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Introduction 
 
Amyloidosis results from abnormal aggregation of native or proteolyzed proteins into amyloid 
fibrils [1] and is associated with an array of maladies, including Alzheimer’s Disease, 
Parkinson’s Disease, spongiform encephalopathies, type II diabetes and several forms of 
systemic amyloidosis [2, 3].  In each case, a protein or a proteolyzed fragment aggregates to 
form unbranched fibrils 10-20 nm wide and hundreds of nm long [4].  Fiber diffraction and 
electron microscopy data support a cross-β helical structure in the fibrils, with the main chain of 
β-strands running perpendicular to the axis of the fiber [5].  The diversity of the proteins 
implicated in amyloid diseases [6] and the structural similarity of the resulting amyloid fibers 
suggest that the formation of amyloid fibrils is a result of general chemical properties of the 
polypeptide backbone and amino acid side chains rather than the precise amino acid sequence [7, 
8].  Thus, it is of interest to explore how changes in environment confer structural changes that 
predispose proteins to self-associate and ultimately form amyloids. 
 
While the formation of amyloid fibrils is observed for proteins of differing folds, including α-
helix proteins [9-11], β-sandwiches [12], α+β proteins [13, 14], the presence of edge strands 
makes β-sheet proteins particularly susceptible to aggregation.  Human β−2 microglobulin (β2M), 
a 99-residue β-sandwich protein, is an integral part of the MHC I complex, human leukocyte 
antigen (HLA), and has been studied as a model system for understanding amyloidosis [15-21].  
The protein is routinely secreted into the blood stream as part of its catabolic cycle.  Most 
patients undergoing hemodialysis eventually develop dialysis-related amyloidosis due to an 
accumulation of β2M in the serum [22].  The monomeric structure of the protein has been 
determined using both X-ray crystallography [23] and NMR [24].  These crystallographic (β2MX-

Ray) and solution (β2MNMR) structures are highly similar, and both consist of seven β strands (A-
G) grouped in two antiparallel β-sheets (Fig. 1).  There are also several differences between the 
two structures.  Most notably, in β2MNMR one of the edge strands (strand D) has a pronounced 
bulge, whereas the corresponding strand in β2MX-Ray does not contain the bulge.  Similarly, the 
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crystal structure of β2M in complex with the HLA heavy chain (β2MHLA) [25] shows a bulge in 
strand D involving D53 and L54.  Thus strand D of β2M is capable of adopting more than one 
stable conformation.   
 
The edge strands of a β-sheet often exhibit structural features designed to protect against further 
β-sheet interactions, such as  β-bulges, prolines, charged residues, short edge strands and loop 
coverage [26].  As a result the native conformations often must first be destabilized through 
mutation [27, 28] or exposure to environmental stress [19] in order for β-sheet proteins to 
become amyloidic.  This is consistent with the observation that most proteins require partial 
denaturation to become amyloidic [19, 29-36].  Biochemical and spectroscopic studies have 
suggested that the D strand of β2M may be directly involved in amyloid formation [15, 37-39].  
Trinh et al. proposed that the conformation with a straight edge of the D strand may correspond 
to a rare species trapped by crystallization [23].  Since the loss of the bulge in strand D would 
likely predispose the protein to aggregation through its exposed edge strand, it is important to 
understand what factors contribute to its loss and give rise to alternative, potentially aggregation-
prone conformations.   
 
Although the in vivo mechanism of amyloid formation from β2M is not known, the protein may 
be coaxed to form amyloids in vitro by reducing the pH of the solution to pH = 3.6 [18, 40] or by 
adding Cu2+ ion to the buffer [41, 42].  The structure of monomeric β2MX-Ray, with its straight 
edge strand, was determined at pH = 5.7 [23], while that of β2MNMR was determined at pH = 6.6 
[24].  Given the amyloid forming properties at low pH and the straight strand observed in β2MX-

Ray, it is of interest to probe how the local structure of the β-strand bulge varies with pH.  A 
number of simulation studies have provided molecular insight on amyloid forming proteins [43-
47].  In the present study, molecular dynamics simulation was used to investigate how the 
conformational properties of β2M may be modulated by pH.  To examine the structural response 
of β2M to pH, we performed a series of simulations using different ionization states of its side 
chains His, Asp and Glu, and the C-terminus. Strand D adopts a bulged conformation when only 
His side chains are protonated (here referred to as “medium pH”), but takes on a straight edge 
conformation when all three types of residue are protonated (“low pH”).  Since a β-strand bulge 
may be an important deterrent against nonspecific oligomerization, the pH dependent edge strand 
rearrangement seen in the simulation of β2M may suggest a mechanism by which low pH 
predisposes the protein for amyloid formation.    
 

Figure Captions 

Figure 1 
Two crystal structures of β2M.  (Left) β2MHLA corresponds to the structure of β2M in the HLA 
complex determined to 1.8 Å resolution (PDB: 1DUZ).  (Right) β2MX-Ray was determined as a 
monomer, also to 1.8 Å (PDB: 1LDS).   
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Figure 2 
The rms deviation of main chain atoms at the end of 3 ns simulations started from either β2MX-

Ray (—■—) or β2MHLA (- - ❡ - -).  Bars indicate secondary structure in β2MX-Ray corresponding to 
the strands A, B, C, C’, D (black), E, F and G. 
 

Figure 3 
β2MX-Ray was simulated at medium pH with 100 mM NaCl and snapshots were obtained at 
different time points: (i) 38 ps, (ii) 638 ps, (iii) 750 ps, (iv) 1.55 ns, (v) 2.48 ns, (vi) 3.0 ns. 
 

Figure 4 
A detailed view of frame (vi) from Figure 3, illustrating the bulge in strand D.   
 

Figure 5 
Two 6 ns simulations were performed with the intermediate conformation β2M

‡ (middle) 
corresponding to frame (iii) of Figure 3.  The simulated pH values were set to either low by 
protonating Asp, Glu and His, or medium by protonating His only.  (Left) The structure obtained 
after 6 ns at low pH was superimposed with the frame (i) of Figure 3 (two trajectories).  (Right) 
The structure obtained after 6 ns at medium pH was superimposed with β2MHLA.   
 

Figure 6 
The side chain of H51 can form a H-bond with the side chain of D53, forcing the two residues on 
the same side of a β-strand and constraining the geometry of the backbone (left); or with the 
main chain carbonyl of S52, thus allowing D53 to rotate toward the solvent (right). 
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