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Abstract 
 Sampling is a statistical procedure used for uncertainty analysis and stochastic modeling in many 
applications related to process design, operation, control and optimization. The increased efforts for 
pollution prevention and sustainability necessitate a more contemporary approach for process design, in 
which objectives such as reducing environmental and health impacts, increasing reliability, safety and 
controllability, reducing risk and achieving better profitability are considered simultaneously. In this 
multifaceted approach to process design and operation, uncertainties need to be considered and included 
in process models and simulations. These uncertainties can be static or dynamic. A review of sampling 
techniques such as Monte Carlo sampling, importance sampling, Latin Hypercube Sampling (LHS) and 
Hammersley Sequence Sampling (HSS) are provided here. These sampling techniques have a wide 
range of use in chemical and process synthesis, process scheduling, supply chain management, process 
control and reliability as well as risk management. Apart from uncertainty analysis, sampling and 
sampling accuracy plays an important role in discrete, stochastic, and multi-objective optimization 
algorithms. This article also describes the recent developments in this area. In addition, future trends in 
process design and sampling techniques are also presented.  
  

Introduction 
 

Sampling is a statistical procedure which involves the selection of a finite number of individuals 
to represent and infer some knowledge about a population of concern. Sampling techniques are used in 
wide range of science and engineering applications; they are of basic importance in computational 
statistics, in the implementation of probabilistic algorithms and in related problems of statistical 
computing that have a stochastic ingredient (e.g., financial modeling, artificial intelligence, 
computational chemistry, risk and uncertainty analysis and design of experiments). This article is 
devoted to role of sampling in process systems engineering.   

Uncertainty analysis is a crucial step in process design and development due to the fact that over 
the life cycle of the process, product demands change, there may be variations in feedstock and product 
specifications and the process may be subject to short-term and long-term uncertainties. Furthermore, 
increased environmental consciousness in recent years and the efforts for pollution prevention 
necessitate chemical manufacturing plants to comply with stricter environmental regulations and to 
reduce waste. Therefore, the breadth of traditional process design approaches should be extended to 
include green engineering principles early in design (1, 2). This is because the decisions made earlier 
during the development of a chemical process affect later stages such as material and equipment 
selection, pilot plant studies and financial analysis and the opportunities for reducing environmental and 
health impacts of a process diminishes. Therefore, unlike traditional process design, where engineers are 
seeking only low cost options, contemporary process design approaches include environmental and 
health impacts, process performance indices such as risk, reliability, safety and flexibility as well as 
controllability and profitability into decision making. Sampling plays an important role in defining and 



quantifying these objectives.  Further, nowadays process design is just not restricted to process 
simulation but includes steps such as discovery, chemical synthesis on one end, and management, 
planning, and control on the other end. As the breadth of this design framework is extended, 
uncertainties in the model increase and efficient algorithms and tools are needed to address this problem. 
Sampling is an important component of these algorithms and tools.  

Fig. 1 shows an overview of this integrated framework proposed (2), which applies green 
engineering principles at every stage of process design and development. The first stage in process 
development is discovery, where chemicals and materials are selected and synthesized in a laboratory or 
using computational chemistry methods. These methods use Monte Carlo methods based on sampling of 
the molecular configurational space. 

Computer-aided molecular design (CAMD) is a commonly used technique for chemical 
synthesis where the reverse use of group contribution methods is employed to select materials with 
desired physical, chemical, environmental, and biological properties. The next stage of chemical 
synthesis is process synthesis where a chemical process is developed by choosing various unit 
operations and their connections. A flowsheet of the proposed plant is generated and process simulators 
are used to compute mass and energy flows for the process to predict its behavior if it was constructed.  
  
 

 
 
 

 
Fig. 1: Integrated framework for environmentally conscious process development and design under 
uncertainty (2)  



Uncertainties are commonly present in chemical and process synthesis due to insufficient 
experimental data and the lack of accurate models for representing the physical and chemical 
phenomena. Uncertainties are also encountered over the life cycle of the plant that affect decisions 
related to plant operations such as process control, production planning and scheduling, supply chain 
management, reliability and maintenance of the plant.  

For example, model uncertainty and external disturbances are important concerns in designing 
control systems, which are used to minimize deviations from the nominal process conditions and 
maintaining the safe operation of the plant. Probabilistic approaches and sampling techniques are used 
commonly to ensure robustness to these model uncertainties. On the other hand, off-line quality control 
is used to design products and processes that are robust to uncontrollable variation at the design stage. 
Parameter design strategy is used for this purpose and sampling techniques are employed to propagate 
the effects of input variability on outputs. The choice of an efficient sampling technique is very 
important for efficient off-line quality control.  

For multipurpose/multiproduct batch plants, optimal production planning and scheduling is 
important in order to be competitive in a just-in-time production environment. The scheduling problem 
assigns a sequence of tasks to each equipment over time, according to inventory restrictions and 
customer demands. The production schedule should be able to accommodate changing product 
demands, equipment shutdowns and unexpected orders. An extension of the scheduling problem is 
supply chain management which deals with a complex network of suppliers, plant, warehouses, 
distribution centers, and customers. Examples of uncertainties in supply chains include fluctuations in 
product prices, demands or production yields. 

In order to increase operational effectiveness and profits, and to save on lost production and 
costs, chemical plants need to operate with high process reliability and availability. Therefore, reliability 
issues need to be addressed at the conceptual design stage. Optimal maintenance schedules for the plant 
need to be determined to increase reliability and availability while maintaining profitability. 
Uncertainties in equipment availability profoundly affect the profitability of the plant. 

Uncertainty analysis and sampling techniques also play an important role in risk assessment and 
safety. Risk management is a decision making process that is used to reduce the financial and 
production risk for a business. Environmental risk assessment and financial risk assessment are 
commonly applied to chemical manufacturing processes. Environmental risk is associated with the 
toxicity of materials and the effect of hazardous materials on a human population or an entire ecosystem. 
Financial risk on the other hand, is concerned with pricing decisions and demands. Probability 
distributions and sampling techniques are frequently used in risk and policy analysis. 

The most commonly used sampling technique for uncertainty analysis is Monte Carlo sampling 
which is based on a pseudo-random number generator. This sampling technique has probabilistic error 
bounds and large sample sizes are needed to achieve the desired accuracy. Variance reduction 
techniques have been applied to circumvent the disadvantages of Monte Carlo sampling. Various 
examples of these variance reduction techniques will be provided in Section 2 (Sampling Techniques). 
Subsequently, role of sampling in uncertainty analysis and stochastic modeling will be presented 
(Section 3). Sampling techniques are also important for improving the efficiency of optimization 
algorithms, which will also be discussed in Section 4. In Section 5, the applications of sampling 
techniques in product discovery, chemical synthesis, process synthesis and design, process operation 
and control will be reviewed. Finally in Section 6, conclusions and future trends in sampling techniques 
will be presented.  
 
 
 



Sampling Techniques 
 
Sampling is a statistical procedure that involves selecting a limited number of observations, 

states or individuals from a population of interest. A sample is assumed to be representative of the whole 
population to which it belongs. Instead of evaluating all the members of the population, which would be 
time-consuming and costly, sampling techniques are used to infer some knowledge about the population.  

Sampling techniques could be divided into two groups: probability sampling and non-probability 
sampling. In probability sampling, samples are selected based on the theory of probability, which means 
that each possible set of unit is assigned a probability of selection. The samples are selected by a random 
process and the confidence intervals for the estimates are known. On the other hand, non-probability 
sampling does not involve random selection of individuals. An example of this is quota sampling, where 
the population is first divided into sub-populations and subjects are selected according to judgment or 
convenience. In this case, the sampling error cannot be determined by probabilistic techniques.  

For a good sampling technique, all physically reasonable values of the input and output variables 
should have some chance of occurring and no region of the population should be excluded. Furthermore, 
the estimates should be as close as possible to the real values of the quantities being estimated. A good 
sampling technique also allows an assessment of the relative importance of each input variable.  
 Probabilistic sampling techniques are based on Monte Carlo methods and are most relevant to 
this article. They are described in three subsections here: traditional Monte Carlo Sampling, Variance 
Reduction Techniques to improve the efficiency of Monte Carlo methods and Bayesian and Adaptive 
sampling techniques, which are used when there is not perfect information about probability. Finally the 
non-Monte Carlo sampling techniques will be discussed.  
 
Monte Carlo Sampling 

 One of the simplest and most widely used methods for sampling is the Monte Carlo method. 
Monte Carlo methods are numerical methods which provide approximate solutions to a variety of 
physical and mathematical problems by random sampling. The name Monte Carlo, which was suggested 
by Nicholas Metropolis, takes its name from a city in the Monaco principality, which is famous for its 
casinos, because of the similarity between statistical experiments and the random nature of the games of 
chance such as roulette. 

Monte Carlo methods were originally developed for the Manhattan Project during World War II to 
simulate probabilistic problems related random neutron diffusion in fissile material. Although they were 
limited by the computational tools of that time, they became widely used in many branches of science 
after the electronic computers were built in 1945. The first publication which presents the Monte Carlo 
algorithm is probably by Metropolis and Ulam (3).   

 The basic idea behind Monte Carlo simulation has been that input samples should be randomly 
generated in order to describe a random output. In crude Monte Carlo approach, a value is drawn at 
random from the probability distribution for each input, and the corresponding output value is 
computed. The entire process is repeated n times producing n corresponding output values. These output 
values constitute a random sample from the probability distribution over the output induced by the 
probability distributions over the inputs. The simplest distribution that is approximated by the Monte 
Carlo method is a uniform distribution U(0,1) with n samples on a k-dimensional unit hypercube. One 
advantage of this approach is that the precision of the output distribution may be estimated using 
standard statistical techniques. On average the error ε of approximation is of the order O(N-1/2). One 
remarkable feature of this sampling technique is that, the error bound is not dependent on the dimension 
k. However, this bound is probabilistic, which means that there is never any guarantee that the expected 
accuracy will be achieved in a concrete calculation. 



  The success of a Monte Carlo calculation depends on the choice of an appropriate random 
sample. The required random numbers and vectors are generated by the computer in a deterministic 
algorithm. Therefore these numbers are called pseudorandom numbers or pseudorandom vectors. One 
of the oldest and best known methods for generating pseudorandom numbers for Monte Carlo sampling 
is the liner congruential generator (LCG) first introduced by D.H. Lehmer (4). The general formula for a 
linear congruential generator is the following:  

    mcIaI nn mod)( 1 +⋅= −       (1) 

 In this formula, a is the multiplier, c is the increment which is typically set to zero and m is the 
modulus. These are pre-selected constants. The proper choice of these constants is very important for 
obtaining a sample which performs well in statistical tests. One other pre-selected constant is the seed I0, 
which is the first number in the output of a linear congruential generator. 
 Pseudorandom numbers of different sample sizes on a unit square generated using a linear 
congruential generator is given in Fig. 2. From this figure it can be seen that pseudorandom number 
generator produces samples that may be clustered in certain regions of the unit square and does not 
produce uniform samples. Therefore in order to reach high accuracy, larger sample sizes are needed, 
which adversely affects the efficiency of this method. Monte Carlo method provides approximate 
solutions to a variety of mathematical problems. A classic use of Monte Carlo methods is for the 
evaluation of definite integrals, particularly multidimensional integrals with complicated boundary 
conditions. 

  
Fig. 2: (a) 100 pseudorandom numbers on a unit square, (b) 250 pseudorandom numbers on a unit square obtained 
by the linear congruential generator developed by Wichmann and Hill (5) 
 
Variance Reduction Techniques 
 For increasing the efficiency of Monte Carlo simulations and overcome the disadvantages such 
as probabilistic error bounds, variance reduction techniques have been developed.  
 James (6) has divided variance reduction techniques into four categories. However it should be 
noted that these categories are not all inclusive. Further, some of the sampling techniques are 
overlapping between categories. 
 The first category of sampling techniques extract from a run, more information than immediately 
evident on the parameter value. An example of this is the control variate sampling, which is one of the 
most versatile variance reduction techniques. Control variates exploit information about the errors in 
estimates of known quantities to reduce the error in an estimate of an unknown quantity (7).  They are 
best able to estimate the mean of the outcome distribution but also can help in variance estimation. 
Control variates are set up in order to use a simplified version of a model. One of the problems with 
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control variates is the selection of effective controls. Also control variates assume a specific 
probabilistic structure for the simulation output process, usually joint normality of the response and the 
control variates and this underlying assumption may not always be satisfied (8). These problems restrict 
the widespread use of control variates. Therefore, it is not surprising that this method is not percolated in 
process systems engineering. 
 Sampling techniques in the second category make sure that each individual run is unbiased with 
respect to the mean outcome measure being estimated. For example in antithetic sampling, a negative 
correlation is introduced between two unbiased estimators of a variable X (9).  This technique is applied 
if there is only one important variable within the model, which is sampled once during a run. Similar to 
control variate sampling, so far we have not seen any application of this method in chemical engineering 
literature.  
 The sampling approaches for variance reduction that are used more frequently for chemical 
engineering applications are importance sampling, Latin Hypercube Sampling (LHS) (10, 11), 
Descriptive Sampling (12) and Hammersley Sequence Sampling (HSS) (13, 14). The latter technique 
belongs to the group of quasi-Monte Carlo methods which were introduced in order to improve the 
efficiency of Monte Carlo methods by using quasi-random sequences that show better statistical 
properties and deterministic error bounds. These commonly used sampling techniques are described 
below with examples. 
 
Importance Sampling 

Importance sampling which may also be called biased sampling is a variance reduction 
technique for increasing the efficiency of Monte Carlo algorithms. Monte Carlo methods are commonly 
used to integrate a function F over the domain D: 

  ∫D dxxF )(        (2) 

If random numbers are drawn from a normal distribution, information is spread over the interval 
being sampled. However, if a non-uniform (biased) distribution G(x) is used, which draws more samples 
from the areas which make a substantial contribution to the integral, the approximation of the integral 
will be more accurate and the process will be more efficient. This is the basic idea behind importance 
sampling, where the approximated integral is given by: 
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Importance sampling is crucial for sampling low-probability events. The most critical issue for the 
implementation of importance sampling is the choice of the biased distribution that emphasizes the 
important regions of the input variables. One of the examples of importance sampling is the Metropolis 
criterion used in molecular simulations (15). In molecular simulations the configurational phase space is 
explored and this involves the evaluation of a multi-dimensional integral over 3N degrees of freedom. 
The crucial feature of the Metropolis approach is that it generates a Markov chain of states and it biases 
the generation of configurations towards those that make the most significant contribution to the 
integral. Specifically, it generates states with a probability )/exp( TkV BΔ− , where VΔ  is the change in 
energy, Bk  is the Boltzmann factor and T is the temperature. This algorithm allows the low energy 
configurations to be sampled more efficiently, where the Boltzmann factor has an appreciable value. As 
a result of this thermodynamic properties of fluids could be calculated more accurately. 
 
 



Stratified Sampling  
 Stratification is the grouping of the members of a population into equal or unequal probability 

areas (strata) before sampling. The strata must be mutually exclusive, which means that every element in 
the population must be assigned to only one stratum. Also no population element is excluded. It is 
required that the proportion of each stratum in the sample should be the same as in the population.  

Latin Hypercube Sampling (LHS) is one form of stratified sampling that can yield more precise 
estimates of the distribution function (10) and therefore reduce the number of samples required to 
improve computational efficiency. It is a full stratification of the sampled distribution with a random 
selection inside each stratum. In Latin hypercube sampling, the range of each uncertain parameter Xi is 
subdivided into non-overlapping intervals of equal probability. One value from each interval is selected 
at random with respect to the probability distribution in the interval. The n values thus obtained for X1 
are paired in a random manner (i.e., equally likely combinations) with n values of X2. These n values are 
then combined with n values of X3 to form n-triplets, and so on, until n k-tuplets are formed.  

Latin Hypercube Sampling (LHS) was designed to improve the uniformity properties of Monte 
Carlo methods, since it was shown that the error of approximating a distribution by finite sample 
depends on the equidistribution properties of the sample used for U(0,1), and the relationship between 
successive points in a sample or its randomness or independence is not critical (16).  

In Median Latin Hypercube Sampling (MLHS), which is a variant of Latin hypercube sampling, 
the mid-point of the intervals is chosen to sample the uncertain variables. MLHS is similar to the 
Descriptive Sampling described by Saliby (12).  

The main drawback of this stratification scheme in LHS and MLHS is that, it is uniform in one 
dimension and does not provide uniformity properties in k-dimensions. Sampling based on quadrature 
(17), cubature techniques (18) or collocation techniques (19) face similar drawback. These sampling 
techniques perform better for lower dimensional uncertainties. Therefore many of these sampling 
techniques use correlations to transform the integral into one or two dimensions. However, this 
transformation is possible only for limited distribution functions when the uncertain variables are tightly 
correlated. For highly correlated samples similar to what has been observed in thermodynamic phase 
equilibria, a sampling technique based on confidence region estimates can be used (20). 
 
Quasi-Monte Carlo Methods 

Quasi-Monte Carlo methods seek to construct a sequence of points that perform significantly 
better than Monte Carlo, which has an average case of complexity of the order of 1/ε2. For a suitably 
chosen set of samples, the quasi-Monte Carlo method provides a deterministic error bound of the order 
N-1(log N)k-1 without any strong assumptions about the integrand. Some well-known quasi-Monte Carlo 
sequences are Halton, Hammersley, Sobol, Faure, Korobov and Neiderreiter (21). The choice of an 
appropriate quasi-Monte Carlo sequence is a function of discrepancy. The deterministic upper and lower 
error bounds of any sequence for integration are expressed in terms of the discrepancy measure. 
Discrepancy is a quantitative measure for the deviation of the sequence from the uniform distribution. 
Therefore it is desirable to choose a low-discrepancy sequence. The Halton (22) and Hammersley (23) 
are some examples of low-discrepancy sequences.  

Hammersley Sequence Sampling (HSS) is an efficient sampling technique developed by Diwekar 
and coworkers (13, 14, 24) based on quasi-random numbers. Hammersley Sequence Sampling (HSS) 
uses Hammersley points to uniformly sample a unit hypercube and inverts these points over the joint 
cumulative probability distribution to provide a sample set for the variables of interest.  

The design of Hammersley points is given below. Any integer n can be written in radix-R 
notation (R is an integer) as follows: 

    0121... nnnnnn mm −≡       (4) 
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where ]ln/[ln][log Rnnm R ==  (the square brackets denote the integral part). A unique fraction 
between 0 and 1 called the inverse radix number can be constructed by reversing the order of the digits 
of n around the decimal point as follows:  
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 The Hammersley points on a k-dimensional cube are given by the following sequence:  
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where R1, R2,…, Rk-1 are the first k-1 prime numbers. The Hammersley points are )(1)( nznx kk
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Fig. 3, Hammersley points on a unit square are shown. Hammersley Sequence sampling (HSS) 
technique uses an optimal design scheme for placing n points on a k-dimensional hypercube. This 
scheme ensures that it is more representative of the population showing uniformity properties in multi 
dimensions, unlike Monte Carlo, Latin Hypercube and its variant Median Latin Hypercube sampling 
techniques. A qualitative picture of the uniformity properties of the different sampling techniques on a 
unit square is presented in Fig. 4. It is clearly observed that HSS shows better uniformity than other 
stratified sampling techniques such as LHS, which are uniform along a single dimension only and do not 
guarantee a homogeneous distribution of points over the multivariate probability space.  
One of the main advantages of Monte Carlo methods is that the number of samples required to obtain a 
given accuracy of estimates does not scale exponentially with the number of uncertain variables. HSS 
preserves this property of Monte Carlo. For correlated samples, the approach used by Kalagnanam and 
Diwekar (13) uses rank correlations (11) to preserve stratified design along each dimension. Although 
this approach preserves the uniformity properties of the stratified schemes, the optimal location of the 
Hammersley points is perturbed by imposing the correlation structure. Fig. 5 illustrates the effect of 
imposing a correlation structure on the sample sets. HSS technique has better performance than LHS 
and crude Monte Carlo sampling techniques and is at least 3 to 100 times faster for convergence (13).  

A variant of the HSS sampling technique is the Latin hypercube Hammersley Sampling (LHSS) 
(25). The aim of this sampling technique is to better utilize the 1-dimensional uniformity property of 
LHS and multi-dimensional uniformity property of HSS by coupling them. One dimensional uniformity 
analysis for Monte Carlo sampling, HSS and LHSS is shown in Fig. 6. 

Other variants of Hammersley Sequence Sampling (HSS) are Halton sequence sampling or 
shifted Hammersley where the first variable is shifted and leaped Halton or Hammersley, where some of 
the cycles of these sequences are eliminated to improve efficiency for higher dimensional problems. (24, 
26) As, the number of dimensions increase, the quasi-random sequences lose their uniformity properties. 
Therefore, to increase their performance, different quasi-random sequences could be combined and 
leaping procedure could be applied. 
 
 
 
 
 



 
 
 
 
 
 
 
     
 
 
 
 
 
 

Fig. 3: Hammersley points on a unit square 
 

- 
Fig. 4: 100 sample points on a unit square by (a) Monte Carlo sampling (b) Latin hypercube sampling (LHS), (c) 
Median Latin hypercube sampling (MLHS), (d) Hammersley Sequence Sampling (HSS) 
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Fig. 5: Sample points (100) on a unit square with correlation 0.9 using (a) Monte Carlo sampling (b) Latin 
hypercube sampling (LHS), (c) Median Latin hypercube sampling (MLHS), (d) Hammersley Sequence 
Sampling (HSS)    
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   (a)       (b) 
Fig. 6: (a) 1-D uniformity of sample points (20) on a unit square using MCS, HSS and LHSS; (b) 100 sample 
points on a unit square generated by LHSS (25)  

   
  
Parallelization of Monte Carlo and Quasi-Monte Carlo Methods 
 Monte Carlo and quasi-Monte Carlo sampling techniques discussed above are used to solve a 
variety of problems in computational chemistry as well as finance or economics where complex 
models are used. Therefore parallel computing to speed up calculations for these complex models is 
essential and these sampling techniques should be implemented in a parallel computer architecture, 
where independent simulations can be performed on different processors.  

For reasons of efficiency the random numbers generated for a parallel Monte Carlo simulation 
using different processors should be un-correlated and they should be generated independently. There 
are two basic parallelization techniques for generating random numbers. The first method assigns 
different random number generators for different processors and the second method assigns different 
substreams of one large random number generator to different processors. When the first method is 
used, it is possible that there are unknown correlations between the different random number 
generators in use. Alternatively, if the same random number generator with different parameters is 
used, one could also encounter similar problems. Hellekalek (27) addressed these issues related to 
random number generators for a parallel computer architecture with examples.  

There are two variations of the second method. The first approach is a “leap-frog” technique, 
where a substream (xnL+j) of lag L of the original sequence is assigned to the j-th processor where 
0<j<L-1. The second approach is a “splitting” technique, where the original sequence is partitioned 
into L consecutive blocks. Each of the processors is assigned a different block and each block is 
defined by a unique seed. Both of these methods should be used with caution when the number of 
dimensions or the sample size is increased.    

 Mascagni provided a review of the parametrized versions of the pseudo-random number 
generators for parallel Monte Carlo applications such as linear congruential generators, linear matrix 
generators, shift-register generators, lagged Fibonacci generators and inversive congruential generators 
(28). 
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 Quasi-random sequences have also been used in parallel computing in recent years. In order to 
use quasi-random numbers in parallel, one can break up a single quasi-random number sequence into 
non-overlapping blocks to be used in parallel processing elements. Comparison of parallel pseudo-
random numbers and Sobol sequences has shown that the same kind of accuracy is achieved with the 
use of a quasi-random sequence in parallel. However, quasi-random sequence (where a block based 
parallelization is used) converges to the same result in considerably less amount of time (29). Schmid 
and Uhl (30) also studied the parallelization of quasi-random sequences called the (t,s)-sequences. 
They have concluded that the block-based parallelization performs much better compared to leaping 
parallelization for numerical integration. In leaping parallelization, each processing element skips 
those points handled by other processing elements (leap-frogging). 
 
Bayesian and Adaptive Methods 

Bayesian probability theory was originally developed by Bayes (31). Bayesian and adaptive 
methods are used when the probability functions are not very accurate. Bayesian method uses two 
steps. The first step is to identify the conceptual models and the distribution of model parameters. In 
the second step, the model results are compared with existing observations through a structured 
probabilistic methodology. In the Bayesian context, a probability represents a degree-of-belief based 
on all the relevant information at hand. Classical statistical approaches are not very effective in 
predicting low-frequency, rare but consequential (e.g. accidents or chemical spills) events. Bayesian 
theory could be applied to these cases (32). A Bayesian approach is also used for sensor fault detection 
(33). 

One of the most important applications of Bayesian methods is to use Bayesian inference for 
model parameter estimation. This method uses the prior information about the parameters and the 
likelihood function to find the mode of the posterior distribution (34). 
 
Bayesian Inference 

Bayes theorem (31) states that the posterior probability distribution for an event is proportional 
to the prior distribution (knowledge) times the likelihood. If we denote D as the observed data and θ as 
the model parameters, we can write: 

)()|(),( θPθDPθDP =       (8) 

In this equation P(D,θ) is the joint probability distribution over all random quantities. This 
distribution is composed of two parts: a prior distribution P(θ) and a likelihood P(D|θ). In order to find 
the distribution of θ conditional on D, the Bayes theorem is used:      

∫
=

θdθDPθP
θDPθPDθP
)|()(
)|()()|(       (9) 

This is called the posterior distribution of θ. The posterior expectation of a function f(θ) is: 
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 It is very difficult to integrate this expression and find E[f(θ)|D] especially in high dimensions 
since for most applications the analytical solution is not available. One of the numerical approaches 
that have been used is the Markov Chain Monte Carlo (MCMC) method which is described below. 



 

 
Markov Chain Monte Carlo Method 

Let X be a vector of k random variables with a distribution π (.). In Bayesian inference, π (.) 
will be a posterior distribution. Then the task is to evaluate expressions of the form: 

[ ]
∫
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 A Monte Carlo integration evaluates E[f(X)] by drawing samples {Xt, t=1,…,n} from π (.) and 
approximates the integral by:  

     [ ] ∑
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)(1)(       (12) 

 The sample averages are used to approximate the expectations. Markov chain Monte Carlo 
draws these samples by running a cleverly constructed Markov chain for a long time. A Markov chain 
can be defined as follows: 
 Suppose a sequence of random variables {X0, X1, X2, …} is generated such that at each time 
step, the next state is sampled from a distribution P(Xt+1|Xt)  which depends only on the current state of 
the chain Xt.  This sequence is called a Markov chain and P(Xt+1|Xt) is called the transition kernel of 
the chain. One of the transition kernels or updating schemes used in MCMC is the Gibbs transition 
kernel (35) which is a special case of the general framework of Metropolis and co-workers (36) and 
Hastings (37).  
 Many important implementation issues need to be considered for MCMC methods. These 
include the transition mechanism for the chain, the number of chains to be run and their length and the 
choice of starting values. These issues are discussed in a review by Brooks (38). MCMC methods and 
their implementation were also discussed in a textbook by Gilks and co-workers (39). There is also a 
software called BUGS (Bayesian inference Using Gibbs Sampling) available at the World Wide Web 
(http://www.mrc-bsu.cam.ac.uk/bugs/) for analysis of complex statistical models using MCMC 
methods. 
 
Other Sampling Techniques 

Some other examples of non-Monte Carlo sampling techniques include, systematic sampling, 
cluster sampling, quota sampling and multi-stage sampling. These sampling techniques are briefly 
described below.  
 
Systematic sampling 

Systematic sampling is the selection of every nth element from a sampling frame. This sampling 
technique is also called the interval sampling, which means that there is a gap or interval between each 
selection. This technique is used in industry for quality control where a manufacturer might want to 
test an item from a production line at certain time intervals to make sure that it satisfies the product 
specifications, and the equipments and machines are working properly. A random starting point is 
selected and the sampling interval is chosen in a way that does not create a pattern that would threaten 
randomness. More information about systematic sampling can be found in Madow and Madow (40).  
 
Cluster sampling 

In cluster sampling, the entire population is divided into clusters, or groups and a random 
sample is selected from these clusters. When the researcher does not have enough information about 



 

the individual members of a population but can get a complete list of the groups or clusters, this 
sampling technique would be useful (41, 42, 43).  
 
Quota sampling 

In quota sampling, the population is first divided into mutually exclusive sub-populations, just 
as in stratified sampling. Then the subjects are selected according to judgment or easy availability 
from each sub-population. This sampling technique is often used in opinion polling and market 
research. This is not a random sample; therefore, statistical methods cannot be applied to measure the 
sampling error. A discussion on the validity of inferences made from quota sampling was presented by 
Smith (44).  

 
Multi-stage sampling 

 This sampling technique involves the selection of a sample in at least two stages. In the first 
stage large groups of clusters are selected and in the second stage population units are selected from 
the clusters to derive a final sample. For an application of multi-stage sampling in epidemiology please 
refer to refs 45 and 46).   
  These sampling techniques are mostly designed for convenience and efficiency. However they 
are not as accurate and many times the sampling error cannot be estimated by classical statistical 
techniques. They are more frequently used in areas such as market research, polling, or interviewing to 
infer some knowledge about a population. They are also encountered in epidemiology studies, where 
the causes and prevalence for certain diseases are statistically analyzed. However, they do not have a 
wide applicability in process systems engineering. 
 

Uncertainty Analysis and Stochastic Modeling 
 
 Role of sampling in uncertainty analysis is indisputable and encompasses all application areas 
in process design, operation and control. The uncertainties commonly encountered in chemical systems 
can be divided into two groups (47): (1) static uncertainties; (2) dynamic uncertainties. 
 
Static Uncertainties 

Static uncertainties are represented by probability distributions. Inclusion of uncertainties in a 
deterministic model results in a stochastic model. Stochastic modeling is an iterative procedure which 
consists of these four steps (48) as shown in Fig. 7. 

1. Uncertainty quantification which involves specifying uncertainties in key input parameters 
in terms of probability distributions 

2. Sampling distribution of the specified parameter in an iterative fashion 
3. Propagating the effects of uncertainties through the model 
4. Applying statistical techniques to analyze the results.  



 

In the first step of stochastic modeling framework, uncertainties in key input variables are 
represented by probability distribution functions. An example of uncertainty characterization and 
quantification by probability distributions was presented by Kim and Diwekar (49) in a computer-
aided molecular design (CAMD) problem. Discrepancies between the experimental data for predicting 
a thermodynamic property and the models are commonly encountered in CAMD. For example, Fig. 8 
shows the uncertainties in more than 1800 interaction parameters present in the UNIFAC activity 
coefficient model to predict solvent selection objectives for acetic acid separations. Uncertainty factors 
(UFs) were established as the ratio between the experimental and the calculated values of activity 
coefficients at infinite dilution ∞γ  as defined in equation 13. Furthermore, uncertainty factors were 
divided into three categories based on the type of family: organic/water (lognormal distribution), 
water/organic (normal distribution) and organic/organic(lognormal distribution.  

∞

∞

=
calc

UF
γ
γexp        (13)

  

 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Stochastic modeling framework 
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The type of distribution for an uncertain variable is a function of amount data available and the 
characteristic of the distribution function. The simplest distribution for an uncertain variable is a 
uniform distribution, which has a constant probability. This means that the uncertain variable can take 
any value within an interval [a,b] with equal probability. On the other hand, if the uncertain variable is 
represented by a normal (Gaussian) distribution, there is a symmetric but equal probability that the 
value of the uncertain variable will be above or below a mean value. In log-normal or some triangular 
distributions, there is a higher probability that the value of uncertain variable will be on one side of the 
median, resulting in a skewed shape. A beta distribution provides a wide range of shapes and is a very 
flexible means of representing variability over a fixed range. In some special cases, user-supplied 
distributions are used such as chance distribution.  
 Once probability distributions are assigned to uncertain parameters, the next step is to perform a 
sampling operation from the uncertain parameter domain. Then, the uncertainties are propagated through 
the model. The stochastic modeler assigns the specified distributions to the input parameters and using 
sampling methods described in the previous section (e.g. Monte Carlo, LHS, HSS), the sampled values of 
each uncertain variable are passed through the model. After a model simulation is run, the output 
variables of interest are collected. The simulation is then repeated for a new set of samples selected from 
the probabilistic input distributions. After all samples or observations gave gone through the cycle for a 
specified number of times (typically 20 to 100 or more, depending on the accuracy sought by the user), 
the outputs are collected in terms of cumulative probability density functions. 
 
Dynamic Uncertainties 

 Dynamic uncertainties are also ubiquitous in chemical systems, especially for batch 
processes. Due to the dynamic nature of these processes, even some of the static uncertainties are 
translated into dynamic uncertainties. An example of this is shown in Fig. 9. This figure shows how 
the uncertainties in activity coefficients predicted by the UNIFAC method affect the time-dependent 
relative volatility profile in a batch distillation column (47). Despite this fact, a generalized method of 
treatment for dynamic uncertainties for chemical systems was presented only recently (47, 51, 52). 
This method is based on Ito processes and real options theory from finance literature.  

Ito processes are a large class of continuous time stochastic processes. One of the simplest 
examples of a stochastic process is the random walk process. The Wiener process, also called a 
Brownian motion, is a continuous limit of the random walk and serves as a building block for Ito 
processes, through the use of proper transformations. 

A Wiener process satisfies three important properties. Firstly, it satisfies the Markov property. 
The probability distribution for all future values of the process depends only on its current value. 
Secondly, it has independent increments. The probability distribution for the change in the process over 
any time interval is independent of any other time interval (non-overlapping) and thirdly, changes in the 
process over any finite interval of time are normally distributed, with a variance which is linearly 
dependent on the length of time interval, dt. The general equation of an Ito process is given below:  

dztxbdttxadx ),(),( +=       (14) 

 In this equation, dz  is the increment of a Wiener process, and ),( txa  and ),( txb  are known 
functions. There are different forms of ),( txa  and ),( txb  for various Ito processes. In this equation, 
dz  can be expressed by dtdz tε= , where tε  is a random number drawn from a unit normal 
distribution.  
The simplest generalization of equation 14 is the equation for Brownian motion with drift given by: 



 

dzdtdx σα +=       (15) 
where α is called the drift parameter, and σ is the variance parameter.  

Other examples of Ito processes are the geometric Brownian motion with drift given below in 
equation 16 and the geometric mean reverting process given in Equation 17. Also it has been shown 
that the relative volatility profile in Fig. 18(b) can be represented by a geometric mean reverting 
process (47): 

xdzxdtdx σα +=      (16) 
xdzdtxxdx ση +−= )(      (17) 

where η  is the speed of reversion and x  is the nominal level that x reverts to. In geometric Brownian 
motion, the percentage changes in x and Δx/x are normally distributed (absolute changes are 
lognormally distributed). In geometric mean reverting processes, the variable may fluctuate randomly 
in the short run, but in the longer run it will be drawn back towards the marginal value of the variable. 
The expected change in x depends on the difference between x and x . If x is greater (less) than x , it is 
more likely to fall (rise) in the next short interval of time. The variance also grows with x.   
 The dynamic uncertainties in chemical processes (batch processes) could be represented by 
these Ito processes, depending on the character of uncertainty. For example, the thermodynamic 
uncertainties in batch processes were modeled using Ito processes and system non-idealities were 
easily distinguished (47). The parameters of the Ito process are estimated based on a regression 
analysis technique. For more details on Ito processes please refer to refs. 1, 52 and 53. 
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Efficiency Improvements in Optimization Algorithms 
 

 The role sampling plays in optimization algorithms extends beyond uncertainty analysis. 
Sampling accuracy is also crucial for deriving efficient algorithms for discrete optimization and multi-
objective optimization problems, which will be described in this section 
 
Discrete Optimization 

Discrete optimization problems involve discrete decisions and combinatorics. Discrete 
optimization problems are classified into groups such as integer programming (IP), mixed integer 
linear programming (MILP) and mixed integer nonlinear programming (MINLP). Many chemical 
engineering applications like chemical synthesis, process synthesis, planning and scheduling involve 
discrete decision variables and mixed integer problems. Probabilistic combinatorial methods can be 
used to solve these problems. Examples of these methods are simulated annealing (SA) and genetic 
algorithms (GA). If the solution space is discontinuous or if the systems have large combinatorial 
explosion, these probabilistic methods provide and alternative to mathematical programming 
techniques such as branch and bound, Generalized Bender’s Decomposition (GBD) and Outer 
Approximations (OA) traditionally used to solve discrete optimization problems (52). 

 Simulated annealing (SA) is a heuristic combinatorial optimization method. Simulated 
annealing utilizes the analogy between the annealing procedure, where a metal cools and freezes into 
its minimum energy structure and the search for a minimal value in an optimization problem. In SA, 
the objective function (which is usually the cost) becomes the energy of the system. The goal is to 
minimize the cost (energy). Random permutations are generated to displace particles, which is 
analogous to moving the system to another configuration. If the configuration that results from the 
move has a lower energy state, the move is accepted. Otherwise the move is accepted according to the 
Metropolis criteria (accepted with a probability = exp(-ΔE/KbT) (54). At high temperatures, a large 
percentage of uphill moves are accepted. As the temperature gets cooler, a small percentage of uphill 
moves are accepted. After the system has evolved to thermal equilibrium at a given temperature, the 
temperature is lowered and the annealing process continues until the system reaches the “freezing” 
temperature. Painton and Diwekar (55) used the simulated annealing (SA) technique to improve the 
performance of space nuclear power plants.   

As SA is a probabilistic method, several random probability functions are involved in this 
algorithm. The random probability Aij is used for acceptance determination in Metropolis criterion, 
while the random generation probabilities Gij are used to generate subsequent configurational moves. 
The Gij of the conventional SA algorithms rely on pseudo-random number generators such as Monte 
Carlo sampling, which result in clustered moves over the configurational space. Therefore, a larger 
number of moves or generations are needed to cover the configurational space more evenly and this 
results in a longer Markov chain length (i.e. number of moves) at each temperature level. As 
mentioned earlier, HSS technique can generate quasi-random samples showing k-dimensional 
uniformity properties. The HSS technique was used to develop a new SA algorithm called the efficient 
simulated annealing (ESA). Since HSS generates more uniform samples in the multivariate space, it 
requires less number of moves to approximate ideal probabilities.  

                           Fig. 10 shows the trajectories of the objective value for the test function 
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i iyyf  with different Markov chain lengths. ESA found the solution with a Markov chain 
length of 45 at each temperature while the traditional SA needed a Markov chain length of 75 to reach 
the same solution. ESA was found to be approximately 30~54% more efficient than conventional SA 



 

(56).  
Genetic algorithms (GA) are also used for combinatorial optimization problems. GA’s follow a 

search procedure based on the Darwin’s theory of evolution and the idea of survival of the fittest. GA’s 
begin with a set of solutions (represented by chromosomes) which is called the initial population. The 
population for the next generation is selected according to a randomized selection procedure involving 
four operators: (1) reproduction; (2) crossover; (3) mutation and immigration and the fittest individuals 
are selected from the population for the next generation. This procedure is repeated until a stopping 
criterion such as number of populations or improvement of the best solution is satisfied. Conventional 
GAs also use Monte Carlo sampling based on pseudo-random numbers for generating the initial 
population and various genetic operators. Similar to the efficient simulated annealing algorithm (ESA), 
an efficient genetic algorithm (EGA) based on the use of Hammersley sequence sampling technique 
was developed by Diwekar and Xu (57), in order to improve the efficiency of conventional GA’s. 
Table 1 shows the comparison of GA’s for problems varying in complexity and size. 

 
Table 1: Efficiency Improvement in GA Using the Hammersley Sequence Sampling (HSS) Technique (47) 

generation 

problems number of 
dimensions (nd) optimal value  MGA 

(Monte 
Carlo) 

EGA 
(HSS) 

efficiency 
improvement 

problem 1 
 

problem 2 
problem 3 

10 
20 

3-11 
5 

0 
0 
0 
-1 

15 
43 
9 

176 

4 
10 
6 

83 

73.33% 
76.74% 
33.33% 
52.84% 

 

Optimization under Uncertainty 
Optimization under uncertainty refers to the branch of optimization problems where there are 

uncertainties involved in the data or the model, and is popularly known as stochastic programming or 
stochastic optimization problems. The generalized stochastic framework to solve optimization 
problems under uncertainty involves two recursive loops: (1) the sampling loop and (2) the 
optimization loop. A schematic representation of this stochastic framework is shown in Error! 
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                           Fig. 10: The comparison between SA and ESA (52) 



 

Reference source not found.. By interchanging the position of the sampling loop, two kinds of 
solution procedures could be obtained. These are called “here and now” and “wait and see” problems. 
“Here and now” problems yield optimal solutions to achieve a given level of confidence. On the other 
hand, “wait and see” problems involve a category of formulations that show the effect of uncertainty 
on optimum design. A here and now problem replaces a deterministic model by an iterative stochastic 
model with sampling loop representing the discretized uncertainty space as shown in Error! Reference 
source not found.. A wait and see problem involves deterministic optimal decision at each scenario or 
random sample, equivalent to solving several deterministic optimization problems.  
 Both here and now and wait and see problems require representation of uncertainties in the 
probabilistic space and then propagation of these uncertainties through the model to obtain 
probabilistic representation of output. Here sample approximation methods and sampling accuracy are 
often used to derive new algorithms for optimization under uncertainty. 

 
 
Sample Approximation Methods 

As stated earlier, the stochastic programming formulations often include some approximations 
of the underlying probability distribution. The disadvantage of sampling approaches that solve the γth 
approximation completely is that some effort might be wasted on optimizing when approximation is 
not accurate (58). For stochastic linear programming the L-shaped method is a commonly used 
technique (59). For specific structures where the L-shaped method is applicable, two approaches avoid 
these problems by embedding sampling within another algorithm without complete optimization. 
These two approaches are the method of Dantzig and Infanger (60) which uses importance sampling to 
reduce variance in each cut based on a large sample, and the stochastic decomposition method 
proposed by Higle and Sen (61). For more details on stochastic programming please refer to refs. 1, 52 
and 58. 
Sample average approximation methods have also been used to reduce the computational time and 
increase accuracy for stochastic process design problems. Wei and Realff (62) presented a method 
which involves two algorithms: optimality gap method (OGM) and confidence level method (CLM) to 
solve convex stochastic mixed integer nonlinear problems. A smaller sample size is used to make 

 
Fig. 11: Stochastic programming framework 



 

decisions (with several replications) and a larger one is used to re-evaluate the objective value with the 
decision variables fixed. The sample sizes and replication number are increased until a stopping 
criterion is satisfied. In the OGM algorithm, the sample sizes are increased until the optimality gap of 
each upper and lower bound is sufficiently small; in the CLM algorithm, the sample sizes are increased 
until an overall accuracy probability is within a certain tolerance. 
 
Sampling Accuracy and Optimization 

In almost all stochastic optimization problems, the major bottleneck is the computational time 
involved in generating and evaluating probabilistic functions which represent the objective function 
and constraints. The number of samples required for a given accuracy in stochastic optimization 
problem depends upon factors such as type of uncertainty and the point values of the decision variables 
(55). Especially, for optimization problems, the number of samples required depends on the location of 
the trial point solution in optimization space. Fig. 12 shows how the shape of the surface over a range 
of uncertain parameter values changes at different optimization iterations. Therefore, the selection of 
the number of samples is an important step which ultimately decides the accuracy of the optimal 
solution in stochastic programming.  

For the solution of stochastic integer programming problems, variants of simulated annealing 
(SA) and genetic algorithms (GA) have been developed.  

Stochastic Annealing and Stochastic Genetic Algorithms 
 
 The stochastic annealing (STA) algorithm (55, 63, 64) is a variant of simulated annealing and is 
used to optimize stochastic integer programming problems. The stochastic annealing provides an 
improvement over simulated annealing by obtaining both the decision variables and the number of 
samples required for the optimization problem. For balancing computational efficiency and solution 
accuracy, a penalty function is introduced in the objective function to ensure that the algorithm selects 
greater number of samples as the solution nears optimum value.  
 Annealing temperature schedule (cooling schedule), is used to decide the weight b(t) on the 
penalty term for imprecision in the probabilistic objective function. The choice of the penalty term also 
depends on the error bandwidth (ε) of the function that is optimized and must incorporate the effect of 
number of samples. Therefore, the new objective function in stochastic annealing, consists of a 
probabilistic objective value P and the penalty function, (b(t)ε): 

 Fig. 12: Uncertainty space at different optimization iterations (Diwekar, 2003a) 



 

    ε)();()t(cosmin tbuxPZ +=      (18) 
 The weighting function b(t) can be expressed in terms of the temperature levels (t) and is given 
by b(t)=b0/kt where b0 and k are constants. At high temperatures, the sample size is small, and the 
algorithm is mainly exploring the functional topology to identify regions of optima. As the system gets 
cooler, the algorithm searches for the global minimum and more accurate estimates of the 
objectives/costs are needed and this requires more samples. The error bandwidth of the Monte Carlo 
samples (εMCS) is estimated by the central limit theorem.  

Using the Hammersley Sequence Sampling (HSS) technique for the generation probability Gij, 
Kim and Diwekar (56) developed the efficient stochastic annealing algorithm (ESTA). This algorithm 
uses the central limit theorem to evaluate the sampling errors and uses the HSS technique for 
generation probability. Another variant of STA is the Hammersley stochastic annealing algorithm 
(HSTA). This algorithm was presented by Kim and Diwekar (56) and it uses (1) HSS for the 
generation probability Gij in annealing procedure; (2) HSS for the inner sampling loop where number 
of samples Nsamp are determined, and (3) the HSS specific error bandwidth (εHSS). The error bandwidth 
for the Hammersley sequence samples (εHSS) is given by a fractal dimension analysis (64, 65). This 
methodology uses the k-dimensional uniformity properties of HSS technique and the HSS error 
bandwidth to achieve a trade-off between accuracy and efficiency. The HSTA algorithm is a useful 
tool for solving large scale combinatorial optimization problems under uncertainty and was applied to 
computer aided molecular design problems (56).  
 A similar approach was also applied to genetic algorithms by Diwekar and Xu (57). First the 
stochastic genetic algorithm (SGA) was developed which employs Monte Carlo sampling for 
stochastic optimization problems. Then efficient stochastic genetic algorithm was developed which 
uses HSS technique and Monte Carlo confidence intervals. Finally, the Hammersley stochastic genetic 
algorithm (HSGA) was introduced which uses HSS technique and HSS specific error bandwidth to 
achieve a trade-off between accuracy and efficiency. HSGA displayed the best performance among 
these algorithms. The performance of these three algorithms is compared in Fig. 13 for the test 
function: 
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Fig. 13: Comparison of performance and convergence path for SGA, ESGA and HSGA 
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Multi-Objective Optimization 

Multi-objective optimization (MOP) problems deal with conflicting and different objectives. 
They are commonly used where engineers are not only looking for low cost options but also trying to 
reduce the environmental and health impacts and risk and improve the reliability and safety of the 
plant. A generalized multi-objective optimization problem can be formulated as follows: 

min  piZZ i ,...,1, ==  2≥p  
s.t.  0),( =yxh          (20)

  0),( ≤yxg  
where x and y are continuous and discrete decision variables, and p is the number of objective 
functions. The functions h(x,y) and g(x,y) represent equality and inequality constraints, respectively. 
There is a large array of analytical techniques to solve this MOP problem; however, the MOP methods 
are generally divided into two basic types: preference-based and generating methods. Preference-based 
methods such as goal programming attempt to quantify the decision-maker’s preference, and with this 
information, the solution that best satisfies the decision-maker’s preference is then identified (2, 52). 
As is well-known, mathematics cannot isolate a unique optimum when there are multiple competing 
objectives. Mathematics can at most aid designers to eliminate design alternatives dominated by 
others, leaving a number of alternatives in what is called the Pareto set (66). Generating methods, such 
as the weighting method and the constraint method, have been developed to find the exact Pareto set or 
an approximation of it. For each of these designs, it is impossible to improve one objective without 
sacrificing the value of another relative to some other design alternative in the set. From among the 
dominating solutions, it is then the design which is the most appropriate for that particular purpose is 
selected. At issue is an effective means to find the members of the Pareto set for a design problem, 
especially when there are more than two or three objectives; the analysis per design requires 
significant computations to complete, and there are an almost uncountable number of design 
alternatives. A pure algorithmic approach to solving is to select one to minimize while the remaining 
objectives are turned into an inequality constraint with a parametric righthand side, Lk. The problem 
takes on the following form: 

min  jZZ =   
s.t. 0),( =yxh         

   0),( ≤yxg         (21) 
   pjjkLZ kk ,...,1,1,...,1, +−=≤  

 
where Zj is the chosen jth objective that is to be optimized. Solving repeatedly for different values of Lk 
chosen between the upper, ZU(j) and the lower, ZL(j), bounds leads to the pareto set. This is the basis 
of the MINSOOP algorithm. 

MINSOOP (Minimizing Number of Single Objective Optimization Problems) algorithm was 
developed by Fu and Diwekar (67) to address multi-objective optimization problems based on 
Hammersley Sequence Sampling (HSS) technique. The steps for a multi-objective optimization 
problem with k objectives (to be minimized) are listed as follows: 
Step 1: Solve k single objective optimization problems individually with the original constraints of a 
multiobjective problem to find the optimal solution for the individual k objectives. 
Step 2: Compute the value of each of the k objectives at each of the k individual optimal solutions. In 



 

this way, an approximation of the potential range of values for each of the k objectives is determined 
and saved in a table (called payoff table). The minimum possible value is the individual optimal 
(minimizing) solution. The approximate maximum possible value of the Pareto set is the maximum 
value for that objective found when minimizing the other k-1 objectives individually.  
Step 3: Select a single objective ( lZ ) to be minimized. Transform the remaining k-1 objectives into 
equality constraints of the form iiZ ε≤ , ki ,...,1= , li ≠  and add these new k-1 constraints to the 
original set of constraints. Then the original multi-objective optimization problem is transformed into a 
family of single objective optimization problems with parametric right hand sides. 
Step 4: Select a desired number of single objective optimization problems to be solved to represent the 
Pareto set. Using the HSS technique to generate the desired number of combinations of the inequality 
constraint values klli εεεε ,...,,,..., 11 +−  within the range determined in step 2. 
Step 5: Solve the constrained problems set up in step 4 for every combination of the right hand side 
values determined in step 3. These feasible solutions form an approximation for the Pareto set.  

The uniformity property of HSS technique is crucial for the success of MINSOOP algorithm. 
Fig. 14 shows how the MINSOOP algorithm improves efficiency for a simple nonlinear convex 
optimization problem as the number of objectives increases. Similar improvements are noted in multi-
objective genetic algorithms based on the uniformity property of HSS (68). 
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Fig. 14: Computational speed-up through MINSOOP (Fu and Diwekar, 2004)  



 

Application of Sampling Techniques in Chemical Systems 
The life cycle of a chemical manufacturing process extends from product discovery, raw 

material selection (chemical synthesis) and process development (process synthesis and design) to 
process operation, planning and management which involve tasks such as scheduling, supply chain, 
and process control. Contemporary process design approaches require engineers to not only look for 
low cost options but also include several other criteria such as reliability, flexibility, operability, 
controllability, environmental and ecological impacts, safety and quality into different stages of 
analysis and design. This results in additional complexities and uncertainties. This section will present 
some of the applications of sampling techniques in product discovery, chemical synthesis, process 
synthesis and process operations ranging from scheduling, supply chain and process control. The role 
of sampling techniques in risk and reliability analysis will also be discussed. 

Product Discovery and Design; Computational Chemistry and Molecular Simulations 
 At the discovery stage of a chemical process, computational chemistry, molecular modeling 
and simulations are widely used in chemical and pharmaceutical industries. For the design and 
discovery of new molecules or drug compounds, Monte Carlo or molecular dynamics simulations are 
applied to estimate the physical, chemical, biological and toxicological properties of interest. A review 
of molecular modeling and simulation techniques can be found in refs. 15 and 69. These methods 
depend heavily on random number generators and sampling. The following discusses the role of 
sampling in molecular simulations where Monte Carlo methods are predominant.  
 In Monte Carlo molecular simulations, particles are randomly selected and moved by a random 
extent and the energy change of the system is analyzed. These random perturbations on the system 
configuration are accepted according to Metropolis criterion, with a probability proportional to the 
Boltzmann constant. This forms the basis of Metropolis Monte Carlo (MMC) method which is the first 
approach in increasing efficiency of Monte Carlo molecular simulations by using the “importance 
sampling” concept. In importance sampling, a biased distribution is used to obtain more samples from 
a region of importance. Boltzmann distribution function is such a distribution used in MMC where 
system configuration states which make substantial contributions to the ensemble averages are 
generated. The Metropolis Monte Carlo method requires large number of samples to generate accurate 
property estimations and is computationally intensive especially for large number of molecules and 
complex fluids. Therefore many researchers have worked on sampling techniques in order to speed up 
the calculations and cover the configurational space more efficiently. Some examples of these biased 
sampling techniques are configurational-bias Gibbs ensemble (70) and its variants, (71-73) and non-
Boltzmann biasing techniques (74, 75). Despite the fact that, the literature is abundant in examples of 
algorithms for efficiency improvement for Monte Carlo simulations, most of these methods are derived 
based on the importance sampling (biased sampling) principle and are often  problem specific and 
offer customized solutions for particular systems. 
 Recently, a universal approach for increasing efficiency in molecular simulations using the 
Hammersley sequence sampling (HSS) technique was presented (76). Pseudo-random numbers are 
used in Metropolis Monte Carlo method for performing the random moves for the molecules and for 
acceptance probability. This new technique replaces the pseudo-random numbers in a systematic way 
by quasi-random samples of HSS, to speed-up the simulations and to increase the accuracy. While 
replacing the pseudo-random numbers with quasi-random samples, the k-dimensional uniformity 
property of HSS technique was maintained and exploited to cover the configurational space more 
efficiently. This method was used to estimate thermodynamic and biological/toxicological properties 
of chemicals, more specifically octanol-water partition coefficients. This new framework provided a 
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better way to predict octanol-water partition coefficients in terms of prediction accuracy and 
computational efficiency (number of cycles) as shown in Fig. 15. It should also be noted that this 
proposed approach can be used in conjunction with the biased MCS (importance sampling) strategies 
presented in literature and is not restricted to specific applications.  

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

Chemical Synthesis 
Process design starts with chemical synthesis in a laboratory where a chemical pathway from 

reactants to products is defined. This involves the search for molecules possessing desired physical, 
chemical, biological properties. Computer aided chemical synthesis relies on the group contribution 
methods (77, 78) which assign numerical values to functional groups forming each molecule, through 
experimental data and theoretical methods. It is possible to calculate a wide range of characteristics for 
any given chemical by combining these functional groups.      

A basic diagram of computer aided molecular design (CAMD) is shown in   Fig. 
16. The starting point in CAMD is a set of functional groups. All possible combinations of these 
functional groups are explored to generate molecules that satisfy feasibility constraints. The properties 
of each group and the interaction parameters between groups can be obtained theoretically, 
experimentally or by applying statistical regression techniques. Once molecules are generated, the 
properties of these molecules are inferred from the properties of the functional groups structuring 
them. If the generated molecule satisfies certain criteria then it is added to the list of candidate 
molecules. This method can generate a list of candidate molecules for any purpose with reasonable 
accuracy within a moderate time scale.  

There are three main CAMD approaches: generation-and-test, mathematical optimization and 

Fig. 15: Octanol-water partition coefficient for propanol predicted by molecular 
simulations 
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  Fig. 16: A basic diagram of computer-aided molecular design 



 

combinatorial optimization approaches (79). All methodologies for CAMD are subject to uncertainties 
due to experimental errors, imperfect theoretical models/parameters, and inadequate knowledge of the 
systems. Furthermore, group parameters may not be available and current group contribution models 
(GCM) cannot estimate all necessary properties.  

Uncertainties in CAMD have been addressed in various publications. For example, Maranas 
(80) studied polymer design with optimal thermophysical and mechanical properties. These properties 
are estimated based on group contribution methods and there are always discrepancies between the 
experimental data and the data predicted by group contribution method. In order to model the 
uncertainties in group contribution parameters, probability distribution functions are utilized, which 
results in a chance constrained formulation. These chance constraints represent the probability of 
meeting the target values of properties. The solution to the optimal molecular design problem under 
uncertainty has at least an α chance of meeting performance objectives and β chance of maintaining 
property values within their designated bounds. Since the formulations provided by Maranas (80) 
involve probability terms, this poses a problem of integrating multivariate probability density 
distributions. In order to overcome the computational burden, stochastic constraints are transformed 
into equivalent deterministic ones. This allows reaching an exact solution to the resulting convex 
MINLP formulation.  
 Tayal and Diwekar (81) also addressed property prediction uncertainty in polymer design and 
presented a generalized stochastic framework based on Hammersley Sequence Sampling (HSS) and 
stochastic annealing to solve this problem. Due to its increased computational efficiency, this 
framework is applicable to nonlinear or even black box property prediction models, nonlinear 
objective function and constraints and stable and non-stable distributions for the uncertain variables. It 
also provides a set of solutions instead of only one solution, which gives flexibility to the designer.     

Kim and Diwekar (49, 50, 82) applied the computer-aided molecular design (CAMD) approach 
to the selection of environmentally benign solvents under uncertainty for extraction. Uncertainties in 
property prediction models were quantified using available experimental data as shown earlier in Fig. 
8. The Hammersley stochastic annealing (HSTA) algorithm was implemented (56) to solve this 
combinatorial optimization problem. This algorithm makes use of the efficient Hammersley sequence 
sampling technique for updating discrete combinations, reducing Markov chain length and for 
determining the number of samples automatically.   
 The problem of environmentally benign solvent selection was also studied using genetic 
algorithms (57, 83). Hammersley stochastic genetic algorithm (HSGA) was developed which 
outperforms the HSTA algorithm by choosing solvents with better targeted properties in less 
computational time. 
 
Experimental Design, Model Building and Parameter Estimation 

 Experimental design is used frequently by researchers for assessing the performance of a new 
catalyst, determining a reaction mechanism or determining the best operating conditions for a chemical 
plant. Experimental design also affects the fidelity of the fundamental and semi-empirical models 
developed and model parameters estimated using experimental data for the process at hand. Reliable 
models offer competitive advantage to industries for model based process design, operations and 
control.  

In experimental design, it is desired that the experimental region that is sampled generates the 
maximum amount of information for determining the correct model from a set of candidates and 
estimating the parameters of this model with the greatest precision.  

When building models one uses some prior information such as physical, chemical or biological 



 

laws and propose possible model candidates for the process under consideration. These models may 
have parameters that have a physical meaning, such as the kinetic constants for a chemical reaction 
that one wishes to calculate with maximum precision. Usually these models consist of mixed 
differential and algebraic equation systems. 

Model building consists of these three stages (84):  
Stage I:Specify one or more models to describe the process and perform preliminary 

identifiability and distinguishability tests before any data is collected in order to determine whether or 
not the parameters in the mathematical models can be uniquely identified and model structures can be 
distinguished from one another. 

Stage II: Design experiments for model discrimination to select the best model representative of 
the process.  

Stage III: Design of experiments to improve the precision of the parameters within the best model 
to arrive at a statistically verified model formulation. The design criterion is to minimize the volume of 
the confidence region for the parameter estimates.  

Once the best model is chosen the parameters of the model are random variables with associated 
probability distributions. The uncertainty in these parameters affects the predictions made with the 
models for design, optimization and control. High degree of correlation may also exist within the 
model parameters. For example, Whiting and coworkers (85) developed a new sampling strategy, 
called equal probability sampling (EPS), to account for the correlations between thermodynamic model 
parameters and sample the parameter space more efficiently. 
If a complex model is used to represent the physical phenomena, with high number of model 
parameters, it is time-consuming and expensive to estimate all the parameters with high precision. This 
task proves especially difficult when there are nonlinearly related model parameters. In these cases, the 
number of experiments needed to be performed to identify all the model parameters is very costly. 
Therefore sensitivity analysis may be performed to identify the most significant model parameters and 
the experimentation can be directed towards determination of these parameters alone, in order to 
reduce the cost and duration of the parameter estimation and model validation process. Parameter 
sensitivity analysis is used to quantify the effect of certain model parameters on the model output. 
Recently, Kontoravdi and coworkers (86) applied Sobol’s method for global sensitivity analysis (GSA) 
to a mammalian cell culture producing monoclonal antibodies and identify the parameters which have 
a significant impact on the output. Each parameter space is sampled using a Sobol sequence, which 
yields no overlapping points to thoroughly investigate the entire range of parameter values. This 
method can be used as a precursor for experimental design to reduce the cost of experimentation. A 
review of sensitivity analysis techniques for chemical models was presented recently by Saltelli and 
coworkers (87). 
 
Process Synthesis and Design 

Process synthesis translates chemical synthesis into a chemical process. It encompasses the 
choice of various unit operations, how they are connected and the optimization of the proposed plant. 
Process design activities start at this level and a flowsheet of the plant is generated according to these 
decisions and process simulators are used to predict mass and energy flows for the process. Commonly 
employed methodologies for selecting optimal process flowsheet configurations can be classified into 
four groups (74): (1) optimization based approach; (2) hierarchical heuristic approach; (3) 
thermodynamic phenomena driven approach; (4) evolutionary methods. 

Optimization approach to process synthesis involves (a) formulation of a complex flowsheet 
incorporating all the alternative process configurations, which are called superstructures and (b) 



 

identification of an optimal design configuration for a system to meet specified performance and cost 
objectives. Once the superstructure is known, combinatorial optimization methods such as mixed 
integer nonlinear programming (MINLP) algorithms can be used to solve the synthesis problem.  

The literature in the area of process synthesis and process design under uncertainty has been 
concentrated on two focused application areas: (1) pollution prevention by design, and (2) designing 
for flexibility.  

The earlier papers in synthesis under uncertainty with pollution prevention focus dealt with 
integrated environmental control systems for coal based power systems. The work continued and 
extended to address synthesis problems in this area (88-90). Nuclear waste management posed a very 
hard synthesis problem (91). The combinatorial, non-convex nature of the problem was hard to solve 
even with deterministic optimization methods. Uncertainties associated with waste tank contents and 
models caused further problems and demanded new algorithms. The new stochastic annealing 
algorithm provided optimal and robust solution to this problem in the face of uncertainties with 
reasonable computational time (64). A multi-objective extension of this problem to include policy 
aspect was possible due to these new algorithms (92). Dantus and High (93) also used this new 
algorithm for waste minimization in methylene chloride process synthesis.  

Acevedo and Pistikopoulos (94) also addressed process synthesis problems under uncertainty 
and presented a stochastic framework based on a two-state stochastic MINLP formulation for the 
maximization of a function comprising the expected value of the profit, operating and fixed costs of 
the plant.  Uncertain parameters were described by general probabilistic distribution functions and 
multi-period formulations.  

Increased environmental concerns in recent years have profoundly changed traditional process 
synthesis and design. If the environmental issues are addressed in early stages of design, there is 
greater flexibility and more opportunities to reduce environmental impacts at a lower cost. Recently, 
Diwekar (1, 52) presented a generalized framework to address this problem. Fig. 17 presents the 

Fig. 17: Algorithmic framework for multi-objective optimization 



 

different levels involved in this framework. The innermost level corresponds to models for process 
simulation. In this level, all possible process alternatives for a particular process are defined. Chemical 
process simulators such as AspenPlus (95), MultiBatchDS (96) or SuperPro (97) can be used for the 
innermost modeling. The second level corresponds to the sampling loop where the uncertainties can be 
specified in terms of probability distributions. Once probability distributions are assigned to the 
uncertain variables, sampling techniques such as Monte Carlo sampling, Hammersley sampling (HSS) 
or Latin hypercube sampling (LHS) can be used to perform the sampling operation from the multi-
variable uncertain parameter domain as discussed in Section 2. The third level is the continuous 
optimizer which involves continuous decisions such as process design and operating conditions. In the 
fourth level, discrete decisions such as chemical and process structural alternatives are managed by 
mixed integer programs. The outermost loop is the multi-objective programming loop where different 
objectives such as cost and environmental impacts are considered and trade-off surfaces which are 
called Pareto optimal solutions are generated. Various applications of this approach such as hybrid fuel 
cell power plant design under uncertainty (1, 98) and environmentally benign heterogeneous 
azeotropic distillation system design (68) have been presented. Kheawhom and Hirao (99) also 
presented a two layer algorithm for environmentally benign process synthesis under uncertainty. In the 
outer layer, the synthesis problem is represented by a multi-objective optimization problem 
considering the performances associated with design parameters. In the inner layer, the problem is 
expressed as a single-objective optimization problem taking in to account the operating performances 
in the presence of uncertainty. This algorithm was applied to a membrane-based toluene recovery 
process. 

As mentioned earlier, it is essential to identify environmental impacts of a process earlier 
because the opportunity to overcome environmental problems in later stages of process development 
diminishes. However, in early design stages, there is high uncertainty in various economical, 
ecological and technical process parameters. For this purpose, Hoffman and co-workers (100) 
proposed a new approach to select promising process alternatives in early stages of design. The 
method is based on approximating flowsheets by polynomial response surfaces with a lower 
complexity. A multiobjective optimization problem was solved for selecting a production process for 
hydrocyanic acid with 400 uncertain variables. Latin hypercube sampling technique was performed on 
the substituted response surface to obtain Pareto optimal solutions.  
 As stated earlier, process flexibility is an area that received significant attention, as it ensures 
that processes are operational and safe when exposed to variations in operating conditions. For 
example for waste reduction in pharmaceutical industries (101, 102) a discrete representation of waste 
loads assign probabilities to distinct waste scenarios. Since the explicit enumeration of all possible 
waste scenarios for numerous waste streams would lead to a massive amount of uncertain variables, a 
randomly selected sample is used to represent the uncertain space based on Monte Carlo sampling. 
Then a flexibility index is defined which measures the flexibility of a waste treatment policy to 
changing waste loads and superstructures are searched for recovery and treatment policies. Flexibility 
issues have also been addressed in process synthesis for heat exchanger network design (103, 104), and 
synthesis of heat integrated distillation sequences (105). However, these papers use but scenario based 
approach to represent uncertainties. 
Process Operation 
 The aim of process operations is to optimally use capital, material, energy and information 
resources to produce desired chemical products in a reliable and flexible way while complying with 
environmental and safety regulations. Process operation involves activities ranging from process 
control, monitoring and diagnosis, process planning, scheduling and supply chain management. The 



 

following subsections describe these various activities. The problems related to production planning, 
scheduling and supply chain often involve discrete combinatory decisions and uncertainties. These 
problems belong to batch processing, which is generally used for the production of high-value added, 
low volume products such as pharmaceuticals and specialty chemicals. Even though various sources of 
uncertainties exist in batch processing, most of the literature deal with demand uncertainties. To 
represent these uncertainties sampling methods are used. 
 
Process Planning, Management and Scheduling 

Most of the problems in management, scheduling and planning include combinatorics (discrete 
choices and decisions) and uncertainties. Pekny (106) reviewed this area and provided algorithm 
structures that simultaneously consider combinatorial aspects and data uncertainty for industrial scale 
problems. The simulation based-optimization approach described in this paper uses a customized 
mixed integer linear programming solver to optimize process behavior together with a discrete event 
simulator to investigate the effect of uncertainty on the plans output from the optimizer. This 
procedure requires a biased sampling scheme to focus on critical events and avoid large number of 
simulations that are not insightful.  

Scheduling problems have been studied widely in chemical engineering literature. Recently, 
Lin and Floudas (107) presented an overview of scheduling problems in multi-product/multi-purpose 
batch and continuous processes. The overall profitability of a process and the timely delivery of 
products highly depend on scheduling. Scheduling problems involve sequencing, assignment of tasks 
to equipment and maintenance over a planning horizon, and inventory considerations of a process. 
Scheduling problems could be described conveniently using a resource-task equipment network. These 
problems are usually encountered in batch processing. In order to determine operating policies based 
on realistic production plans, uncertain nature of processes must be addressed. In batch processing, 
uncertainties result from processing time fluctuations, equipment reliability or availability and 
demand. Two different approaches exist for scheduling problems under uncertainty: (1) reactive 
scheduling and (2) stochastic scheduling. In reactive scheduling, uncertainties are handled by adjusting 
the schedule when the uncertain parameters or unexpected events occur. Usually heuristic approaches 
are used for schedule modifications. Whereas, in stochastic scheduling, the uncertainties are 
considered at the original scheduling stage and optimal and reliable schedules are found in the 
presence of uncertainty.  

A scenario based approach is usually used which comprises of all the possible future outcomes 
modeled by discrete probability distributions and the expected value of a performance index such as 
makespan or profit is optimized with respect to the scheduling decision variables (108). A scenario 
contains a discrete value for all uncertain variables within a given time interval and its associated 
probability. The number of scenarios increases exponentially with the number of uncertain variables 
and this increases the problem size. Bassett and co-workers (109) presented a framework for 
addressing uncertainties by means of Monte Carlo sampling. Uncertain variable such as processing 
times and equipment downtimes are sampled from their probability distributions and the reliability of 
meeting a certain due date is determined. Lee and Malone (110) proposed a probabilistic approach 
based on the hybridization of Monte Carlo simulation and simulated annealing techniques to obtain a 
schedule able to handle uncertainties in parameters of batch process scheduling. This approach was 
also used to develop a flexible planning algorithm (111). Process planning involves the optimal 
selection of processes from among competing alternatives and timing of capacity expansions in a way 
that maximizes the net present value of the project over a planning horizon. Liu and Sahinidis (112) 
developed a two-stage stochastic program for process planning problems under uncertainty using a 



 

combination of Bender’s decomposition and Monte Carlo sampling.  
 
Supply Chain Management 

Supply chain management takes the scheduling problems one step further and spans 
coordination of the management of multiple facilities and shipment of materials through an associated 
transportation network to customers. Supply chain management spans activities related to storage and 
movement of raw materials and products from the plant to the point of consumption. Due to the 
changing market conditions and customer demands, it is critical for businesses to have an efficient and 
flexible supply chain. Various sources of short-term and long-term uncertainties exist in these systems. 
Examples of short-term uncertainties are uncertainties in processing parameters such as processing 
times or yields or availability of equipment. On the other hand, long-term uncertainties include price 
fluctuations in raw material and final products and seasonal variations in demand, which occur over a 
longer period of time.  

In literature, various sources of uncertainties are addressed in supply chain management. Gupta 
and Maranas (113) considered demand uncertainty in midterm planning of multisite supply chains. A 
stochastic programming based approach was described to model the planning process as it reacts to 
demand realizations unfolding over time. Lababidi and co-workers (114) developed an optimization 
model to study the supply chain of a petrochemical company under uncertain operating and economic 
conditions. The objective function is based on optimizing the system resources by minimizing the total 
production costs and raw material procurement, as well as lost demand, backlog, transportation, and 
storage penalization. Uncertainties are considered in demands, market prices, raw material costs, and 
production yields. Multiple scenarios of an uncertain future, each with an associated probability of 
occurrence were considered. It was found that uncertainties have a profound effect on the planning 
decisions of the petrochemical supply chain. Jung and co-workers (115) proposed the use of 
deterministic planning and scheduling models which incorporate safety stock levels as a means of 
accommodating demand uncertainties in routine operation by a Monte Carlo sampling technique. The 
problem of determining the safety stock level to use to meet a desired level of customer satisfaction is 
addressed using a simulation based optimization approach. Wan and co-workers (116) extended the 
concept of simulation based optimization by introducing a surrogate based model together with domain 
reduction and incremental sampling to extract structure information from noisy simulation results and 
to optimize supply chain decisions. The idea behind a surrogate-based model is to fit a single surface 
for the whole decision space, and use this surface to perform optimization instead of the simulation 
model. This model is constructed using Latin hypercube sampling (LHS), domain reduction techniques 
to concentrate on the exploration of good regions, and support vector machines to extract structure 
information from noisy data.  

Guillen and co-workers (117) presented a stochastic multi-objective optimization approach to 
obtain a trade-off between customer satisfaction and expected profit to be achieved in the short term 
operation of chemical industry supply chains. A two-stage stochastic formulation is used, which 
considers the uncertainty associated with reactions to future demand and a set of Pareto optimal 
solutions are generated. This approach is aimed to provide decision support in making optimal offer 
proposals during negotiation process between customers and suppliers. The uncertainty associated with 
product demands and prices is represented by a set of scenarios with a given probability of occurrence 
and these scenarios are generated by performing Monte Carlo sampling. 
 Hung and co-workers (118) presented a new modeling approach based on an object-oriented 
architecture to handle supply chain configurations, operational decisions and policies, through the use 
of a generic supply chain node. The model provides a fully dynamic simulation of the supply-chain 



 

and the effect of various uncertainties are evaluated through Monte Carlo simulation and other more 
efficient, sampling techniques based on quasi-Monte Carlo methods. The uncertain variables in supply 
chains are sampled from their respective probability distributions and the expected value of a 
performance indicator such as customer service level or average inventory is calculated 
 
Reliability 

Due to increased competition worldwide, chemical plants need to operate with high process 
reliability to increase operational effectiveness and profits. System reliability and availability methods 
can be classified as measurement based and model based methods (119). Measurement based methods 
are expensive as they require building a real system or its prototype and taking measurements and then 
analyzing the data statistically. In the context of process systems, at the design stage where the system 
or its prototype is not yet been built, the use of measurement technique is nor feasible. While at the 
operational stage, it can prove to be very expensive to inject faults into a real system to measure data. 
Model based methods are much easier to use and are particularly useful at the design stage to screen 
lots of design alternatives without building the actual system. However, model-based methods are 
subject to model uncertainties, which propagate into RAM (reliability, availability and maintainability) 
performance (120) 

It has become important in recent years to address reliability issues at the conceptual design 
stage. It is also critical to increase the availability of the plant to save on lost production costs. The 
problem of including uncertainties in equipment availability at the design stage was addressed by 
Pistikopoulos and coworkers (121-124) Obtaining an optimal production schedule in the presence of 
equipment failure uncertainty for multiproduct/multipurpose batch plants is important for profitability 
and timely production. Sanmarti et al. (125) addressed this problem and introduced a schedule 
reliability index to identify robust schedules. This reliability index represents the represents the 
discrete probability that a corresponding unit will be available to perform the next scheduled task 
based on the failure history and maintenance operations carried out on the unit. Production and 
maintenance schedules were determined simultaneously with this methodology. However, only 
scenario based approach is used for the probabilistic evaluation of reliability and availability in all 
these papers. 
Genetic algorithms were applied to preventive maintenance optimization problems by Tan and Kramer 
(126). Their framework for preventive maintenance optimization combines Monte Carlo simulation 
with a genetic algorithm. This framework is suitable for handling uncertainties and non-deterministic 
objective functions. 
 
Risk Analysis and Research Management 

Risk and policy analysis involves uncertainty quantification and characterization using 
probability distributions and sampling. Since the results of the probabilistic analysis depend on the 
number of samples chosen, the choice of an efficient sampling technique becomes crucial. It is 
desirable to use a sampling technique that can predict the output probabilistic measure accurately with 
the minimum number of samples. Wang and co-workers (25) presented new sampling techniques 
based on the combination of Hammersley sequence sampling (HSS) and Latin hypercube sampling 
(LHS) for the evaluation of health risk associated with exposure to hazardous materials. This sampling 
technique inherits the advantages of both HSS and LHS for superior efficiency.  

Sampling techniques are also used for financial risk assessment in chemical process industries. 
For example, Bonfill and co-workers (127) presented a stochastic optimization approach to manage 
risk in short-term scheduling of multi-product batch plants with demand uncertainties. A two-stage 



 

stochastic optimization model accounting for the maximization of the expected profit was used and this 
model was also extended to incorporate the availability of option contracts. To represent the demand 
uncertainty, independent scenarios were simulated by Monte Carlo sampling from the given 
probability distributions. A similar approach was applied also for processing time uncertainties (128). 
Guillen et al. (129) developed a new strategy for integrating pricing decisions with the scheduling of 
batch plants to manage financial risk associated with demand uncertainty. The relationship between 
prices and demand have been modeled and forecasted and integrated into the scheduling model to 
determine simultaneously the prices and optimal schedule to maximize the profit. A sample average 
approximation (SAA) method was used to approximate the expected profit in the objective function.  

Research management in general is related to research prioritization and reduction of 
uncertainties. A “value of research” methodology was proposed by Johnson and Diwekar (92) and 
Johnson and co-workers (130) for research management problems. This methodology tries to 
determine when imperfect information is acceptable, and where should the scarce resources be 
allocated to leverage the impact of these research efforts on the whole of its strategy. While reducing 
uncertainty is profitable, the time required to achieve a reduction tempers the benefit. This approach 
was applied recently to hybrid fuel cell power plants (131). 
 
Robust Control 

Control systems are used to keep the product specifications on target, to minimize deviations 
from the nominal process conditions and maintaining the safe operation of the plant. Control system 
design involves the selection of input and output variables, the process model, appropriate type of 
controller and adjustment of the controller tuning parameters. Model uncertainty and external 
disturbances are important concerns in designing control systems.  

One of the most important criteria for designing a control system is to achieve robustness to 
these model uncertainties and disturbances. A probabilistic approach has been used by Schaper and co-
workers (132) to achieve robust process control. This probabilistic approach characterizes the model 
uncertainties by probability distributions and a statistical measure of disturbance rejection for the 
controller is incorporated into a robust control framework. The performance of the controller is then 
characterized by a probability measure for all situations between nominal and worst case conditions. 
Ratto and Paladino (133) considered uncertainties in process and kinetic parameters for non-ideal 
controlled CSTRs and described a procedure to perform stability, sensitivity and bifurcation analysis 
by a Monte Carlo method. This procedure is used to identify most probable stability regions and to 
design a robust control system. Li and co-workers (134) proposed a model predictive control strategy 
under chance constraints for robustness. Both the model and disturbance uncertainties were considered 
and assumed to be correlated multivariate stochastic variables. A stochastic program under joint 
probabilistic constraints was formulated and using the Hammersley Sequence Sampling (HSS) 
technique, this problem was relaxed to a nonlinear programming problem.  

In order to achieve robustness, parameter design methodology is also a widely used method. It 
is termed as an off-line quality control method for designing products and manufacturing processes 
that are robust in the face of uncontrollable variations popularized by Taguchi (135). The variables 
affecting a product’s performance are classified into two groups: (1) design parameters whose nominal 
settings can be specified; (2) noise parameters that represent uncontrollable variations over a product’s 
lifetime and across different units. In order to relate the noisy input parameters to the process output, 
two different approached could be used: (1) physical experiments could be conducted by varying the 
input parameters over the noise space to generate a response surface or (2) computational models could 
be developed. Monte Carlo methods are used for propagating the effects of input variability through a 



 

model and output variability is studied. A sample of input vectors is generated which is representative 
of the uncertainty distribution and outputs are evaluated at each of these samples.  
The importance of sampling efficiency for generating these samples from the multivariate space for the 
formulation of a stochastic optimization problem for parameter design was emphasized in an earlier 
study by Diwekar and Rubin (90) for off-line quality control of a continuous stirred tank reactor. Latin 
Hypercube Sampling (LHS) was used instead of Monte Carlo technique to reduce the required number 
of samples. Later, Kalagnanam and Diwekar (13) applied the Hammersley Sequence Sampling (HSS) 
technique to this problem for further efficiency improvements exploiting the k-dimensional uniformity 
properties of this technique. Another study related to robust batch distillation column design using the 
HSS technique also illustrated the usefulness of this approach. Sahin and Diwekar (136) demonstrated 
efficiency of a new algorithm called Better Optimization of Nonlinear Uncertain Systems (BONUS) 
for the same problem. Terwiesch and Agarwal (137) presented an optimization procedure to achieve 
robustness in batch reactor optimal control under parametric uncertainties. Probability distributions 
were used for the uncertain process parameters and the expectation of cost function for the entire 
parameter space was optimized. 
 
Optimal Control 

A challenging control problem in which has received considerable attention in literature is 
optimal control where an optimal trajectory (future of action) for a control variable is computed by 
dynamic optimization, so as to maximize/minimize a performance index such as cost, product yield or 
time. To compute optimal control trajectories in the face of time-dependent uncertainties, a stochastic 
maximum principle formulation was developed based on real options theory and using a class of 
stochastic processes called Ito processes (51, 138). Using this methodology, thermodynamic model 
uncertainties in batch distillation were characterized and stochastic optimal control profiles were 
computed (47, 51, 139). Sampling techniques and stochastic modeling approaches were used to 
characterize, quantify and propagate uncertainties. This technique improved the process performance 
objectives significantly in various case studies.   
In recent years considering process design and control simultaneously has become an important. 
Sakizlis and co-workers (140) have provided a review of recent advances towards the integration of 
process design, process control and process operability where time-varying disturbances and 
uncertainties are considered. More recently, Pajula and Ritala (141) discussed the effects of 
measurement uncertainty on process performance and how it should be accounted for in the design of 
the control structure. For this purpose, dynamic scenarios were used and they were each assigned a 
probability of occurrence using the knowledge gained from earlier experiences. This method was 
applied to a papermaking process where the effect of measurement uncertainty of fiber and filler 
consistency (concentration) on controller performance was studied. For batch separations and solvent 
recycling in pharmaceutical industry, Ulas and Diwekar (142) presented a framework that couples 
product design, process design and optimal control in the face of time-dependent uncertainties. 

Conclusion and Future Trends 
 
 Sampling is an important element of uncertainty analysis, stochastic modeling and optimization 
algorithms, used for chemical process design, operation and control. Sampling techniques are 
employed to sample probabilistic space of uncertain variables commonly encountered in these 
applications. Apart from uncertainty analysis, sampling also plays an important role in improving 
efficiency of discrete, stochastic and multi-objective optimization algorithms. Sampling based Monte 
Carlo methods are also an essential part of computational chemistry.  



 

 Monte Carlo sampling is the most commonly used sampling technique based on pseudorandom 
numbers. This sampling technique has probabilistic error bounds and it requires large sample sizes to 
estimate the mean and standard deviation for an uncertain variable. Therefore, variance reduction 
techniques have been employed in order to increase efficiency. Importance sampling, Latin hypercube 
sampling (LHS) and Hammersley sequence sampling (HSS) are examples of variance reduction 
techniques. Importance sampling is executed on the fact that some of the input random variables have 
more impact on the parameter being estimated than others and, these values are sampled more 
frequently. On the other hand, Latin hypercube sampling is a stratified sampling technique to reduce 
the sample size. Hammersley Sequence Sampling (HSS) and its variants are efficient sampling 
techniques based on quasi-random numbers showing k-dimensional uniformity properties.  
 Due to increased environmental consciousness, traditional design methods should include 
objectives such as environmental and health impacts, risk, reliability and safety, as well as 
controllability and profitability into earlier stages of process design. Sampling techniques have various 
applications during the life cycle of the plant such chemical synthesis, process synthesis, process 
operations such as management and planning, supply chains, scheduling, control and maintenance 
optimization for better reliability. Environmental and financial risk management are other applications 
where sampling is a crucial step.  
 Future trends in sustainable process design require researchers to study the connections 
between industries and ecosystems, which are the complex networks of humans, plants, animals and 
the environment (2). The effects of hazardous chemicals and the activities of the chemical plants with 
the ecosystem need to be modeled for enhanced decision making. These multifaceted models have 
many steady state and dynamic uncertainties and efficient sampling techniques will play an important 
role in analysis.    

Furthermore in the future, the applicability of efficient sampling techniques such as 
Hammersley sequence sampling (HSS), needs to be examined for higher dimensional problems. There 
is a loss of uniformity observed in quasi-random sequences for higher dimensions.  Leaping techniques 
(24, 26) and combinations of quasi-random sequences are used to improve Hammersley sequence 
sampling (HSS) technique to make it applicable to higher dimensional problems and more work is 
needed in this area. 
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