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Abstract 
 

Research has shown that deregulation of the ErbB signaling network can lead to breast 
cancer; however, the precise molecular mechanisms by which specific network abnormalities 
lead to cancer are unclear.  Since spatio-temporal signaling characteristics in multiple cell 
signaling systems have been linked to controlling cell fate, understanding the mechanisms by 
which different ErbB ligands stimulate different spatio-temporal ErbB network signaling may 
lead to a better understanding of how deregulation of the network leads to cancer.  Because 
biological signal transduction networks are complex, dynamic systems, in this work we employ 
quantitative modeling in conjunction with traditional experimental techniques to understand 
network signaling.  To this end, we build a semi-mechanistic, ordinary differential equation 
model that describes how stimulation of all four ErbB receptors with the ligands Epidermal 
Growth Factor (EGF) and Heregulin (HRG) leads to activation of two critical ErbB signaling 
network intermediates, ERK and Akt, in MCF-7 breast cancer cells.  A main simulation result is 
that ErbB2 overexpression, which occurs in ~25% of all breast cancers, may transform 
transient, EGF-induced signaling into sustained signaling.  Experiments and simulations 
indicate that the effect of the ERK cascade inhibitor U0126 is ligand-dependent, having a much 
smaller effect on HRG-induced than EGF-induced ERK activation.  Experiments further imply 
that there may be two U0126-sensitive mechanisms by which ERK is activated, and that the 
contribution of each of these two mechanisms to ERK activation may be ligand-dependent. 
 
Introduction 
 
 The ErbB signaling network comprises multiple extracellular ligands, the four ErbB 
trans-membrane receptors, cytoplasmic adapters, scaffolds, enzymes and small molecules.  
Signaling is initiated when ligand binds to receptor and causes the receptors to homo- or 
heterodimerize.  Receptor dimerization activates the receptor’s tyrosine kinase domain, which 
leads to autophosphorylation of tyrosine residues on receptor cytoplasmic tails.  Multiple 
cytoplasmic adapter, scaffold, and enzymatic proteins are then recruited to the plasma 
membrane by binding to receptor phosphotyrosines.  A complex network of interactions 
between the activated receptors, recruited proteins, and plasma membrane molecules 
eventually culminates in the activation of multiple downstream effectors, including extracellular-
signal regulated kinase (ERK) and protein kinase B/Akt (Akt), which have been implicated in 
control of proliferation and survival, respectively. 

 



Abnormalities within the ErbB signaling network are correlated with the development of 
several cancer types, and multiple pharmaceuticals that target these defects have been used 
successfully [Yarden and Sliwkowski, 2001, Guerin et al., 1988, Hortobagyi, 2001].  For 
example, median patient survival time is improved by administering the ErbB2-targeted, 
monoclonal antibody trastazumab to the 25% of patients whose metastatic breast cancer 
overexpresses the ErbB2 receptor [Hortobagyi, 2001, Zaczek et al., 2005, Robinson et al., 
2006].  Although knowledge of ErbB signaling network defects associated with tumorigenesis 
has led to the development of successful cancer treatments, these targeted pharmaceuticals 
are rarely a “magic bullet”, and there are instances where potentially drug-sensitive cancers do 
not respond and/or develop resistance to treatment [Robinson et al., 2006].  A more detailed 
understanding of the mechanisms by which cancer-correlated network properties cause 
deregulation of the entire ErbB signaling network will provide insight into improving the 
treatment efficacy of these targeted pharmaceuticals. 
 
 Spatio-temporal signaling aspects play a key role in ErbB network control of a cell’s fate; 
different inputs stimulate different activation kinetics, which lead to different cell fates.  For 
example, in AU565 breast cancer cells, stimulation with the ligand Heregulin (HRG) causes 
sustained network activation and leads to differentiation [Lessor et al., 1998], while in PC12 
neuronal cells, stimulation with the ligand Epidermal Growth Factor (EGF) causes transient 
network activation and leads to proliferation [Marshall, 1995].  However, HRG stimulation can 
also lead to proliferation [Weiss et al., 1997].  While it is clear that there is some connection 
between ligand-dependent activation kinetics and cell fate, there are currently no firmly 
established mechanisms that link ligand stimulation with cell fate.  To understand how the 
ErbB signaling network controls a cell’s fate, however, we must first elucidate the mechanisms 
that control ligand-dependent activation kinetics.  Similarly, understanding ligand-dependent 
signaling mechanisms is central to understanding how the ErbB network's deregulation 
contributes to tumorigenesis. 
 
 Because the ErbB signaling system is a highly interconnected, dynamic network 
containing multiple positive and negative feedback loops, it is difficult to predict the response of 
the network solely by qualitative means.  It is becoming increasingly clear that quantitative 
methods are required to understand the mechanisms by which signaling networks function.  
Therefore, in this work we take a combined experimental and computational modeling based 
approach to understanding the ErbB network that was pioneered in the studies of the EGF 
Receptor network by Kholodenko et al. (1999), and expanded upon by the work of Schoeberl 
et al. (2002), Hatakeyama et al. (2003), Blinov et al. (2006), and many others.  This approach 
employs mechanistic, ordinary differential equation (ODE) modeling for simulation in 
combination with quantitative immunoblotting for experimental measurements of signaling 
dynamics. 
 

Mechanistically modeling network entities that contain several sites and domains 
creates a combinatorial explosion of potential species, impeding the development and 
simulation of signaling network models.  For example, a mechanistic description of the ErbB1 
receptor that simultaneously accounts for the ligand binding domain, the dimerization site, the 
kinase domain, and 10 phosphorylation sites requires more than 106 differential equations.  
This phenomenon has been termed combinatorial complexity, and it is a fundamental problem 
in developing mechanistic, differential equation models of signal transduction networks 
[Goldstein et al., 2004; Blinov et al., 2006].  Previous models of ErbB signaling were either 



limited to a single ErbB receptor and ligand [Kholodenko et al., 1999; Schoeberl et al., 2002; 
Hatakeyama et al., 2003] or only account for complexity at the level of ligand binding and 
receptors [Hendriks et al., 2003, Shankaran et al., 2006], since solutions to the problem of 
combinatorial complexity are only beginning to emerge.  To build the model presented in this 
work, we utilize recently developed theory [Borisov et al., 2006] and create novel methods to 
reduce combinatorial complexity.  The result of our approach is a tractable, semi-mechanistic 
model based on well-defined assumptions that incorporates a greater number of ErbB network 
entities than any previous model. 
 
 In the current work, we investigate the short-term (<= 30 minutes) response of the ErbB 
signaling network to stimulation with the ligands EGF and HRG in MCF-7 breast cancer cells, 
with the purpose of elucidating mechanisms that control ligand-dependent activation of the 
proteins ERK and Akt.  We specifically focus on the effects of ErbB2 overexpression and the 
ERK cascade inhibitor U0126 on ligand-dependent signaling phenomena.  Our analyses 
provide evidence that in MCF-7 cells 1) ErbB2 overexpression transforms transient, EGF-
induced signaling into sustained signaling; 2) EGF- and HRG-induced ERK activation have 
different sensitivity to U0126; and 3) ERK may be activated by two U0126-sensitive 
mechanisms, and the amount of ERK activation each mechanism may be responsible for is 
ligand-dependent. 
 
Methods 
 
Cell Culture and Western Blots.  The MCF-7 human breast cancer cell line was obtained from 
American Type Culture Collection (ATCC) and maintained in DMEM (Gibco BRL, Githersburg, 
MD) supplemented with 10 % fetal bovine serum. Prior to growth hormone treatment, the cells 
were serum-starved for 16-24 hours and then EGF (PeproTech House, London, England) or 
HRG-β176-246 (R&D Systems, Inc., Minneapolis, MN) was added. In the case of kinase 
inhibitor treatment (U0126; final concentration 200 nM, AG1478; final concentration; 100 nM; 
from Calbiochem, San Diego, CA), the inhibitors were added prior to 20 min of the growth 
hormone treatment. Cells were incubated with the growth hormone in the presence or absence 
of kinase inhibitors for the indicated period of time and then washed three times with 
phosphate buffered saline (PBS) and lysed with Bio-Plex lysis buffer (Bio-Rad laboratories, 
Hercules, CA).  Cell lysate was cleared by centrifugation, and the protein concentration of the 
supernatant was determined using a protein assay reagent. For detecting the total and 
phosphorylated forms of ERK and Akt, antibodies raised against p44/42 ERK, doubly 
phosphorylated p44/42 ERK, phospho-Akt (Ser473) and Akt (Cell Signaling Technology, Inc., 
Beverly, MA) were used. Anti-phospho-Shc (Tyr317) and anti-Shc antibodies were purchased 
from Upstate Biotechnology (Lake Placid, NY). Anti-phospho-MEK1/2 (Ser217/221) and MEK 
antibodies were purchased from Cell Signaling Technology Cell Signaling Technology, Inc. To 
detect ErbB receptor phosphorylation, the total cell lysate was immunoprecipitated with the 
corresponding ErbB antibodies (Santa Cruz Biotechnology, Santa Cruz, CA), immunoblotted 
with anti-phosphotyrosine antibody (PY20, Santa Cruz Biotechnology), and then reblotted with 
the same antibodies. Protein band intensities were quantified using a densitometer (Fuji Film 
Corp., Japan). Finally, the ratio of phosphorylation to total protein was calculated and 
normalized with the control value as described below. 
 
Model Development.  From the kinetic scheme (Figure 1), which describes the connectivity of 
the reaction network, a deterministic, ordinary differential equation model (ODE) was derived 



using the law of mass action and saturating rate laws to describe the corresponding reactions.  
The rate of change of a species concentration with time (time derivative) is calculated by 
summing all reaction rates that produce this species, and subtracting all reaction rates that 
consume this species.  When a reaction involves species whose concentrations are defined in 
compartments different from where the reaction is taking place, these species' concentrations 
are rescaled to reflect the reaction compartment volume, and the reaction rate is calculated 
based on the rescaled species concentrations.  The species concentrations are rescaled back 
to the reference compartment volume for calculating the rate of change.  The cytoplasm is 
chosen as the reference compartment in this study.  Model equations and parameters are 
available upon request. 
 
Model Fitting & Simulation.  Fitting & simulation were carried out with MATLAB 7.0 on an AMD 
64 Dual Core 2.0 GHz processor computer running CENTOS 4.2 linux (www.centos.org).  
Differential equations were integrated using the function ode15s, which is a variable order 
solver based on the numerical differentiation formulas (NDFs) and is designed for stiff systems.  
Fitting was carried out with the function lsqnonlin, which is a subspace trust region method and 
is based on the interior-reflective Newton method. 
 
Normalization of Experimental Data for Use with the Mathematical Model.  Several 
normalization steps were taken to make quantitative immunoblot data (relative concentrations) 
compatible with data from mathematical models (absolute concentrations).  First, all 
experimental data were divided by their respective loading control intensity.  Second, all data 
collected from the same blot were divided by a normalization point which is chosen to be the 
largest intensity.  This normalization point is chosen in favor of the zero point because there is 
less uncertainty associated with more intense signals (higher signal to noise ratio).  Each blot 
has its own normalization point.  Lastly, the zero point from each blot is subtracted from every 
data point collected from that blot. 
 
Results and Discussion 
 
Computational Model of the ErbB Network  
 
 To help understand ErbB network signaling, we developed a computational model that 
relates EGF and HRG stimulation of the ErbB receptors to activation of ERK and Akt.  The 
kinetic scheme for this model is shown in Figure 1.  It is an ordinary differential equation (ODE) 
model that has two compartments (extracellular and cytoplasm), 85 species, 232 total 
parameters, 58 fit parameters, and 60 (net) reactions.  The model, although complex, is not a 
perfect in silico replica of all processes.  Such a microscopically comprehensive model would 
be impractical to develop, both computationally and experimentally.  The model is developed 
such that the simulations reflect the experimental data measured in this study.  We then use 
results from model simulations to help provide insight into mechanisms that drive the observed 
phenomena.  In this regard, our goals are similar to the goals of those who developed previous 
models of ErbB signaling [Kholodenko et al., 1999; Hatakeyama, 2003; Schoeberl et al., 2002; 
Hendriks et al., 2003; Shankaran et al., 2006].  The overall result of our modeling approach is 
a tractable, semi-mechanistic model based on well-defined assumptions.  However, because it 
is semi-mechanistic, a subset of the parameters and rate laws do not have pure mechanistic 
meaning and are “effective” parameters and rate laws.  Figure 2 shows a comparison of the 
model simulations with the experimental data.  As can be seen, the model shows good 



quantitative and qualitative agreement with the experimental data.  In general, HRG responses 
are both more sustained and more intense than EGF responses, and the model reflects these 
observations. 
 

 
  
 

 
 

Figure 1 (above).  Schematic of the ErbB signaling model.  Double-sided, line-head arrows depict reversible binding reactions.  Single-
sided, solid-head arrows with solid lines depict chemical transformation, while those with dotted lines depict a multi-step chemical reaction 
process.  Single-sided, double solid-head arrows depict summation into a Σ-state.  (A) Ligand binding, receptor dimerization, receptor auto-
phosphorylation, and primary receptor binding.  (B) Membrane recruitment and phosphorylation of intermediate signaling proteins.  Σ-states 
are summations over specific membrane-localized species with identical downstream signaling activity and membrane-anchorage.  (C) PIP3 
mediated Akt activation.  (D) Ras mediated ERK activation.  Abbreviations:  E:  EGF;  H:  HRG; Ei:  ErbBi; EijX:  ErbB homo- or heterodimer 
bound to protein X=S, I, R, or G; G:  Grb2; S:  Shc; I:  PI-3K; O:  SOS;  A: Gab1; R:  RasGAP; RsD:  Ras-GDP; RsT:  Ras-GTP; P2:  PIP2;  P3:  
PIP3; P denotes phosphorylation and * denotes activation. 
 

Figure 2 (left).  ErbB network dynamics.  
Unless otherwise noted, EGF and HRG 
concentration is 10 nM. 
 
Key Modeling Assumptions to 
Reduce Combinatorial 
Complexity 
 
Receptor Dimer Phosphorylation 
and the “Virtual Phosphorylation 
Site”.  Once a receptor dimer is 
formed, it gains tyrosine kinase 
activity and can auto-
phosphorylate on several 

A C

B D



tyrosine residues.  Simultaneously accounting for all these phosphorylation sites results in a 
combinatorial explosion of potential species, thus we represent all auto-phosphorylation sites 
as a single “virtual phosphorylation site” as similar to previous models of ErbB signaling 
[Kholodenko et al., 1999; Hatakeyama, 2003; Schoeberl et al., 2002].  To reduce the model in 
this manner we must assume that either the receptor dimer has all or no tyrosine residues 
phosphorylated.  This assumption may be close to reality if the phosphorylation and 
dephosphorylation steps are fast relative to downstream events.  It is likely that 
phosphorylation is fast, because the receptor cytoplasmic tails, which contain the substrate, 
are tethered to the dimer, which contains the kinase.  Because the tyrosine phosphatases 
SHP2 and PTB-1B are recruited to ErbB receptors and activated in a ligand-dependent fashion 
[Agazie and Hayman, 2003; Liu et al. 1997], it is also likely that dephosphorylation is fast.  
Although the virtual site assumption is not exact, it seems to be a reasonable approximation, 
considering that it allows a significant reduction in model complexity while the simulations 
reflect the experimental data well. 
 
Reducing Membrane Recruitment Complexity:  The Σ-Approximation.  Membrane recruitment 
of signaling proteins to the plasma membrane is an early step of signal propagation through 
the ErbB network, and is critical for signal propagation because it co-localizes key network 
enzymes.  Recruitment is mediated by specific binding reactions between multiple network 
entities, and results in the formation of several large multi-protein complexes.  Accounting for 
the microscopic details of all these large membrane complexes results in a combinatorial 
explosion of potential species, and for our purposes, is unnecessary.  To reduce this 
complexity, we assume that the route by which an entity is recruited to the membrane does not 
affect the signaling action of the recruited protein.  For example, with our assumption it is not 
important whether Grb2 (G) is bound to different receptor dimers or to tyrosine-phosphorylated 
Shc (SP) (the route of membrane recruitment), all that matters is that Grb2 is at the membrane 
such that it can recruit additional downstream proteins (the signaling action).  This assumption 
allows us to reduce model complexity by defining lumped, membrane-localized states (denoted 
by Σ), which are sums over plasma membrane localized proteins that have identical 
downstream signaling action and membrane anchorage.  The Σ-approximation makes the 
membrane recruitment model tractable, but introduces several subtleties into our model that 
can be discussed upon inquiry. 
 
The Model Predicts ErbB2 Overexpression May Modulate Transience of EGF Signaling 
 
 The experimental data in Figure 2 show that while EGF stimulated ERK and Akt 
activation are transient, for HRG they are sustained.  Because different signaling dynamics 
(transient versus sustained) may lead to different biological outcomes [Marshall, 1995] and 
play an instrumental role in cell transformation [Hatakeyama et al, 2004], we used the model to 
investigate which mechanisms may cause signaling to be transient rather than sustained.  
Since ErbB2 overexpression can lead to cell transformation [Di Fiore et al., 1987] we thought 
that it may affect the transience of EGF signaling, so we performed simulations to investigate 
this hypothesis.  As can been seen in Figure 3A, when ErbB2 concentration is increased by a 
factor of 10, the model predicts ERK and Akt responses to EGF become sustained.  This 
implies that overexpression of ErbB2 makes EGF a more potent signal, and may partly explain 
why ErbB2 overexpression commonly facilitates tumorigenesis in breast cancer. 
 Next, we used the model to investigate what mechanisms may be responsible for ErbB2 
overexpression leading to sustained signaling.  We hypothesized that this phenomenon was a 



result of selective internalization and degradation of 1-1 dimers vs. 1-2 dimers.  To test this 
hypothesis, we performed simulations where (1) ErbB2 levels were not perturbed but the 

degradation rate constant for 1-1 dimers 
was set to zero, and (2) ErbB2 was 
overexpressed but the 1-2 heterodimers 
were also allowed to degrade.  As can be 
seen from Figures 3B and C, the 
simulations imply that when 1-1 dimers 
are not degraded, signaling is sustained, 
but additionally, when 1-2 heterodimers 
are degraded, ErbB2 overexpression 
does not lead to sustained signaling.  
Overall, these simulation results imply that 
although there are multiple modes of 
negative feedback, the transience of EGF 
signaling may be due to preferential 
internalization and degradation of 1-1 
dimers, and additionally, that ErbB2 
expression levels can control the 
transience of EGF-induced signaling. 
 
Ligand-Dependent Effects of U0126 
 
 The experimental data in Figure 2 
show that both EGF and HRG induce 
similar peak ERK activation, but the 
magnitude of peak MEK activation is 
much smaller for EGF.  This led us to 
hypothesize that HRG stimulated ERK 
activation would be less sensitive to a 
MEK inhibitor (U0126) than would EGF 
stimulated ERK activation.  We tested this 
hypothesis computationally and 
experimentally, and the results are shown 
in Figure 4.  As can be seen, both the 
experimental data and model simulations 
qualitatively show that EGF stimulated 
ERK activation is more sensitive to U0126 
than HRG stimulated ERK activation.  
However, the model predictions do not 
reflect all aspects of the experimental data.  
The data suggests that there may be two 
U0126-sensitive ERK activation 
mechanisms as indicated by the biphasic, 
decline-flattening-decline shape of the 
dose response; one with high and one 
with low sensitivity to U0126.  The 
experimental data further implies that if 

A 

B 
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Figure 3 (above).  Effect of ErbB2 expression on the transience 
of EGF signaling.  All EGF concentrations are 10 nM.  (A)  Effect of 
ErbB2 10x overexpression on EGF induced ERK activation (left) and 
Akt activation (right).  (B)  Effect of inhibition of ligand induced 1-1 
homodimer degradation on EGF induced ERK activation (left) and 
Akt activation (right).  (C)  Effect of ErbB2 10x overexpression on 
EGF induced Akt activation (left) and ERK activation (right) when 1-2 
heterodimers are degraded at half the rate as 1-1 homodimers. 

Figure 4 (left).  
Comparison of 
simulated and 
experimental U0126 
titration.  ERK 
activity at 5 minutes 
for each ligand is 
normalized to its own 
unperturbed (no 
U0126) value.   



there are two mechanisms, they are used differentially by HRG and EGF. 
 

It is likely that these results are not related to a mechanism of interaction between 
U0126 and MEK, but stem from natural cellular mechanisms present in MCF-7 cells.  This 
statement is supported by studies that show U0126 can be considered a noncompetitive 
inhibitor of MEK, and therefore the MEK catalytic rate is a monotonically decreasing function of 
U0126 concentration, with no inflection point [Favata et al., 1998].  Thus, if there was one 
mechanism by which MEK activates ERK, then increasing U0126 concentration would have a 
monotonic decreasing affect on peak ERK activation, and there would be no inflection point.  
Therefore, it is probable that the observed biphasic effect of U0126 on ERK stems from 
mechanisms independent from the effect of U0126 on MEK. 
 
Conclusions 
 
 In this work we use a combined computational and experimental approach to analyze 
ligand-dependent responses in the ErbB signaling network, and our results give insight into 
how 1) ErbB2 overexpression can lead to ErbB signaling network deregulation; and 2) the 
effect of ErbB signaling network inhibitors can be ligand-dependent.  The results of this study 
and further implementation of our approach can potentially inform 1) the development of new, 
targeted pharmaceuticals for cancer treatment, and 2) strategies to administer these 
pharmaceuticals. 
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