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Abstract 
 

In the particulate design for dry powder inhalation (DPI), drug particles are 
required to have a good flowability in handling and dispersibility when delivering 
the drug to lung in order to treat effectively the pulmonary and systemic diseases. 
In this study, a simple preparation process of drug particles for DPI has been 
developed by using a novel supercritical carbon dioxide freeze granulation based 
on rapid expansion of supercritical solutions (RESS process). When a drug 
dissolved into supercritical carbon dioxide is sprayed through a nozzle into 
atomosphere, frozen carbon dioxide lumps are generated owing to the rapid 
temperature drop (i.e., Joule-Thomson effect), resulting in the formation of 
agglomerate of fine drug particles. The effect of the operating parameters such as 
temperature and pressure on granule properties was investigated. 
 
1. Introduction 
 

In the pharmaceutical industry, inhalation is a targeting to lungs, which is 
now extensively used in asthma therapy [1]. It is also expected that inhalation can 
be used as a self-medication, in which medical doctors or nurses are not required 
[2]. Dry powder inhalation (DPI) is one of the most promising types of inhalation 
due to its advantages, such as good portability and less environmental load. In this 
system, drug particles can be delivered through the inspiratory flow of the patient. 
The size of drug particles should be designed in the range of 0.3 - 8 µm of 
aerodynamic diameter in order to deliver the drug effectively to the targeting region 
such as bronchi or alveoli [3, 4]. However, it is very difficult to handle such fine 
drug particle due to its strong cohesive force, and also it causes adhesion in 
capsule or inhaler. Therefore, it is very important to prepare the drug particles 
having a good flowability and dispersibility for DPI. 

So far, preparation processes of the drug particle for DPI have been 
proposed such as pressure swing granulation [5] and nano composite granulation 
[6]. However, these processes are relatively complicated, thus it is required to 
develop more simplified one.  

Recently, a rapid expansion of supercritical solutions using supercritical 
fluid (RESS process) has gathered special interest since fine drug particle can be 
easily produced. This process has the following mechanism [7- 10]; material 
dissolved into supercritical fluid (SCF) is sprayed through a nozzle into 



atmosphere with rapidly expansion of its volume and decreasing the density, 
followed by a rapid drop of the solubility. Finally, it leads to generate micronized 
drug particles. Since the precipitation time is incredibly short, the size distribution 
becomes narrow [11, 12]. When CO2 is used as the SCF, dry ice can be easily 
produced due to the rapid drop of temperature of the SCF (i.e., Joule- Thomson 
effect) at higher flow rate. This dry ice agglomerates the precipitated fine drug 
particles.  

In this study, a novel and simple particulate process for DPI has been 
proposed by the supercritical freeze granulation (FG-SCF) utilizing produced dry 
ice in RESS process. In this process, drug particles can be simultaneously 
micronized and granulated. Also, it is expected that obtained granules have soft 
and suitable strength, since dry ice quickly sublimates from granules at room 
temperature and pressure [13]. The effect of the operating parameters on granule 
properties such as granule size distribution and dispersibility was investigated, and 
the mechanism of the granulation was discussed. 

 
2. Experimental 
 
Experimental set-up 

A schematic diagram of the experimental apparatus of FG-SCF is shown 
in Fig. 1. This process consists of SC-CO2 quantitative supply system, vessel (770 
ml), spray nozzle (ID: 4.0 mm) and particle collector. The flow rate of liquefied CO2 
was measured by using a flowmeter, and then the liquefied CO2 was supplied to 
pre-heater using a high pressure pump (NP-AX-15, Nihon seimitsu kagaku Co., 
Ltd). CO2 reached at supercritical state at a given temperature and pressure, and 
SC-CO2 was continuously sprayed through the nozzle under the constant 
temperature and pressure. CO2 could be easily removed from a granule due to the 
subliming of dry ice by the hot air (420K). 
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Figure 1.  Schematic diagram of experimental set-up. (1) CO2 cylinder, 
(2) Cooler, (3) Pump, (4) Flowmeter, (5) Pre-heater, (6) Motor, (7) Heater,
(8) Vessel, (9) Paddle, (10) Nozzle, (11) Vessel, (12) Particle collecter,
(13) Hot air generator, P : Pressure gauge, V : Valve, T : Thermometer. 
 



 
Experimental procedure and operating parameters 

Theophylline (C7H8N4O2, D50: 75.3 µm, ρ: 0.426 g/cm3) [11], which is well 
used as asthma therapy, was used as model drug. D-mannitol (C6H14O6, D50: 33.1 
µm, ρ: 0.467 g/cm3) [14] was also used as an excipient. The charged mass of 
theophylline was 5.0 g, and the weight content, C, of D-mannitol was 0- 50 wt%. 
The liquefied CO2 became supercritical state at a certain temperature (T = 323- 
383 K) and pressure (P = 8- 15 MPa), and theophylline was dissolved in SC-CO2 
by agitating for 20 minutes. The liquefied CO2 was continuously supplied using the 
pump in order to keep constant pressure and temperature in the vessel. The 
SC-CO2, with dissolved theophylline was sprayed, and then the produced 
granules were collected.  
 
Evaluation method 

The granule size (Ferret number diameter) and the degree of circularity 
were measured by the image analyzer (Luzex-FS, Nireco Co., Ltd.). The degree of 
circularity, φ, was calculated by the following equation: 

24 LAπφ =        (1) 

where, A, L show projected area and boundary length of projected image, 
respectively. The discharge rate was defined as the granule flowability. The 
discharge rate, V, was also calculated by the following equation: 

tmV =        (2) 

where, m, t show the mass of granules in a funnel and the discharging time, 
respectively. The funnel is made of polyethylene (bore: 45 mm, foot ID: 5.5 mm, 
foot length: 45 mm). The bulk density, ρ, was measured by using 10 ml 
messzylinder. The dispersibility of granules was evaluated by a cascade impactor 
(AN-200, Tokyo Dylec Co., Ltd.) shown in Fig. 2. First, 20 mg of granules were 
filled into a hydroxy-methylcellulose capsule (Qualicaps Co.,Ltd.), and then 
charged into a inhaler (Jethaler, Hitachi Co., Ltd.). The device was connected with 
the cascade impactor via a throat. The granules were inhaled for 5 seconds on the 
constant pumping rate of 472 ml/s. The cascade impactor has structure that the 
screens of small pore diameter are upheaped in ascending order. Dispersed drug 
particles are collected on each stage depending on the particle size. The collected 
theophylline particles on each stage were dissolved into ethanol, and the 
absorbance of that was measured by using UV spectral photometer (UV-160, 
Shimazu Co., Ltd) at a wavelength 270 nm. Drug deposition ratio was evaluated 
by the mass fraction of fine particle (FPF: 0.3- 8 µm), which corresponds to the 
stages 2- 5. 
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Figure 2.  Schematic diagram of c
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Dispersibility of granules 
The effects of operating parameters on the dispersibility of granules in 

inhalation were shown in Fig. 7. The higher deposition ratio of granule within the 
FPF (stage 2- 5) was obtained under the conditions of lower T and higher P of 
SC-CO2, because the granules could be easily dispersed under those conditions 
due to their larger internal void. It is noteworthy that the deposition ratio of the 
granules prepared by the FG-SCF within FPF was more than twice that of the 
granules obtained by the conventional methods, such as a binderless granulation 
[15]. With an increase in the C, the higher deposition ratio within FPF was 
observed, because the mass of residual granules in capsule and device 
decreased as shown in Fig. 7(c). It was concluded that the adhesion of drug 
particles onto inside wall of the device affected on the deposition ratio within the 
FPF. 

The dispersibility of granules was also evaluated after the treatment of 
anti-electrostatic coating (positive ionic surfactant) onto the inside wall of the 
device (Fig. 8). The deposition ratio within the FPF significantly increased after the 
treatment, while large amount of granules still remained in the device without the 
treatment. These results indicated that the prevention of electrostatic charge 
contributed very much to the improvement of the granule dispersibility.  
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Figure 8.  The effect of electrostatic treatment on deposition ratio. 

4. Conclusions 
 

In this study, a novel and simple production process of drug particles for 
DPI was developed by using supercritical freeze granulation (FG-SF). Conclusions 
are summarized as follows: 
1) The granules prepared under the lower T and higher P of SC-CO2, in which dry 
ices were easily generated, showed a good flowability with large granule size and 
suitable strength. The large void contributed to the higher dispersibility within the 
FPF.   
2) The flowability and dispersibility of granules with containing the excipient were 
improved due to the spherical shape and the decreased cohesive force with an 
increase in the C. In addition, it is also found that the control of electrification of the 
device was very important for the better improvement of the dispersibility.  
3) The mechanism of the FG-SCF was discussed. This granulation method can be 
well used to particulate design for DPI.  
 
5. Notation 
 
C: Mass content of excipient in granules [wt%] 
P: Pressure of SC-CO2    [MPa] 
T: Temperature of SC-CO2   [K] 
D50: Median diameter    [µm] 
σg: Geometric standard deviation  [-] 
ρ: Bulk density     [g/cm3] 
φ: Degree of circularity    [-] 
A: Projected area      [m2] 
L: Boundary length of projected image  [m] 
V: Discharge rate    [g/s] 
m: Mass of filled granules    [g] 
t: Discharging time    [s] 
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