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Abstract 
This paper describes a one-dimensional model for hydrate dissociation in porous media 

by depressurization method. A moving boundary which separates the total simulation zone 
into two zones is used. The convective-conductive heat transfer and mass transfer in the gas 
and hydrate zone together with the energy balance at the moving front are analyzed. The 
system of governing equations is transferred into new coordinate using a coordinate 
transformation method. Then the numerical method of lines is used to discretize the 
governing equations after coordinate transformation. Distributions of temperature and 
pressure for different well pressure and reservoir temperature are presented. It’s shown that 
the speed of the moving front and the gas production rate are sensitive function of the well 
pressure and the reservoir temperature. 

 

1 Introduction 
Natural gas hydrates are solid molecular compounds of water with natural gas and 

there’re large amount of methane gas trapped in hydrate reservoirs (Ahmadi, 2004). Natural 
hydrates occur in two regions: permafrost and under the sea floor. Because the hydrate 
density is smaller than the density of sea water, the hydrate must cement with the sediment 
of the sea floor to be stable (Max, 2006). There’re three main methods to dissociate the 
hydrate: depressurization, inhibitor stimulation and thermal stimulation (Ji, 2001). Makogon 
(1997) proposed a model with analytical solution considering the adiabatic and throttling 
effects of methane gas together with the gas convective energy. Ji (2001) calculated the 
undetermined values in Makogon’s analytical solution and applied it to a given sets of 
reservoirs with different operation parameters. Both Makogon and Ji’s model neglected the 
energy balance at the moving front. Ahmadi (2004) used a more general model with both 
conductive-convective heat transfer and energy balance at the moving front. We followed 
Ahmadi (2004)’s approach and modified the governing equations to account for the water 
movement. 

 

2 Hydrate dissociation model 
 Depending on the physical property of the hydrate reservoir, the gas hydrate may exist 
by itself or coexist with the pressurized gas. We simulated the case that a well is drilled into a 
hydrate reservoir coexists with methane gas. Depressurization method is used to dissociate 
the methane hydrate. The depressurization method is the least expensive method of hydrate 
dissociation and most feasible when the gas hydrate-bearing sands have a large free gas 
(Max, 2006). 
The hydrate decomposition model may be expressed as: 
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The hydrate will decompose into methane gas and water when the pressure decreases or 
the temperature rises. 

 
Figure 1 Schematic model for one-dimensional hydrate dissociation in porous media 

We assumed that a reservoir of hydrate coexists with gas as shown in Figure 1. Initially, the 

gas and hydrate coexist at pressure of eP (reservoir pressure) and at temperature of 

eT (reservoir temperature). eP  is higher than the thermodynamic equilibrium pressure of 

hydrate at eT . As soon as a well is drilled into the reservoir and the well pressure is 

decreased less than the thermodynamic equilibrium pressure for hydrate at the reservoir 

temperature eT , the hydrate will be unstable and begin to dissociate into water and gas near 

the well. We also assumed that the hydrates dissociate in a small region which is viewed as 
a moving front. This front separates the entire reservoir into two regions; the dissociated 
region consists of sand, gas and water and the undissociated region consists of sand, gas 
and hydrate. The moving front will expand as time passed. The natural gas moves toward 
the well due to the pressure gradient. 
 

3 Governing equations 

 Our model is similar to Ahmadi (2004)’s model and we modified the equations to include 
the two phase flow in gas zone while water phase was assumed stationary in Ahmadi’s 
model. We used the concept of relative permeability for the two phase flow. A total length of 
L=100m of hydrate reservoir is simulated in present model. 
Continuity equation for water in zone 1: 
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Darcy’s law for water velocity in zone 1: 
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Here abswΚ  is the absolute permeability for water of the porous media. rwΚ  is the relative 

permeability of water which is a function of the water saturation (Corey, 1994). φ  is the 

porosity of the porous media and is assumed to be constant during hydrate dissociation. α  

is water saturation and is a variable. wρ is the constant water density. wμ  is the viscosity of 

water and is assumed to be constant.  
Continuity equation for gas in zone 1: 
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Darcy’s law for gas velocity in zone 1: 

 

( )

1
1

4( ) 1

absg rg g
g

g

rg rg

P
U

x

f

μ

α α

Κ Κ ∂
= −

∂

Κ = = −

 (4) 

Here gμ  is the viscosity of gas and is assumed to be constant during the hydrate 

dissociation. rgΚ  is the relative permeability of gas in zone 1 which is a function of the water 

saturation (Corey,1994). 
In equations (2) and(4), the gas pressure and the water pressure is related by 

 1 ( )c g w cP P P f α= − =  (5) 

In our simulation, the capillary pressure is assumed to be negligible because the value for 
capillary pressure is relatively small compared to the reservoir pressure.  
Energy conservation equation in zone 1 may be written as: 
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Here 11 paveave Cρ  is the product of the averaged density and averaged heat capacity in zone 1. 

1avek  is the averaged heat conductivity.  

Continuity equation for gas in zone 2: 

 ( ) ( )2 221 0g gg U
t x

ρρ
φ β

∂∂
− + =

∂ ∂
 (7) 

Darcy’s law for velocity in zone 2: 
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Here β is saturation of hydrate in zone 2. ( )effectivef β  is a function of β  considering the 

coefficient for the effective permeability in zone 2 due to the existence of hydrate. 
Energy conservation equation in zone 2 may be written as: 
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Here 2 2ave paveCρ  is the product of the averaged density and averaged heat capacity in zone 2. 

2avek  is the averaged heat conductivity in zone 2.  

Mass balance for gas at the moving front: 
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Energy balance at the moving front: 
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Here S is the location of the moving front which is a function of time. HΔ is the latent heat for 

hydrate dissociation and is assumed to be constant kgkJ /458 (Kang, 2001). The latent heat 

for ice is kgkJ /6.333 (CRC, 2005). In methane hydrate, the mass fraction of water is about 

87 percent. So the latent heat of hydrate and ice should have the same order of magnitude. 
Thermodynamic equilibrium equation between the gas and the hydrate at the front: 

 ( ) ( ) ( )210log 0.0342 273.15 0.0005 273.15 6.4804D D DP T T= − + − +  (12) 

Equation of gas density: 
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Here M is the molecular weight of methane and R is the universal gas constant. The 
compressibility z was calculated using the Redlich/Kwong equation of state (Smith, 1996). 
The calculated value of z is 0.8838 at pressure of 6MPa and temperature of 287K. Although 
the compressibility z is actually a function of temperature and pressure, we assumed that the 
compressibility is constant during our simulation for simplicity. 
The boundary condition for the water saturation at the moving front is  

 ( )1w D hρ φα ε ρ φβ= −  (14) 

Finally, the initial and boundary conditions are listed below: 
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Here wellP is the gas pressure at the well. rP is the gas pressure of the reservoir. rT is the 

temperature of the reservoir. DP  and DT  are the pressure and temperature at the moving 

front respectively. The location of the moving front ( )S t is only a function of time and its initial 

position is at the well. We transferred the partial differential equations (PDEs) into a new 
coordinate system so that the moving front is fixed. We then transferred these PDEs to 
ordinary differential equations (ODEs) using method of lines (Schiesser, 1991). The 
equations were discretized in space only and kept continuous in time. Our governing 
equations are stiff and we used MATLAB function ODE15s for stiff problem as the ODE 
solver to solve our ODEs we got after the coordinate transformation. During the 
discretization, center difference for pressure term and upwind difference for temperature 
techniques were used to avoid instability. 
 

4 Results 

For all the results shown below, the total simulation length L is 100 meter, and we begin 
the dissociation by assuming that at time=0, the moving front already exist and at the length 

of 6 410 10 ( )L meter− −• = . This is approximation to our assumption of 0)0( =S . Each zone 

(1&2) was discretized into 500 intervals. In this section, we first show the results for well 
pressure of 2MPa, reservoir temperature of 287K and reservoir pressure of 15MPa. We 
used the averaged heat conductivity and diffusivity for each zone (CRC, 2005). The absolute 
permeability for gas and water used in this part were 2.4 (milli-Darcy). 
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Figure 2 Time variation of pressure in the reservoir for a well pressure of 2MPa and a 

reservoir temperature of 287K 
Figure 2 shows the pressure distribution as a function of time and location during 
dissociation process. The gas pressure has its maximum value at the reservoir pressure of 
15MPa and then decrease to the pressure at the moving front. From the location of the 
moving front, the gas pressure decrease at a higher rate toward the well pressure of 2MPa. 
The dissociation pressure at the moving front is increasing with time. This will be further 
explained in Figure 3. 
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Figure 3 Time variation of temperature in the reservoir for a well pressure of 2MPa and a 

reservoir temperature of 287K 
Figure 3 shows that the temperature also decreases gradually from the reservoir value of 
287K to the production well. The temperature close to the reservoir is almost undisturbed. 
There’s a large gradient at the moving front. The reason for this sharp temperature gradient 
is due to the endothermic reaction of hydrate dissociation. As mentioned before, the 
depressurization is the least expensive method because no external heat source is needed 
for hydrate dissociation. All the heat needed for dissociation comes from the reservoir itself. 
After 30 days, the temperature at the moving front is around 278K while it’s 282K after 
120days, which means that the dissociation temperature at the moving front will increase 
with time. The increase of the temperature at the front and well is because of the conductive 
and convective heat transfer from the reservoir.  
 

5 Conclusions 

The one dimensional model for hydrate dissociation in porous media has been developed 
and solved using the numerical coordinate transformation and the numerical method of lines. 
Based on the results presented in previous sections, the following conclusion may be 
derived: 
1. The methane hydrate can be dissociated by using depressurization method only. 
2. A new numerical algorithm applying the coordinate transformation has been shown to be 

a feasible method and comparable with the analytical solutions. 
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