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Abstract—QCM interactions with a discretely resonant load much greater in frequency than the quartz resonator’s shows 
negative frequency changes with increasing mass loading.  However, a positive frequency increase of the coupled 
system occurs when the load resonant frequency is less than the quartz resonator’s.  A brief review of the method by 
which a resonant load can be coupled into the electromechanical equations for the quartz resonator is given.  Though 
this yields exact results, the purpose of this communication is to show the derivation of an equivalent circuit for the 
resonance following the acoustic impedance approach.  This equivalent circuit replicates the characteristics of the exact 
solutions. 

I. INTRODUCTION  
The analysis for the coupled resonance within the electromechanical model was initially done for a specific 

application, namely the behavior of small spheres on the QCM[1].  However, the model is quite robust and can 
represent any general load on the QCM in which the load has its own resonance. Here we discuss the load’s 
resonance and its on the behavior of the QCM resonance.  We introduce an equivalent circuit which may be useful in 
pointing towards the origins of that resonance. 

The initial notion for the effect on a resonant system of a load which is itself resonant was first discussed by 
Dybwad[2].  This was done in terms of a spring and mass system in which the load itself was another spring and mass.  
We have been successful in taking this phenomenon to the case of a load on the QCM, including its effects on higher 
harmonics.  Under “Exact Approach”, we outline this procedure.  Under “Equivalent Circuits” we  extend this approach 
to obtain an equivalent circuit representation using the approach given by the Sandia group[3]. 

II. EXACT APPROACH 
The key to including the effects of a self-resonant load into the complete electromechanical equations is to express 

the stress π and displacement of the load on the surface of the quartz, permitting matching of boundary conditions to 
the quartz surface.  The model for the coupled resonance is that of a set of identical spheres, each of mass M coupled 
via a spring to a massless rigid rod implanted on the quartz surface.  Writing the amplitude of the motion of the mass 
away from the rod as W, and the amplitude of the motion of the rod coupled to the quartz as U, the equation of motion 
for this system can be written: 
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The equation has been written in terms of the self-resonant frequency ωR and its quality QR . For a collection of these 
non-interacting close packed spheres each of diameter D, the stress can be written: 
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  Solving for the boundary conditions in a manner similar to that detailed previously[3], the parameters of the quartz 
and the sphere motions are determined..  

While the availability of the exact analysis would permit the determination of the frequency and dissipative changes 
in the resonance, it was felt that a reduction of that analysis to an equivalent circuit representation would be helpful in 
interpreting the influence of experimental changes.  For this purpose, we used the analysis described by the Sandia 
group[4].  They had earlier shown[5] that the electrical equivalent circuit can be divided into a portion dependent only 



on the unloaded quartz parameters and with added series elements representing the load parameters.  For example, in 
the case of a pure liquid load on the quartz, the equivalent circuit was: 
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Figure 2.  Equivalent circuit representation for a QCM loaded with a liquid. 

Their expression takes the form: 
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Here, N is the harmonic number, K2 is the electromechanical coupling constant for the quartz, Cp is its dielectric 
capacitance, ZQ the quartz acoustic impedance, and ZAC is the load’s acoustic impedance. This latter is given by the 
ratio of the stress to the velocity of the load at the quartz surface.  The impedance ZADD can be interpreted either as a 
series combination or a parallel combination of an R, L and C. We were able to obtain explicit expressions for the 
parallel combination.  For the example shown in Figure 1, we obtained  RPAR=1.287x108 ohms, CPAR= 0.5735 pf, and 
LPAR=5.252 mH.  It is gratifying that the parallel resonant frequency comes to 2.9 MHz, the postulated resonant 
frequency of the load.  It was also interesting that the inductance value was independent of the load resonance 
parameters of ωR and QR, depending only on the strength of the coupling.  It may serve as a measure of the coupling 
strength.   
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    The inverse relation between the QCM frequency changes with the harmonic number are in accord with this 

equivalent circuit, as is the return to Sauerbrey-like behavior when the load resonance frequency is very high.   
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