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Abstract
For the linear time-invariant state space model, it is well known that the minimum variance state

estimator is the Kalman filter when there are no constraints on the states. In [20], the correlations
between the innovations was used to form a least-squares problem to determine the optimal tuning
for the Kalman filter. In this paper, we formulate the optimal weighting to be used in the above
least-squares problem. In addition to that the stochastic disturbance structure that affects the
states and the measurements is also usually unknown. We present a semidefinite programming to
estimate the disturbance structure and the covariances of the noises entering the system. Once
the noise covariances are estimated using the correctly weighted least-squares technique, the state
estimator can be tuned optimally. The disturbance structure provides information about the
minimum number of disturbances affecting the state.
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I. INTRODUCTION

Consider the Linear Time-Invariant (LTI) state-space model in discrete time:

xk+1 = Axk + Buk + Gwk

yk = Cxk + vk

(1)

in which xk ∈ Rn, uk ∈ Rm, yk ∈ Rp are the state, input and output of the system at time tk.
The noises corrupting the state and the output (wk ∈ Rg and vk ∈ Rp) are modelled to be
zero-mean independent Gaussian noise sequences with covariances Qw and Rv respectively.
With no constraints the optimal state estimation is achieved by the classical Kalman filter
[12]. If the Gaussian assumption is relaxed, the Kalman filter is the still the optimal filter
among the class of linear filters [10].

If knowledge of the deterministic part of the model i.e. A, B, C is known from ID ex-
periments, then the Kalman filter or any state estimator would require the knowledge of
stochastic part of the model i.e. G, Qw, Rv. The G matrix shapes the disturbance wk en-
tering the state. Techniques from the ID literature estimate the the statistics of the output
residuals along with A, B, C, but not the disturbance structure G or the covariances Qw

and Rv. In [20], the estimation of the covariances Qw, Rv using the correlations between the
measurements at different times was presented. The correlation based method was largely
pioneered by Mehra [15–17] and adapted by many others [3, 5, 11, 18, 19]. In technique in
[20] result in a least-squares problem to be solved in Qw and Rv.

The correct weighting is needed for the least-squares estimate of Qw, Rv to have the
minimum variance. The weighted least squares estimate has the lowest variance among the
class of all linear estimators. Here we present the theoretical weighting for the minimum
variance ALS technique to estimate Qw, Rv from data.

All of these techniques assume that the disturbance structure as given by the G matrix
is known. In the absence of any knowledge about G an assumption that G = I is often
made, which implies that an independent disturbance enters each of the states. To best of
our knowledge there exists no technique in the literature to estimate the structure of the
disturbances as given by the G matrix.

II. BACKGROUND

If x̂k denotes the estimate of the state and L ∈ Rn×p is some arbitrary stable filter gain
(not necessarily optimal), then the state estimates are given by:

x̂k+1 = Ax̂k + Buk + AL(yk − Cx̂k) (2)

When the system is unconstrained, the optimal state estimator is the Kalman filter. For the
Kalman filter the filer gain Lo is calculated by solving the Riccati equation:

P = APAT − APCT (CPCT + Rv)
−1CPAT + GQwGT

Lo = PCT (CPCT + Rv)
−1

(3)

The estimate error covariance is P = E[(xk−x̂k)(xk−x̂k)
T ]. In the absence of the knowledge

of the noise statistics the covariances are set heuristically and the filter gain L is changed in



an ad-hoc way to get reasonable performance from the closed-loop controller. We can write
the evolution of the state estimate error εk = xk − x̂k by subtracting Equations 2 from 1:

εk+1 = (A− ALC)︸ ︷︷ ︸
Ā

εk +
[
G −AL

]︸ ︷︷ ︸
Ḡ

[
wk

vk

]
Yk = Cεk + vk

(4)

in which the L-innovations are defined as Yk , yk − Cx̂k. Note that the L-innovations are
not white if the initial state estimator L is not optimal [2].

Skipping the lengthy algebra for brevity and referring the reader to [20] for detailed
derivations, we only note here that given past data {Y1, Y2, · · · , YNd

}, we can form the
following least-squares problem in a vector of unknowns, GQwGT , Rv. The subscript ‘s’
denotes the elements of the matrix stacked in a vector.

Φ = min
GQwGT ,Rv

∥∥∥∥A

[
(GQwGT )s

(Rv)s

]
− b̂

∥∥∥∥2

subject to, GQwGT , Rv ≥ 0, Rv = RT
v

(5)

The A matrix is calculated using the system matrices and the initial estimator tuning L.
The vector b̂ is estimated from the autocovariances of the L-innovations {Y1, Y2, · · · , YNd

}.
The estimation method in Equation 5 is referred to as the Autocovariance Least-Squares
(ALS) technique in the sequel.

III. MINIMUM VARIANCE AND OPTIMAL WEIGHTING

It is well known that the Bayesian estimation procedure gives the minimum variance esti-
mates of the parameters. The minimum variance estimator for the covariances Qw, Rv would
involve finding the posterior expectation of the covariances conditional on the data. In the
limit of having enough data, the a priori distribution of the covariances becomes negligible
and Bayesian estimation becomes similar to the Maximum Likelihood (ML) estimation. ML
estimation procedures aim to maximize the likelihood function with respect to the param-
eters. The innovations form of the likelihood function for the Gaussian state-space model
described by Equation 1 is given as (ignoring a constant) [21]:

−2lnLY (θ) =

Nd∑
k=1

log|Σ(θ)|+
Nd∑
k=1

Yk(θ)
T Σ(θ)−1Yk(θ) (6)

in which LY (θ) is the likelihood and Σ = CPCT + Rv.
The estimation of the unknown covariances then follows an iterative scheme:

• Guess GQwGT , Rv and stack them in a vector θ = [(GQwGT )s, (Rv)s].

• Calculate Σ = CPCT + Rv and Yk using the guessed values for the covariances.

• Compute the innovations form of the likelihood function from Equation 6 and find a
gradient direction to maximize LY (θ).



• Iterate until the likelihood function is maximized.

As emphasized by Shumway and Stoffer [23, chap. 4], the L-innovations Yk are dependent on
the parameter θ and the likelihood function is a highly nonlinear and complicated function
of θ. Newton-Raphson methods can be used recursively to update the parameters and to
maximize the objective function in Equation 6. A more robust algorithm was given by
Shumway and Stoffer [22] based on the EM (expectation-maximization) algorithm originally
used by Dempster [7]. The EM algorithm again is an iterative procedure that like other
algorithms struggles to find a global maximum starting from a bad initial guess.

To avoid the complicated nonlinear approach detailed till now in this section, we can
instead try to find a linear unbiased minimum variance estimator for the covariances. Given
a linear model the linear unbiased minimum variance estimator is the weighted least-squares
estimator as given by Theorem 1 [1].

Theorem 1 For a linear model of the form y = Ax + e with E[e] = 0 and E[eeT ] = R, the
weighted least-squares estimator for x is formulated as:

min
x
‖Ax− y‖2

R−1

The weighted least-squares estimator given by

x̂ = (AT R−1A)−1AT R−1y

then has the minimum variance among all linear unbiased estimators.

Proof 1 The statement a classical generalized least squares result for the linear regression
model first considered by Aitken [1]. A more recent proof can be found for example in [14,
p. 259].

The weighted least-squares estimation of the covariances is given by the ALS technique
as shown by Equation 5 . In [20] however, the weighting matrix W in the ALS problem
is taken to be the identity matrix. The minimum variance property for the estimates then
does not hold. We will now derive the formula for the weighting matrix W .

Following the analogy of Lemma 1 for Equation 5, if b̂ is an unbiased estimator of b̄,
then b̄ = E[b̂]. Define S , E[(b̂ − b̄)(b̂ − b̄)T ] as the covariance of b̂. Then W = S−1 is the

weighting for the ALS problem. In is shown in [20] that b̂ is indeed an unbiased estimator.
If {Y1, Y2, · · ·YNd

} are the set of L-innovations calculated from data as given by Equation
4, and N is the window size used for the autocovariances (see [20]) then we define the matrix
Y as follows (assuming Nd to be divisible by N):

Y ,


Y1 YN+1 · · · YNd−N+1

Y2 YN+2 · · · YNd−N+2
...

...
...

...

YN Y2N
... YNd

 (7)

Y ∈ RNp×Nd
N . Define ñ , Nd

N
and p̃ , Np.

The estimate b̂ is given by:

b̂ =

(
1

Nd −N
YYT

)
s

(8)



Lemma 1 Given the L-innovations from Equation 4 and the definition of Y from Equation
7, we have

E[Y] = 0

E[YYT ] , E[YsYT
s ]

= Ω

with Ω as defined in Appendix A (Equation A2). The random matrix Y is distributed nor-
mally with Y ∼ N(0, Ω).

Proof of Lemma 1 is given in Appendix A.
Note that the formula for Ω as given by Equation A2 is dependent on the unknown

disturbance covariances Qw, Rv and G. Following the derivation in [9] for calculating higher

order moments for normally distributed matrices, we can calculate the covariance of b̂. From
Equation 8 we have:

S = cov(b̂) (9)

=
1

(Nd −N)2
cov(YYT ) (10)

Using Lemma 1 and [9], the formula for S is given in Appendix B (Equation B1). The
optimal weight is W = S−1. If S is singular, then without loss of generality we can take
W = S†, the Moore-Penrose pseudoinverse of S.

The weight W it a complicated function dependent on the values of the unknown covari-
ances. A recursive calculation may be carried out for calculating W and the covariances.

1. Guess a value for ĜQwGT , R̂v and calculate Ω and W = S−1 using Equations A2 and
B1.

2. Use the ALS technique to estimate ĜQwGT , R̂v using Equation 5

3. Use estimates in previous step to recalculate W

4. Iterate until convergence

The convergence of the above iterative scheme has not tested because of the computational
burden (see Remark 2).

Remark 1 If the initial estimator gain L was optimal, the L-innovations (or just innova-
tions) would be white. The formula for S (Equation B1) would then be much simpler and
would be the second moment of the Wishart distribution given in literature. White innova-
tions would also imply optimality of the filter and there would be no need to calculate the
covariances. In the more practical situation when the L-innovations are not white, the as-
sumption of ‘whiteness’ would lead to an incorrect weighting. This incorrect weighting was
used in [6].

Remark 2 The computation of S from Equation B1 becomes prohibitively large even for a
small dimensional problem with large data sets. This will be a drawback for any practical
application until efficient means for the computation are found.



IV. ESTIMATION OF DISTURBANCE STRUCTURE

Generally a linear model of a chemical plant has many states and only a few independent
disturbances. Any noise wk that enters the state xk+1 is first scaled by the G matrix and then
by the C matrix before it is measured in the output yk+1 (Equation 1). It is unusual to have
model information about the G matrix in applications. Also if there are fewer sensors than
the number of states, then the information contained in the measurements is also usually
not enough to estimate a full rank GQwGT matrix using Equation 5. There can then be
multiple covariance matrices that generate the same statistics in the output data.

Our aim is to find the minimum rank Q (we use Q as a notation to denote the estimate
GQwGT in the rest of this section). A minimum rank Q can be decomposed as follows:

Q = GQwGT

Q = G̃G̃T Q̃w = I
(11)

Having Q with minimum rank would ensure that G̃ has the minimum number of columns.
The number of columns in the matrix G is equal to the number of independent disturbances
entering the state and equal to the rank of Q. Hence, by estimating G̃, we will get information
about the minimum number of independent disturbances entering the data along with the
disturbance structure and covariances. With reference to Equation 11, one might think that
the natural step would be to solve the optimization directly with G as the optimization
variable instead of solving with Q and then following the decomposition. The reason for
solving with Q as the optimization variable is to avoid the nonlinearity that would be
introduced if the elements of G are used as optimization variables.

The rank can be explicitly added to the objective in Equation 5 through a weighting
parameter ρ multiplying the rank:

Φ1 = min
Q,Rv

∥∥∥∥A

[
(Q)s

(Rv)s

]
− b̂

∥∥∥∥2

︸ ︷︷ ︸
Φ

+ρRank (Q)

Q,Rv ≥ 0, Q = QT , Rv = RT
v

(12)

The constraints are in the form of convex Linear Matrix Inequalities (LMI) [4, 24]. The
norm part of the objective is also convex. The rank however can only take integer values
and makes the problem NP hard [25]. The solution of minimizing the rank subject to
LMI constraints is an open research question and current techniques are largely based on
heuristics.

Since the rank is the number of nonzero eigenvalues of a matrix, a good heuristic sub-
stitute for the rank is the sum of its eigenvalues or the trace of the matrix. The trace of a
matrix is also the largest convex envelope over the rank of the matrix [8].

Rank (Q)min ≥
1

λmax(Q)
Tr (Q)

The trace of a matrix is a convex function of Q. The optimization in Equation 12 can be



rewritten with the trace replacing the rank:

Φ1 = min
Q,Rv

∥∥∥∥A

[
(Q)s

(Rv)s

]
− b

∥∥∥∥2

︸ ︷︷ ︸
Φ

+ρTr (Q)

Q, Rv ≥ 0, Q = QT , Rv = RT
v

(13)

Equation 13 is in the form of a Semidefinite Programming (SDP) problem. We will refer
to this problem as the ALS-SDP (Autocovariance Least-Squares with Semidefinite
Programming).

The ALS-SDP method gives a feasible solution for each value of the parameter ρ by using
simple Newton-like algorithms. The choice of ρ is made from a tradeoff plot of Tr (Q) versus
Φ. The choice of ρ is made such that Tr (Q) is small and any further decrease in value of
Tr (Q) will cause significant increase in the value of Φ.

V. EXAMPLE

Let the plant be simulated using the following state-space matrices.

A =

[
0.733 −0.086
0.172 0.991

]
C =

[
1 2

]
G =

[
1

0.5

]
Qw = 0.5 Rv = 1

Assume G is unknown. Since C is not full column rank, the estimate of Q = GQwGT using
ALS is not unique. The ALS-SDP technique then estimates a minimum rank Q̂ and R̂v that
represent the statistics in the output data.
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FIG. 1: Tradeoff between fit to data and trace

The results from the new ALS-SDP are shown in Figure 1. The plots show that choice
of ρ = 0.31 is where the Tr (Q) is the minimum with no significant change in Φ. Also, the



rank(Q) at ρ = 0.31 can be seen to be 1, which is the number of independent disturbances
entering the state of the simulated data. Also the estimated disturbance structure and
covariances were (using ρ = 0.31):

Q̂ = ĜQwGT =

[
0.449 0.249
0.249 0.138

]
, R̂v = 0.99

After decomposition according to Equation 11 we get, Ĝ = [0.670, 0.372]T , Q̂w = 1.

Once a positive semidefinite Q̂ and a positive definite R̂v are estimated from data, the
Kalman filter gain (optimal state estimator for unconstrained linear models) can be obtained

by solving the Riccati equation 3. The comparison between the estimated L̂ and the optimal
Lo is given below:

L̂ =

[
0.312
0.211

]
Lo =

[
0.328
0.202

]

VI. CONCLUSIONS

For linear models we showed an estimation procedure for the disturbance structure given
by the matrix G in Equation 1. Estimation of the minimum number of disturbances affecting
the states is equivalent to minimizing the rank of GGT . An estimation procedure using
semidefinite programming and a rank heuristic was shown to give a tradeoff between fit the
data and the minimization of the rank. The ‘knee’ of the tradeoff curve was shown to give
good estimates for the minimum number of disturbances.
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APPENDIX A: PROOF OF LEMMA 1

From Equation 4, we have

εk = Ākε0 +
k−1∑
j=0

Āk−j−1Ḡ

[
wj

vj

]
(A1)

Taking the expectation of the above expression and noting that E[vk] = E[wk] = 0, we get,

E[εk] = ĀkE[ε0] = 0

The equality follows from the stability of the initial filter gain L since for k large enough,
we have Āk = (A− ALC)k ≈ 0.

Taking the expectation of the L-innovations in Equation 4, we get:

E[Yj] = CE[εj] + E[vk] = 0

holding for all j ≥ k (k is the initial period of transience, when for i < k, E[εi] cannot be
approximated as 0). Thus, we have

E[Y] = E




Y1

Y2
...

YNd


 = 0

Now, calculate Ω the second moment of Y as follows:

Ω = E




Y1

Y2
...

YNd

 (
Y T

1 Y T
2 · · · Y T

Nd

)
Following the derivation along lines similar to [20], we get:

Ω =


C

CĀ
...

CĀNd−1


︸ ︷︷ ︸

O

POT +


Rv 0 0

0
. . . 0

0 0 Rv

 + Ψ


Rv 0 0

0
. . . 0

0 0 Rv



+


0 0 0 0

CḠ 0 0 0
...

. . .
...

CĀNd−2Ḡ · · · CḠ 0


︸ ︷︷ ︸

Γ


Q̄w 0 0 0
0 Q̄w 0 0

0 0
. . . 0

0 0 0 Q̄w

ΓT +


Rv 0 0

0
. . . 0

0 0 Rv

ΨT

(A2)



where,

Ψ = Γ


−AL 0 0 0

0 −AL 0 0

0 0
. . . 0

0 0 0 −AL

 , Q̄w =
[
Qw 0
0 Rv

]

Following Equation A1, we see that εk is a linear combination of normally distributed noises
given Āk ≈ 0 and hence is normal. This implies Yk is also normally distributed. We then
have:

Y ∼ N(0, Ω)

APPENDIX B: WEIGHTING MATRIX

Given Kij is the commutation matrix as defined in [13], we define T as:

T , (Ip̃2 ⊗ (Iñ2)s)
T (Ip̃ ⊗Kp̃ñ ⊗ Iñ)

If Y ∼ N(0, Ω) then the formula for S = cov(YYT ) is given by [9]:

S = T (Iñ2p̃2 + K(ñp̃)(ñp̃))((Kp̃ñΩKñp̃)⊗ (Kp̃ñΩKñp̃))T
T (B1)


