
1. Introduction 
 
In the recent years, with advances in computing technologies and statistical mechanics, 
the molecularly based equations of state like SAFT (statistical associated fluid theory)1-5 
have become increasingly popular tools for modeling the phase behavior, particularly for 
the system involving the associating or the chainlike molecules. It is often found difficult 
to calculate the phase behavior reliably from even a relatively simple equation of state. 
Since the number of phases is not known priori, the two stage strategy is often followed 
to compute the phase equilibrium. First, for the given feed composition and for the fixed 
temperature and pressure, the phase split problem is solved, which determines whether 
the considered mixture will split into two different phases. The second step is the phase 
split problem which determines the compositions of the known number of phases. Once 
the phase split problem is solved, the two phases are then checked for the phase stability. 
If phase instability is encountered, the phase split problem is solved again to obtain an 
improved bound on total Gibbs energy of the system either with same number of phases 
or with increased number of phases.  
 
Reliable computation of the phase equilibrium is equivalent to finding the global 
minimum of the total Gibbs free energy of the system. It is shown that the phase stability 
analysis is equivalent of the global optimality test that determines whether the phase 
being tested corresponds to the global minimum of the total Gibbs free energy. If it is 
found that the phase is not stable, the phase split calculations are performed which seeks 
the local minimum of the Gibbs free energy of the system. The number of phases is 
changed and the phase stability and phase split calculations are repeated until all the 
phases are found stable with respect to the phase stability test. Clearly, the phase stability 
calculations have to be performed globally to obtain the solution corresponding to the 
global minimum of the Gibbs free energy. Conventional initialization dependent 
techniques can often fail to compute the global minimum of the phase stability problem. 
Hence there has been significant interests towards development of methods that are more 
reliable. McDonald and Floudas6-7 have found that the phase stability problem can be 
reformulated using convex underestimating functions for activity coefficient models and 
EOS models that can be solved with mathematical guarantee using the branch and bound 
method. Interval analysis is another approach which gives mathematical and 
computational guarantee of the global optimum solution. Xu and Stadtherr8 have applied 
the interval based method to reliably compute the phase stability and the phase 
equilibrium from SAFT equation of state. Although the method is completely reliable, the 
computation time is required for the phase stability and the phase equilibrium 
computations are high even for binary system and can increase further as the number of 
components increases.  
 
An alternative approach to solve the phase stability problem globally is the use of the 
homotopy continuation method. Sun and Seider9 have shown that all the for the activity 
coefficient models and cubic EOS models, all the solutions of the phase stability problem 
can be found out if the homotopy path is started using the well chosen initial points. We 
demonstrate here the use of the homotopy continuation method to reliably compute the 



phase stability and the phase equilibrium problems for the SAFT equation of state 
models.  
 
 
2. Problem Formulation 
 
2.1 SAFT equation of state. 
 
For multicomponent system Huang and Radosz4 proposed,  
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The hard sphere contribution hsa is based on the hard sphere equation of state and is 
given by 
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Here, ρ  is the total molar density of the mixture, ix  is the mole fraction of the 
component i , N is the total number of component in the mixture, AN  is Avogadro’s 
number. iid  is the temperature dependent segment diameter that is given by 
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Here k is Boltzmann’s constant and 
6

2πτ =  is the packing fraction for closed packed 

spheres. The dispersion term disa used by Huang and Radosz3-4 is given by 
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ijD  represents the Chen and Kreglewski11 constants. The ijk  are binary interaction 

parameters that can be fit to the experimental data.  
 
The chain term is given by 
 

( )∑
=

−=
N

i
ii

hs
iiii

chain

dgmx
RT

a
1

)(ln(1   

 

Where ( )
( ) ( )2

3

2
2

2

2
3

2

3 12
2

12
3

1
1

ξ
ξ

ξ
ξ

ξ −
⎟
⎠
⎞

⎜
⎝
⎛+

−
+

−
= iiii

ii
hs

ii
dd

dg  

The more general correlation function is  
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The association term is expressed as 
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Where summation over iA  indicates summation over all association sites over component 

i . iM  is number of association sites on component i . iAX is the mole fraction of 
molecules of i that are not bonded at the association site iA which can be determined from  
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Where the summation over jB  gives summation over all association sites on component 

j . jBjAΔ is the association strength function that is given by 
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The equation of state is written as  
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Here, the last term in equation indicates the ideal gas contribution. 
 
 
 
2.2 Phase stability and phase split  
 
The volume based approach proposed by Nagaragen et al.11 is used to formulate the 
phase stability problem. Based on their approach, the tangent plane distant function is 
given by 
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A given mixture at constant temperature and pressure and composition 0ρ is stable if 
Helmoltz energy density function ( )ρa  doesn’t fall below the plane tangent to the surface 



at 0ρ . The stationary conditions of the optimization problem form the following nonlinear 
equations.  
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As stated earlier, the phase split problem is solved locally for different initial guess. The 
phase stability roots are provided as an initial guess for the phase split problem. The 
phase split problem can be formulated by equating the fugacity of the component in each 
phase. 
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Here, the subscript j indicated the component and the superscript i indicated the phase.  
 
 
3. Problem solving methodology.  
 
For finding the density roots and for phase stability computations, the Newton based 
homotopy continuation method is applied.  The phase split problem is solved locally 
using trust region dogleg approach. While modeling associating compounds, internal 
variables are solved locally during each function evaluation. The stepwise procedure 
followed for the phase equilibrium computations can be summarized as follows.  
 

1. For the given feed composition, temperature and pressure, find all the density 
roots by homotopy continuation method.  

2. Find the root corresponding to the minimum Gibbs free energy  
3. Solve the phase stability problem globally using homotopy method for each 

phase. 
4. Compute tangent plane distance to determine the phase stability  
5. If given phase is not stable, increase the number of phases by one and perform 

phase split computations locally with the initial guess provided by the phase 
stability roots. If each phase is found stable, out put the results and exit.  

6. If the improved bound on Gibbs free energy is not found then solve the phase split 
problem with another guess  

7. Once the improved bound on Gibbs free energy is found, go to 3.  
8. Repeat procedure until all the phases present are stable.  

 
 



4. Test problems and results 
 
To compare our results and computation time with those obtained by interval method, the 
binary test systems selected are same as Xu and Stadtherr8. For all the test problems, the 
SAFT parameters used for each component are taken from Huang and Radosz.4  
 
Problem 1. (self associating type 1A) 
 
The mixture of acetic acid (1) and benzene (2) belongs to this category. Benzene has no 
association site while acetic acid molecule self associates. Fig. 1 and Fig. 2 show the 
homotopy path for the density roots and the phase stability. Table 1 shows summary of 
the results.  
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 Fig. 1. Homotopy path for the computation of density roots 
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               Fig. 2. Homotopy path for the computation of phase stability 
 
 
Table 1.  
 

Feed 
Composition 

Density 
roots 

Phase stability 
roots 

TPD Phase I 
 

Phase II 
 

Total  
CPU 
time s 

0.25, 0.75 0.0097g, 
1.4634, 
12.3842  

0.0024,0.0073 
3.0134, 2.7623 
10.9250, 4.0754 

0 
9.2297, 
 -0.4671 

0.2379 
0.7621 
0.0096 

0.7057 
 0.2943 
 14.8235 

182 

 
 
Superscript g indicates the root corresponding to the minimum Gibbs free energy.  
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