO case except for Bloemen et al.11 and Lee et al.14. 
Bloemen et al.11 presented an example of two parallel SISO Hammerstein-
Wiener system which they considered as a MIMO case. In Lee et al.14, 
even though they included MIMO problem in the scope of work, the 
assumption of invertiblity is still very crucial in their method. 
Therefore the main advantage of BEST is that not only it is not 
restricted to using invertible nonlinear static functions but it can 
easily be extended to MIMO case. So this paper is organized as 
follows. In the next section (Section II), an overview of BEST is 
given followed by its extension to the Wiener-Hammerstein process. In 
Section IV, a brief summary of the method introduced by Park et al.4 
will be given and Section V consist of one study case in order to 
illustrate the application of the proposed method as well as to 
compare to method by Park et al.4. Finally, concluding remarks will be 
presented in Section VI.    

 

II. OVERVIEW OF BEST 

 BEST is a comprehensive model building approach that utilizes 
Statistical Design Of Experiment (SDOE) to provide optimal and 
complete information, uses a two-stage identification procedure, and 
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exploits an exact solution to both Hammerstein and Wiener system. The 
SDOE not only serves as an optimal experimental design method that 
maximizes information but it also provides the necessary information 
to accurately estimate all the parameters3. This can be done because 
the static nonlinear block can be modeled separately from the dynamic 
block.  

 In the presence of noise, the measurement model used for the 
scope of this work is presented below: 

  yi(t) = ηi(t )+ εi(t)         
(1) 

where  

    
εi(t) ~ N 0,  σ i

2( )  ∀  i         

(2) 

yi(t) is the measurement of output i taken at time t, and εi(t) is the 
corresponding error term, with the covariance of εi(t) and εi(t) equal 
to zero for i ≠ j. For the exact solutions to these systems, the 
authors1-3,5 have developed 3 different solutions based on different 
conditions and only one will be used in this paper. For a Wiener 
system with no restrictions on the input vector upx1(t), a general 
solution known as the classical algorithm (CA) can be expressed as3  

  η i(t ) = fi vi(t )[ ],                 j = 1,  ...,  q        

(3) 

    
vij = L−1 Gij(s)⋅Uj(s){ },     i= 1, ....,  p                                          (4) 

where L-1 is the inverse Laplace transform operator.  

The development of these solutions enables one to do system 
identification for Hammerstein and Wiener processes. The specific 
steps for model building are as follow:2 

1. Determine the statistical experimental design 

2. Run the experimental design as a series of step tests, allowing 
steady state to occur after each change and collecting the data 
dynamically over time. 

3. Use the steady state data to determine the nonlinear static 
function, f(u). 

4. Use all data to determine the dynamic function. 

For a Hammerstein-Wiener system (refer to Figure 1), the classical 
solution written in terms of matrix variable, is given in the 
following equations 

  V = f(U)         
(5) 

      
Z = L−1 G(s)⋅ V(s){ }         

(6) 
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  H = h(Z)         
(7) 

The steps for the model building in Hammerstein-Wiener system will be 
explained in the next section. 

 

III. MODELING APPROACH 

 In Wiener (or Hammerstein) process, the nonlinear static function 
can be modeled separately from the linear dynamic model because as the 
process reach steady state the following equation is true. 

 ui(t) = vij t()        

(8) 

when gij(t) ≈ 1. Therefore, 

    
ηi t()= fi vij t()( )= fi ui t()( )        

(9) 

This concept is then applied to the Hammerstein-Wiener process. 
Therefore when the process reach approximately steady state, base on 
Figure 1, equations (9) and (10) are true because g(t) ≈ 1. 

  f(u(t))= v(t) = z(t)         
(10) 

when gij(t) ≈ 1. Therefore, 

  
η t()= h z t()( )         

(11) 

In order to obtain the estimates of these equations, a proposed method 
is to minimize the sum of square error (SSE) (as given in equation 
(11)) by directly estimating f(u(t)), h(z(t)) and g(t) simultaneously. 

SSE = yi
∞ − ˆ η i

∞( )2

steady state data

 + yi − ˆ η i( )2

all data

                                            (12) 

yi and yi
∞ is the true response and true response at steady state, 

respectively. ˆ η i and ˆ η i
∞ is the predicted response produce by BEST and 

the predicted response produce by BEST at steady state, respectively. 
Unlike the current method where the steady state model and the dynamic 
model are done in two stages, these two models have to be estimated 
simultaneously. The reason is because even though f(u) describe the 
steady state behavior, h(z) no longer only does that but also include 
the dynamic behavior. This is due to the fact that h(z) comes from z 
which describes the dynamic structure of the Hammerstein-Wiener 
system. Therefore the steps for model building for Hammerstein-Wiener 
system need to be modified from the original approach and is given as 
bellow: 

1. Determine the statistical experimental design 
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2. Run the experimental design as a series of step tests, allowing 
steady state to occur after each change and collecting the data 
dynamically over time. 

3. Use the steady state data to determine the nonlinear static 
functions and use all data to determine the dynamic function, 
simultaneously. 

 

IV. METHOD BY PARK ET AL. 

 Because of the non-convergence, high computational time of a 
multidimensional nonlinear optimization problem (unless using the 
right initial values), Park et al.4 proposed three special input tests 
signals that enable Hammerstein-Wiener process to be estimated 
sequentially and we will use PSL as the abbreviation for their method. 
Each step involves at most solving one-dimensional problem which makes 
it a simpler problem. Two of the three test signals are of the random 
binary sequence (RBS) (a type of pseudo random sequence design (PRSD)) 
with varying switching time and the third one is of the uniform 
distribution sequence. In our method (BEST), it uses an input change 
sequence in the form of sequential step tests for model development 
derived from the statistical design of experiment (SDOE).  Studies had 
been performed which concluded that SDOE is more superior that PRSD in 
terms of a quantitative measure of information content based on D-
optimality criterion (Rollins et al.15) as well as in a study of a 
continuous stirred-tank reactor (Bhandari and Rollins3). 

 As mentioned earlier, one of the important requirements in this 
method is to assume the output nonlinear static function to be 
strictly monotone and invertible so that it can be estimated first. 
But in BEST such requirement is not necessarily because of the 
simultaneous estimation of all the parameters. Even though it is a 
multidimensional nonlinear optimization problem but because the 
algorithm used are an exact classical solution to the Hammerstein-
Wiener system, only a small number of parameters needed to be 
estimated, therefore it is not difficult to reach a convergence point 
and does not take long to compute. 

 Lastly, PSL method is applicable to both of the continuous-time 
and discrete-time model which is also true for BEST method.  

 

V. COMPARISON STUDIES 

 In order to compare with the method proposed by Park et al.4, 
four different study cases have been performed, three of which are 
taken from the paper and one multiple input, multiple output case but 
only one will be presented here. All of the cases taken from the paper 
were sampled at every 0.01 minutes running at 100 units of time for 
both the design and test data. As part of the design data in their 
method, two of the test signals were running simultaneously from 0 to 
50 minutes and it went from time 0 to 100 minutes. So by using the 
same total amount of the time, our SDOE is to run in length of 150 
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minutes. In all of these cases, we sampled at 1 minute for design data 
and are still able to perform much better than the PSL method. 

 

1. CASE STUDY 1 

The first case study is a fourth order dynamic Hammerstein-Wiener 
process with the exponential input and output nonlinear functions. It 
is a single-input, single output system as described by equations (13) 
to (16). 

  
y(t) = 0.18z(t)+ 0.5 e2.1z(t) −1 ( )        

(13) 

where  

    
z t()=  L-1 G s()V s(){ }        

(14) 

 
G s()= e−s

s4 + 4s3 + 6s2 + 4s + 1
       

(15) 

  
V(s) = 1− e −3u(t)( )

s
       

(16) 

The theoretical process is shown in Figure 2, along with the 
application of the classical solution using the true parameters. Since 
the lines agree exactly, this confirms that the classical solution is 
an exact solution to the Hammerstein-Wiener process. The next step is 
to test how well the proposed method fit this theoretical process 
assuming that the true process in unknown. A variety of the input and 
output nonlinear steady state functions as well as the dynamic 
structures are fitted. The R2 values are given in the Table 1 for each 
fitted model. The same test sequence obtain from Park et al.4 is used 
to see how well the models performance in comparison to theirs. In 
order to estimate the accuracy of the different prediction models 
quantitatively, we used a measure that is called the sum of squared 
prediction error (SSPE), which is defined as  

SSPE = yi t( )− ˆ η i t( )( )2

i=1

N

        

(17) 

where N is the total number of equally spaced sampling points used 
over the testing interval. Park et al.4 used integral of the square 
error (ISE) to quantify its model performance.  

ISE = y t( )− ˆ y t( )( )2  dt        

(18) 

By writing ISE in a discrete form,  



 7

ISE ≈ yi t( )− ˆ y i t( )( )2
 Δt

i=1

N

        

(19) 

where Δt is the width of the interval time. The ˆ y i t( )in the above 

equation is equivalent to ˆ η i t( ) in our definition of SSPE. Therefore, 
under the same sampling time (i.e. same dt value), ISE = SSPE ⋅ dt. The 
values of SSPE and ISE are computed under the estimated models and are 
given Table 2 where FOCPD, TOCPD, TOOPD, SOCPD, SOOPD are 
abbreviations of fourth order critical plus dead time, third order 
critical plus dead time, third order overdamped plus dead time, second 
order critical plus dead time and second order overdamped plus dead 
time, respectively and θ is the dead time.  

 
Table 1. R2 values for the different fitted nonlinear static models 

and dynamic models for case study 1 
Dynamic models Nonlinear 

static 
functions 

FOCPD 
(θ=1) 

TOCPD 
(θ=2) 

TOOPD 
(θ=1.5) 

SOCPD 
(θ=3) 

SOOPD 
(θ=2) 

5th order 0.99997* 
 

0.9993 
 

0.9999* 
 

0.9926 
 

0.9995* 
 

4th order 0.9995* 
 

 0.9995* 
 

  

3rd order 0.9940 
 

 0.9966 
 

  

* Values that are higher than those obtained by Park et al.4 
 
The authors in Park et al.4 chose a fifth order polynomial for both 
the nonlinear static functions and a third order plus time delay 
(θ=1.496) for the linear dynamic structure with R2 value of 0.9992 and 
the model validation shows an ISE value of 0.2945. For the best 
accuracy, BEST produces a 0.99997 R2 value under a FOCPD dynamic model 
and fifth order polynomial static nonlinear functions with ISE value 
of 0.0104 for the test sequence. Even for a simpler dynamic model or a 
lower order nonlinear static functions, BEST is still able to perform 
better than PSL method. Compare BEST TOOPD with PSL fitted model, 
BEST’s R2 value is higher and ISE value for the test sequence is 17% 
of their fitted model’s ISE value which shows the superiority of our 
method.  

Table 2. SSPE (the top values) and ISE (the bottom values) values for 
the different fitted nonlinear static models and dynamic models for 

the test sequence in case study 1 
Dynamic models Nonlinear 

static 
functions 

FOCPD 
(θ=1) 

TOCPD 
(θ=2) 

TOOPD 
(θ=1.5) 

SOCPD 
(θ=3) 

SOOPD 
(θ=2) 

5th order 1.037* 
(0.0104) 

53.430 
(0.5343) 

5.0783* 
(0.0508) 

287.27 
(2.873) 

28.8205* 
(0.2882) 

4th order 4.6160* 
(0.0462) 

 11.4604*
(0.1146) 
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3rd order 65.164 
(0.6516) 

 221.001 
(2.21) 

  

* Values that are lower than those obtained by Park et al.4 
 

 

 

 

 

 

 

 

 

Figure 2. (a) Step input changes used for identification of BEST 
model. (b) Comparison of the theoretical (i.e. true) solution with 

the classical solutions for a Hammerstein-Wiener system with a 
sequence of step input changes. 

 

V. CLOSING REMARKS 

 The work here is to extent the existing BEST method to a 
Hammerstein-Wiener process, a more intricate block-oriented system.  A 
proposed estimation method to this system is to simultaneously 
estimate all of the parameters which include all of the nonlinear 
static and dynamic parameters. Because this is a semi-empirical 
technique, the numbers of parameters are in the reasonable numbers, 
therefore it is not difficult to reach a convergence point. Its higher 
performance can be seen in the example shown. Also unlike the PSL 
method where the output nonlinear static function has to be strictly 
monotone and invertible so that it can be estimated first, BEST has no 
such requirement. Finally, BEST incorporation with as SDOE allows the 
user obtain more accurate information content in order to do parameter 
estimation.16 
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Figure 3. (a) Input test sequence for case study 1. (b) Comparison 
of the theoretical (i.e. true) solution with the classical solution 

for a Hammerstein-Wiener system using the estimated fifth order 
polynomial nonlinear static functions and a fourth order dynamic 

structures with time delay. 
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